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Directional transport and nonlinear localization of light in a one-dimensional
driven-dissipative photonic lattice
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Photonic lattices facilitate band structure engineering, supporting both localized and extended modes through
their geometric design. However, greater control over these modes can be achieved by taking advantage of the
interference effect between external drives with precisely tuned phases and photonic modes within the lattice. In
this work, we build on this principle to demonstrate optical switching, directed light propagation, and site-specific
localization in a one-dimensional photonic lattice of coupled microresonators by resonantly driving the system
with a coherent field of controlled phase. Importantly, our experimental results provide direct evidence that
increased driving power acts as a tuning parameter enabling nonlinear localization at frequencies previously
inaccessible in the linear regime. These findings open different avenues for controlling light propagation and
localization in lattices with more elaborate band structures.
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I. INTRODUCTION

Photonic lattices serve as an effective platform for studying
fundamental wave phenomena while offering precise con-
trol over light propagation [1]. Their geometric arrangement
defines the periodic potential experienced by light waves, de-
termining the allowed and forbidden frequency ranges [2,3],
while hopping or coupling interactions between lattice sites
enable band structure engineering [4-7].

Along with geometric design, interference effects arising
from multiple scattering and wave superposition critically
shape wave transport in photonic lattices. In the absence
of losses, the density of states serves as a key parameter
for controlling the transport and localization properties. The
design of lattices with bands containing gaps, flat bands, mas-
sive or massless dispersions, van Hove singularities, or Dirac
cones dictates the extent of wave confinement. These spectral
modifications give rise to different localization mechanisms,
including defect modes, where localized states emerge within
the bandgap due to intentional breaking of the translational
invariance [8]; Anderson localization, in which random fluc-
tuations suppress wave transport and induce strong spatial
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confinement [9,10]; and flat-band states, where destructive in-
terference eliminates dispersion, leading to compact localized
states [11-13].

Even though photonic band engineering enables localiza-
tion in lossless photonic lattices [1,14], its tunability remains
inherently limited by the static nature of the system geom-
etry. To overcome this constraint, a promising direction is
to explore whether localization and wave transport can be
controlled through external driving and dissipation. In driven-
dissipative systems, an external drive, typically a laser, injects
light at a given frequency, phase, and intensity distribution
in the lattice. The system evolves toward a steady state dic-
tated by the balance between drive, propagation in the lattice,
and losses. This situation offers a framework in which the
response is determined not only by the lattice geometry but
also by the driving conditions. In particular, when dissipative
lattices are driven at resonance, the amplitude and phase of
the external driving laser act as tunable parameters that, when
tailored to interact with intrinsic lattice modes, can engineer
interference effects and, thereby, foster different transport
and localization mechanisms. This has been experimentally
demonstrated in photonic lattices, where strategic positioning
and phase tuning have achieved single-site localization at the
micron scale [15]. Theoretical studies have also proposed
that such control could facilitate unidirectional light transport
and sharp localization in extended areas in two-dimensional
lattices under laser excitation [16-20].

In the nonlinear regime, the interplay of drive, dissipation,
and lattice geometry can be tailored to nucleate dissipative
solitons [21,22] and to engineer nonlinear topological modes

Published by the American Physical Society
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FIG. 1. (a) Schematic representation of the 1D lattice consisting of 31 micropillars, with a center-to-center separation of a = 2.5 um. The
excitation spots are on adjacent pillars, with equal amplitudes F' and phase difference A¢. (b) Angle-resolved photoluminescence measurement
of the 1D lattice with one pump spot, showing the energy bands as a function of the in-plane momentum k,, with A = E — E,, where E is the
emitted photon energy and Ey, = 1445.13 meV. The white line displays the fit of the polariton dispersion to the coupled exciton-photon model
in Egs. (1) and (2). The blue and orange dashed lines indicate the energy of the top of the band (A/f = 1.87) and zero energy (A/t = 0),

respectively. (c) and (d) Real-space light distribution and corresponding

site-integrated intensity distribution for the OFF (A¢ = 0) and ON

state (A¢ = 1), both with excitation at the top of the band. (e) and (f) Real-space light intensity distribution and corresponding site-integrated
intensity distribution showing rightward propagation (A¢ = 7 /2) and leftward propagation (A¢ = —m /2), both with excitation at A/t = 0.

[23,24]. Engineered dissipation also plays a key role in shap-
ing light-matter interactions at the quantum level. Studies
on quantum emitters in structured reservoirs have shown
that controlled dissipation enables anisotropic emission and
collective effects such as perfect subradiance, where sponta-
neous emission is strongly suppressed through interference
[25-34]. These findings highlight the impact of interference
engineering beyond photonic lattices in the classical regime
and extending into quantum optical systems.

In this paper, we present a comprehensive experimental
investigation of the directional control of light propagation
and the role of nonlinear effects in the localization of light in
a one-dimensional lattice of coupled semiconductor micropil-
lars. The simplicity of the one-dimensional lattice compared
to previous works in a two-dimensional honeycomb lattice
[15] permits a finer control of the experimental parameters to
study these effects. By precisely tuning the phase of external
laser drives and tuning their photon energy to specific band
energies, we enable controlled interference effects between
the drives and the photonic modes, demonstrating key func-
tionalities such as optical switching, directional propagation,
and single-site localization. Furthermore, by taking advan-
tage of the Kerr nonlinearity inherent to the semiconductor
micropillars in the strong exciton-photon coupling regime,
we show that increasing power leads to nonlinearity-driven
localization in frequency regimes inaccessible in the linear
case as predicted in Refs. [17,18]. All these phenomena are
numerically modeled using a coupled photon-exciton model.

Our results provide crucial experimental insights for photonic
transport and open possibilities for tunable light confinement
in structured systems.

II. INTERFERENCE BETWEEN DRIVE
AND LATTICE MODES

A one-dimensional lattice of coupled semiconductor mi-
cropillars [35-37] serves as an ideal system for investigating
the interference effects between external drives and lat-
tice modes. The micropillars are laterally etched from a
A GaAs planar microcavity consisting of two distributed
Bragg reflectors of 32 and 36 pairs of A/4 layers of
Gag 05Alg.osAs/GaggoAlg.10AS, where A is the design wave-
length of the cavity at about 858 nm. A single InGaAs
quantum well is grown at the center of the cavity. At the cryo-
genic temperature of the experiments (5 K), cavity photons
and quantum well excitons enter the strong-coupling regime
giving rise to exciton polaritons with a measured Rabi split-
ting of 3.5 meV.

Each micropillar undergoes radiative losses to the envi-
ronment and can be driven by an external laser, forming a
driven-dissipative system [38]. The 1D lattice is displayed
in Fig. 1(a): It has 31 micropillars with a diameter of 3 um
and center-to-center separations of a = 2.5 um. The experi-
ments are conducted in transmission geometry with linearly
polarized excitation parallel to the lattice direction. Photo-
luminescence and transmission measurements are performed
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filtering the linear polarization parallel to the lattice and using
an imaging setup with a lens of 0.45 numerical aperture and
a CCD camera. Angle-resolved photoluminescence with a
nonresonant laser excitation at 1585.48 meV focused on a
1.1-um spot (full width at half maximum) centered on top of
a micropillar reveals the dispersion relation [Fig. 1(b)]. The
lowest band (s-band) follows a cosinelike dispersion, a typical
feature of 1D lattices.

The measured band structure is fitted [white line in
Fig. 1(b)] to a coupled Hamiltonian for the photon-exciton
system:

E S
Ho=|o 2 (1)
k Qr ,
EN Ec(ky)

where Ey represents the exciton energy, 2 is the Rabi split-
ting indicating the coupling strength between the photon and
exciton modes, and E¢(k,) is the cavity photon energy. We
assume the exciton energy to be independent of k due to its
large mass of approximately 0.5 my compared to the photon
mass in the cavity of approximately 107> mg, with m, the
free electron mass. Employing a tight-binding description in
which photons hop between adjacent micropillars, the photon
dispersion of the lowest energy lattice band is given by

Ec(ky) = Eg — 2t cos(ky,) — 2t' cos(2ky), 2)

where ¢ denotes the nearest-neighbor hopping, ¢’ the next-
nearest-neighbor hopping, and Eg the bare photon energy of
an individual micropillar. The next-nearest-neighbor hopping
appears in our system as an effective interaction mediated
by the hybridization between s and p modes. This type of
coupling mechanism has been explored in photonic lattices
and polaritonic systems [39]. Using the fmincon function
in MATLAB by setting Ex = 1450.49meV and Qp =
3.5meV, which can be deduced from the photolumines-
cence spectra of the lattice, the optimization results yield
EQ = 1445.68 meV, t = 0.35+0.01 meV and ¢’ = —0.03 +
0.0l meV. We operate at a photon-exciton detuning of
—5.45 meV, ensuring that the polaritons are 92% photonic and
8% excitonic. The laser detuning is defined by A = E, — Ej
such that A =0 is reached when the pump energy E, is
resonant with Ey = 1445.13 meV, an energy reference close
to the middle of the band.

As a first step to study the interference between the eigen-
modes of the lattice and multiple external drives, we pump two
adjacent sites (m and m + 1), as shown in Fig. 1(a), with equal
amplitude at a photon energy corresponding to A/t = 1.87
(top of the band). The phase difference A¢ between the two
spots is experimentally set using a piezo-controlled mirror,
which adjusts the path length of one beam relative to the
other. When the two sites are pumped with zero phase differ-
ence (A¢ = 0), the system exhibits a nonemissive (“OFF”)
response, as shown in Fig. 1(c): only a small amount of light
is observed at the pumped sites, while the rest of the lattice
remains dark. The dark response of this driving profile can be
understood by considering the spatial antisymmetric shape of
the antibonding lattice eigenmode at the top of the band. The
two laser spots excite coherently and in phase the top band
mode at adjacent micropillars. Due to the phase difference

of m between sites of the top band mode, the injected fields
interfere destructively, resulting in a dark response. The ob-
served residual transmission at the pumped sites [green arrows
in Fig. 1(c)] arises from slight misalignment of the excitation
beams.

Efficient excitation of the lattice mode at the top of the
band requires a relative phase of 7 between neighboring sites.
In this case, shown in Fig. 1(d), the field injected by the two
laser spots interferes constructively and gives rise to a highly
emissive (“ON”) state that propagates away from the pump
spots. If instead of the modes on the top of the band, of
antisymmetric nature, we had addressed the symmetric modes
of the bottom of the band, we would expect the drive phase
pattern of the “ON” and “OFF” responses to be reversed.

The observed decay of the emitted intensity away from the
pumped sites arises from the continuous escape of photons as
they propagate in the lattice. Note that in these experiments
under resonant injection, energy relaxation of the injected
photons is negligible. The measured output field is emitted
at the exact same frequency of the driving laser.

III. DIRECTIONAL PROPAGATION

Another striking phenomenon that arises from the inter-
ference between the drive and lattice modes is directional
propagation of light [19]. This phenomenon has been thor-
oughly studied in the context of quantum emitters coupled to
waveguides and lattices [25,26,29,30,34]. This situation can
be observed when setting the drive photon energy to A/t =0
(E, = Ep) and properly adjusting the phase between two adja-
cent pump spots. Figures 1(e) and 1(f) display this directional
transport phenomenon for phase differences of 7 /2 and —7 /2
between the excitation spots. When A¢ = 7 /2 [panel (e)], the
phase gradient introduced by the pump matches the symmetry
of modes with positive group velocity at A/t = 0, which
propagate to the right. Conversely, for A¢ = —m /2 [panel
()], the reversed phase gradient favors coupling to modes with
group velocity directed to the left. The directionality can be
quantitatively evaluated (see Supplemental Material Ref. [40]
for further details): For A¢ = —m /2, 78% of the injected light
is directed to the left of the pumped region (excluding the
pumped sites), whereas only 22% is observed on the right. In
contrast, for A¢ = 4 /2, the directionality is reversed, with
92% of the light appearing to the right of the pump spots and
just 8% to the left.

In Fig. 1(e), the decaying intensity to the right of the
pump spots displays an oscillating behavior. The reason is that
the pump spots (m = 19, 20) are positioned relatively near
the edge of the lattice (m = 31), and the field propagating in
the lattice is reflected at the boundary resulting in an inter-
ference. In Fig. 1(f) this effect is less prominent because the
edge m = 1 is located farther from the pumping sites. Similar
results are found with any other choice of pair of pumped sites
as long as they are sufficiently far from the edges.

IV. NUMERICAL AND ANALYTICAL MODELS

To better understand the system and enable a direct com-
parison with the experiment, we have developed a numerical
model of an array of 31 coupled sites in the tight-binding
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limit. To keep track of the hybrid light-matter nature of the
micropillar resonances, we model each site m with a dis-
crete cavity mode ¢, (t) and an exciton mode Yy, (t).
Keeping track of the two coupled fields provides deeper in-
sights into the saturation of polariton nonlinearities and goes
beyond previous works on the study of nonlinear localiza-
tion effects [17,18]. These fields are assembled into a state
vector y(t) € C%%:

[ Yea@) ]
Yx,1(1)
Yea(t)

y@) = | ¥x20)

1/fc,3'1(l)
| ¥x,31(2) |

The time evolution of the system is governed by the following
coupled differential equations [41]:

. dvcm .Yc Qg
h—— = (5 - _) m e m
th— c—is Yem + > Yx,
+IZI//C,H+Z/ZI//C,V!+FWL) (3)
(n) ((n))
LAYy, VX Qg
h — = (5 - _> m ~ m
ih— x — i3 Yx,m + 5 Y,
+ gx | Vx.ml*¥xm- 4)

Sc =E,— EC0 and 8y = E, — Ex denote the photon and exci-
ton detunings relative to the pump energy E,, the photon and
exciton decay rates are y¢ and yyx, the term gx [V¥x |2 captures
the exciton-exciton nonlinearity, and (n) and ((n)) refer to the
nearest and next-nearest neighbors. The pump F,,, is applied at
two sites m; and m, with a relative phase difference A¢ as

Fm = [1(6m,m1 + €[A¢8m,m2)a

where §,, ,,,, is the Kronecker delta function. In the model,
only the photon field ¢, undergoes hopping between sites
via the nearest- (¢) and next-nearest-neighbor (¢') couplings,
while the exciton field ¥y ,, remains localized due to its signif-
icantly larger effective mass compared to the photon. At low
input intensities, Eqs. (3) and (4) have a steady-state solution
for each configuration of the drive field F;,.

We have performed numerical simulations under the con-
ditions of the experiments shown in Figs. 1(c)-1(f). In these
simulations in the linear regime, gy = 0 and both excitation
spots are driven with equal amplitudes F),. For convenience,
we set y, =y, = y with a value of 0.12meV, which fits
the measured decay of the polariton intensity in Fig. 1(d).
We numerically reproduce the key experimental observations:
The existence of ON and OFF states in Figs. 1(c) and 1(d),
as well as the directional propagation across the lattice dis-
played in Figs. 1(e) and 1(f). In Fig. 1(c), the driven sites
exhibit significantly less intensity in the numerical simulations
compared to the experiment, which can be attributed to the
ideal mode matching between the pump and each site in
the simulations. The simulation in Fig. 1(e) reproduces the
intensity oscillations observed in the experiment, which arise
from the interference between the right propagating field and
the polaritons reflected from the edge of the lattice.

After experimentally observing and numerically confirm-
ing scenarios enabling light transport and manipulation in the
lattice, we next ask whether additional, less intuitive transport
regimes may exist within the accessible parameter space. To
explore this, we derive an analytical expression based on a
Fourier-space solution of the steady-state coupled Eqs. (3) and
(4) following the methods introduced in Ref. [17]. Specif-
ically, we consider an infinite 1D lattice for two coherent
pumps applied at distinct lattice sites m; and m; and solve the
equations in momentum space, followed by an inverse Fourier
transform to recover the photonic spatial field distribution
[¥c.m|*. To simplify the analytical expression, we consider
the case ' = 0 and the limit of purely photonic polaritons,
which implies that the lattice bandwidth is 4¢. The detailed
derivation is given in the Supplemental Material [40]. The
photon intensity at each site m takes the form:

|Wc,m|2 — |Fp|2D(A)2|elkO|m — ny |e_yD(A)|m — m1|

+ ¢l AP jikolm — my| ,—y D(A)|m — my| 2 5

where ky = arccos(—A/2t) and D(A) = 1/+/4t2 — A? is the
density of states. From Eq. (5), we derive the general con-
ditions that establish the relation between A and A¢ for
directional propagation to occur. For propagation to the right,
we impose destructive interference in the region to the left
of the pump spots, i.e., |1ﬁc,m|2 =0 for m < min(m;, m)
in the limit of negligible losses y < ¢. This leads to the
condition [40]

cos (A¢ + ko(my —my)) = —1,
which yields the phase-matching requirement

Ad + ko(my —my) = 20+ D, LeZ. )

For directional propagation to the left, we get the condition
Ap —ko(my —m) =20+ D, LeZ. @)

Equations (6) and (7) reveal that directional transport is
tunable: For any value of detuning A within the band, there
exists a corresponding phase difference A¢ that enables direc-
tional propagation, except at the band edges. The appropriate
phase difference can be found for any separation between
the two pumping spots. In the specific case of A =0 (i.e.,
ko = £m /2) and my, — m; = 1, directional propagation occurs
at A¢ = £ /2. Our experiments and numerical simulations
confirm this situation, even though they deviate slightly from
the conditions in which Egs. (5)—(7) have been obtained: Ex-
periments and simulations are done in presence of losses and
include weak next-nearest-neighbor coupling and a small ex-
citonic component that modify the shape of the pure photonic
band with just next-neighbor hoppings assumed in Eq. (5).

V. LOCALIZATION IN LINEAR REGIME

Engineering of drive patterns in a lattice can also lead
to steady states localized at a single and several sites
[15,17,18,27]. This situation has been investigated in a hon-
eycomb lattice of coupled micropillars, in which a laser drive
configuration arranged in three sites leads to the confinement
of light onto a single site [15]. In this section, we show
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FIG. 2. (a) Schematic of the 1D lattice consisting of 31 micropil-
lars, with two excitation spots of equal phase A¢ = 0 and enveloping
a single site. (b) and (c) Real-space intensity distributions for three
values of A/t = —0.21, 0.75, and 1.87, along with their correspond-
ing line profiles. (d) A/t scan spanning from the bottom to the top
of the dispersion band, presented for two cases: A single excitation
spot on the 15th site (green dots), and with two excitation spots on
the 15th and 17th sites (blue dots).

localization in a 1D lattice as a first step toward investigating
nonlinear effects.

Using a spatial light modulator, we focus two coherent
laser beams of equal intensity and phase (A¢ = 0) on lattice
sites j — 1 and j + 1, sketched in Fig. 2(a). From Eq. (5),
it can be shown that in the absence of next-nearest-neighbor
hopping (¢'), a steady state fully localized at site j can only
happen at A/t = 0 (see Ref. [40]). However, in the experi-
ment, we observe localization at the central site for a laser
detuning A/t = —0.21, corresponding to an energy detuning
of E, — Ey = —0.07meV as displayed in Figs. 2(b) and 2(c).
This deviation from A/t = 0 is due to the influence of ¢/,
and it is confirmed numerically. At other laser detunings,
Figs. 2(b) and 2(c) show a broader distribution of light across
the lattice. In panel (c) the measured intensity is normalized
such that the total sum of the squared intensities over all lattice
sites is equal to 1 (i.e., Y., [Weml> = 1).

The degree of localization can be quantified with the local-
ization parameter:

_ P
S Wl

It measures the fraction of the total intensity at site j (in
between the two pump spots), which is where we expect the
localization to happen. A higher value of X indicates a greater

®)

degree of localization between the pumping spots, whereas
a lower value describes extended modes across the lattice.
Figure 2(d) (blue dots) displays the measured values of A in
the configuration of panel (a) when the laser energy is scanned
across the entire band. It confirms that maximum localization
occurs exclusively at A/t = —0.21. This behavior is very
different to the case of a single spot excitation, in which light
spreads over all lattice sites at all excitation energies as shown
in green dots in Fig. 2(d). Note that at the band edges at around
A/t = —1.7 and +1.9, the low group velocity (exactly zero
at the band edge) results in a significant degree of localization
for both one and two spots.

VI. NONLINEAR LOCALIZATION IN EXTENDED MODES

In the linear regime, the maximum localization occurs at
A/t = —0.21. To understand how the localization is modified
by interactions, we explore the role of on-site Kerr nonlineari-
ties in shaping the steady-state field at the site located between
the two pump spots. A recent theoretical study by Mufioz
de las Heras et al. [17] demonstrated that in the presence
of nonlinearities, strong localization can also occur at dif-
ferent detunings. In our experiment, the nonlinear interaction
strength is controlled via the power of the coherent pumps,
which modulates the polariton density.

Figures 3(a)-3(f) display the measured localization param-
eter A as a function of pump power at six laser detunings.
At A/t = —0.21, at low power, we measure A = 0.44, which
indicates a strong localization. When increasing the pump
power, the localization level slightly decreases. When the laser
detuning is increased to A/t = 0 [Fig. 3(b)], the value of X at
low power is smaller than at A/t = —0.21, and the highest
localization is observed at a laser intensity of about 23 mW
before significantly declining at higher powers. This trend be-
comes clearer at higher detunings upto A/t = 0.35 [displayed
in Fig. 3(e)], when the highest measured localization takes
place at 31 mW [see Fig. 3(g) for a comparison of the mode
distribution at three different powers]. The power at which the
highest localization takes place increases with the detuning as
displayed in Fig. 3(h). At even higher detunings [A /¢t = 0.55;
Fig. 3(f)], the measured impact of the nonlinearity becomes
weak.

The modifications of A across varying pump powers
and laser detunings show that nonlinearity modifies the in-
terference conditions in the lattice to partially reestablish
localization. To further understand this phenomenon we re-
fer to Ref. [17], which uses a Gross-Pitaevskii model to
describe the localization in a lattice similar to the one dis-
cussed in our work. The model in that work assumes no
next-nearest-neighbor hopping and it predicts a linear scaling
of the power at which maximum localization occurs (Ppaxioc)
with increasing detuning. However, this mean-field approach
does not account for nonlinear saturation effects that arise
from the mixed light-matter nature of polaritons. To address
this limitation, we use the model presented in Eqgs. (3) and
(4). Figure 4(a) displays the numerically computed value of
A as a function of pump power for various detunings using
the lattice parameters of the simulations in Fig. 1. For A/t =
—0.21, the localization is initially high at low pump powers
but gradually decreases with increasing power. In contrast,
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FIG. 3. (a)-(f) Power dependence of the localization parameter for six different detunings A/¢: —0.21, 0, 0.10, 0.25, 0.35, and 0.55. (g) Line
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localization power (Praxioc) as a function of the first five detunings. For A/t = 0.55, Paxioc 18 not included in panel (h) as nonlinearity-induced

localization is no longer observed.

for other detunings, A increases with pump power, reaching
a peak at a specific value Pyaxioc, after which it begins to
decline. For large detunings, such as A/t = 0.35 and 0.55, the
localization grows more gradually and eventually saturates,
reflecting a nonlinear plateau. We have verified that including
an additional nonlinear term in Egs. (3) and (4) to account for
the saturation of the oscillator strength [42,43] does not qual-
itatively change the behavior observed in the simulations of
Fig. 4, even when the oscillator strength saturation dominates
over exciton-exciton interaction gy.

These simulations show that a high degree of local-
ization can be recovered at any of the studied detunings
for the proper value of driving power. However, in contrast
to the results in Ref. [17], the pump power required to reach
the maximum A increases superlinearly with detuning, as
observed in Fig. 4(b). The reason is that in the two coupled
equation model, exciton interactions lead to an increase of the
exciton self-energy, while the photon energy is not affected
by them. As a result, the lower-branch polaritons constituting
the lattice modes become increasingly photonic with power,
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(b) Maximum localization power (Ppaxioc), as a function of detuning A /t.
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FIG. 5. Line profile showing the intensity counts for both the
experiment and numerical simulations at A/t = —0.04, highlighting
the presence of stray light (yellow shadow).

leading to a reduction in their effective interactions. This self-
limiting behavior leads to the superlinear increase of Praxioc
with detuning in Fig. 4(b), and it also smoothens the response
with power at high detunings [Fig. 4(a)].

While the model displays an increase of Ppaxioc With power
as in the experiments, there are discrepancies between the
simulations in Fig. 4 and the experiments reported in Fig. 3.
In particular, in the experiments, the nonlinear response at
large detunings does not display the high localization val-
ues observed at A/t = —0.21 in the linear regime. To better
understand these differences, we examined several possible
contributing factors. Previous studies have shown that dis-
order can disrupt interference-based localization in photonic
lattices by degrading coherent transport or suppressing nonlin-
ear localization mechanisms [44—46], motivating us to assess
its impact in our system. Therefore, we performed numerical
simulations to study the effect of disorder in both the coupling
strengths and on-site energies. Reference [40] shows a de-
tailed analysis of disorder realizations, including comparisons
of the localization parameter and steady-state intensity pro-
files with and without disorder. Remarkably, the localization
effect remains qualitatively robust even for onsite and hopping
disorder values greater than the hopping strength, suggesting
that our experiments are stable against such imperfections.
This robustness arises due to the presence of dissipation,
which plays a crucial role in protecting localized states from
the system’s imperfections. Moreover, for disorder values
compatible with the measured dispersion in Fig. 1(b), the
simulated localization parameter remains significantly higher
than the measured ones [40].

This led us to consider other possible sources of devi-
ation, particularly experimental limitations. Stray light is a
significant factor that can influence the measured localization
parameter: Unwanted reflections or scattering from the edges
of the microstructures reaching the detection camera may
introduce parasitic signals, reducing both the precision and
contrast of the measurement. Figure 5 shows the measured
intensity profile (blue points) for A/t = —0.04 at low power,
along with a simulation in the same conditions (red points).
Both datasets have been normalized to the emitted intensity at
the localized site. A distinct feature in the experimental data

is the presence of a bump on both sides of the pumped sites,
which is completely absent in the numerical simulations. It is
highlighted with yellow shadows in Fig. 5. Similar bumps are
observed at all powers and detunings in the experiment, which
strongly suggests that its origin is stray light.

The origin of the stray light can be traced down to the ge-
ometry of the microstructures we study. The one-dimensional
lattice used in this work was fabricated via deep etching of
the upper and lower mirrors of the microcavity down to the
GaAs substrate. This procedure ensures a deep confinement of
the photonic modes inside the micropillar but allows residual
laser light to go around the sides of the etched micropillars
and through the substrate toward the CCD detector and pol-
lute the measured intensity profiles, in particular close to the
excitation spots. Since the localization parameter A is derived
from intensity measurements, the presence of stray light can
parasitically contribute to the signal, thereby affecting the
extracted value of A.

In the Supplemental Material [40], we show that when
accounting for stray light, simulations yield localization pa-
rameters close to the experimental values in the linear regime
and qualitatively reproduce the power dependence observed
in Fig. 3(a) for A/t = —0.21. A full quantitative agreement
between experiment and theory would require simultaneously
incorporating the effects of stray light, disorder, and other fea-
tures such as asymmetries between the excitation pump spots.
However, the large number of fitting parameters would render
such an analysis impractical. Our experimental observations
and simulations highlight the main sources of deviation be-
tween the real system and Eqs. (3) and (4), which nevertheless
provide a good qualitative description.

VII. CONCLUSION AND OUTLOOK

To sum up, we have demonstrated that precise control
over the laser phase at individual sites and pump laser en-
ergy enables the manipulation of interference patterns in
driven-dissipative photonic lattices. We used this control to
experimentally demonstrate the existence of optical switching
of ON and OFF responses, as well as directional transport
with high efficiency. In addition, we investigated the role of
interactions, which lead to light confinement in frequency
regimes not accessible under linear conditions as proposed
in Ref. [17]. The observed effects underscore the significant
role of interference in presence of nonlinearities and call for
further studies in lattices with other band structures [18,19]
and in the presence of topological properties [16,21].
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