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EXPERIMENTAL SET-UP

The experimental setup employs a continuous wave (CW) single-frequency laser source (Koheras MIKRO, NKT
Photonics) operating at 1550 nm with a maximum output power of 40 mW and a linewidth < 0.1 kHz. The laser
output is split equally using a 50/50 beam splitter, with one part serving as input to a local oscillator and the other
being modulated into 1.4 ns pulses via an electro-optical modulator (EOM, iXblue MXER-LN-10), which is controlled
by an arbitrary waveform generator (AWG 7000B, Tektronix). To reduce residual laser light entering the ring, an
acoustic optical modulator (AOM, AA Opto-electronic MT110-IIR30-Fio-PM0.5) with an extinction power of -70 dB
is incorporated. The AOM is shaped in a gate centred in time at the pulse generated by the preceding EOM. The
prepared injection signal is then introduced into the long α ring through a 70/30 beamsplitter.

The pulse evolution follows a split step walk. The two fiber rings α and β are coupled via a high-bandwidth 40
GHz electronically controlled variable beamsplitter (EOSpace AX-2x2-0MSS-20). Each ring has an Erbium-doped
fiber amplifier (EDFA, Keopsys CEFA-C-HG) and an optical variable attenuator (VOA, Agiltron) which are used to
finely compensate for round trip losses.

A 90/10 beamsplitter within each ring extracts light for measurement. To access both amplitude and phase
information of sublattices αm

n and βm
n , a heterodyne measurement technique is employed. This involves beating the

wavefield extracted from the double rings with a local oscillator reference field. This field is derived from the laser
used to inject the initial pulse and is frequency-shifted by 3 GHz using an electro-optic modulator. The beating
interference between the signal and the local oscillator is converted to electrical signals using a fast photodiode
(Thorlabs DET08CFC) operating at 5 GHz. These signals are then captured and analyzed using a high-performance
oscilloscope (Tektronix MSO64) featuring a 6 GHz bandwidth, 10-bit vertical resolution, 25 GS/s sampling rate, and
a memory record length of 62.5 Mpts corresponding to 2.5 ms, enabling very detailed signal analysis of the beating.

COMPUTATION OF THE BERRY CURVATURE AND CHERN NUMBERS

To compute the Berry curvature, the eigenvectors of our lattice need to be accessed experimentally. Data is collected
by recording the output intensity from both fiber loops using an oscilloscope. The resulting signal displays groups
of pulses separated by the average round-trip time of T̄ = 224.94 ns, with pulses within each group spaced ∆T
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FIG. S1. (a) Zoom on the first time steps of the measured time trace of the signal intensity at the output of the α fiber
loop. (b) Spatio-temporal diagram of the α ring reconstructed from the time trace in (a). (c) Measured bands in one Brillouin
zone for the α after zooming the region at ω + Ω frequencies in panel (d). (d) Two-dimensional Fourier transform (2DFT) of
the stroboscopic spatio-temporal diagram of the α. The first steps of the spatiotemporal diagram are shown in (b). The full
spationtemporal diagram spans over 120 steps.
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= 3.4 ns apart due to the length difference between the two fiber loops as shown in Fig. S1.(a). This time trace
is then segmented and arranged into a spatio-temporal diagram (Fig. S1.(b)) for further analysis. Crucial phase
information is retrieved by subjecting the signal to optical heterodyne measurement with a reference continuous wave
laser, frequency-shifted by about 3 GHz, producing observable fringes in the recorded signal.

The interference between the local oscillator and the signal evolving in the rings contains phase information relevant
to the measurement of the band structure (see the beating signal on top of each pulse in Fig. S1.(b)). The band
structure is reconstructed by performing a numerical two-dimensional Fourier transform (2DFT) on the stroboscopic
spatio-temporal diagram of Fig. S1.(b) of each ring at time steps corresponding to integer Floquet periods (m =
4, 8, 12, · · · ). This yields periodic eigenvalue bands spanning about 10 GHz in the quasimomentum direction this
value is fixed by the time resolution of the oscilloscope that records the time trace) and 1.12 MHz in the quasienergy
direction, see Fig. S1(d). We focus on a single Brillouin zone at around a frequency of 3GHz as shown in Fig. S1(c).
The vertical and horizontal axis of the dispersion are then relabelled to span the full spectral Brilluoin zone both in
quasienergy E and quasimomentum k, spanning both from −π to π.
Environmental factors can cause fluctuations in fiber length, resulting in shifts of the band structure. To diminish

these fluctuations we use a protocol using piezos to lock the lengths of the rings. Even after this compensation we
still have slight shifts in band structure. To compensate for these minor shifts, the experimental setup employs a
dual-pulse technique to reconstruct and calibrate the two-dimensional band structure of our synthetic lattice created
using coupled fiber rings.

This method utilizes two consecutive τ = 1.4 ns pulses: a calibration pulse and a science pulse. The calibration
pulse, enters the ring and evolves in time with a constant splitting of 50/50 in the variable beamsplitter and no phase
modulation. The spatio-temporal evolution dynamics produces a well-known reference band structure. In contrast,
the science pulse implements the experimental system of interest, featuring controlled coupling values of variable
beamsplitter and phase modulation of phase modulator. The calibration pulse’s band structure is compared to its
theoretical model, allowing for the measurement of horizontal and vertical shifts. These measurements are then used
to calibrate the axes, which remain valid for the subsequent science pulse measurement.

For eigenvector extraction, first, for each quasimomentum value, the experimental bands are identified by scanning
around the analytically computed bands to locate intensity maxima. Next, the complex amplitudes α̃ and β̃ of the
measured bands are obtained at each quasimomentum point for both the α and β rings. From them we extract the
amplitude ratio R(k, φ) between α̃ and β̃ and their phase difference Φαβ(k, φ). To reduce noise in the measurement
of the amplitude ratio R, the recorded intensity is integrated over a small range surrounding the band maximum for
each k value as shown in Fig. S1.(c). This ratio R and the phase difference Φαβ of the complex amplitudes directly
yield the eigenvectors.

Again the calibration shot is crucial for establishing a consistent phase reference across different measurements;
specifically, the phase is rigidly shifted to zero at k = −π in the calibration shot, and this shift is applied to the
science shot. The sublattice phase pattern Φαβ(k, φ) is then reconstructed from independent measurements taken at
various values of φ ∈ [−π, π], utilizing the calibration shot as a reference. To obtain the final eigenvectors |ψ⟩ defined
by Equation S1 smoothing is applied to the resulting matrices |R(k, φ)| and Φαβ(k, φ):

|ψ⟩ =
(
α̃(k, φ)

β̃(k, φ)

)
=

1√
1 + |R(k, φ)|2

(
1

|R(k, φ)|eiΦαβ(k,φ)

)
(S1)

where,

R(k, φ) =
β̃(k, φ)

α̃(k, φ)
= |R(k, φ)|eiΦαβ(k,φ) (S2)

Figures S2.a-b and S3.a-b show the experimentally measured |R(k, φ)| and Φαβ(k, φ) for the upper band corre-
sponding to the two cases with C = 0 and 2 described in Figs. 3 and 4 of the main text. Panels (d) and (e) show
the corresponding analytical calculation using Equation S36. We can now compute the Berry curvature using the
measured eigenvectors.

The Berry curvature is computed utilizing the natural discretization of the Brillouin zone derived from the experi-
mental data. The calculation involves the product of eigenvectors of a given band at the four corners of each square
in the discretized Brillouin zone. The four-points formula is used to compute the Berry curvature (or Berry phase)
per unit cell for each plaquette of the discretization [1]:

BC = −Im log [⟨ψ1|ψ2⟩⟨ψ2|ψ3⟩⟨ψ3|ψ4⟩⟨ψ4|ψ1⟩] (S3)

where |ψi⟩ represents the eigenvector at each corner of the square.
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FIG. S2. Chern Number C+ = 0 for the upper band of the model with θ1 = 0.125π, θ2 = 0.25π, θ3 = 0.438π and θ4 = 0.438π.
Experimental relative amplitude and phase difference between the two sublattices for the eigenvectors are shown in a, b and
their corresponding analytical calculations in d, e. (c) Measured Berry curvature of the upper band for this lattice model and
corresponding measured Chern number shown on top. (f) Theoretical Berry curvature of the upper band for this lattice model
and corresponding Chern number shown on top.
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FIG. S3. Chern Number C+ = -2 for the upper band of the model with θ1 = 0.125π, θ2 = 0.25π, θ3 = 0.5π and θ4 = 0.25π.
Experimental relative amplitude and phase difference between the two sublattices for the eigenvectors are shown in a, b and
their corresponding analytical calculations in d, e. (c) Measured Berry curvature of the upper band for this lattice model and
corresponding measured Chern number shown on top. (f) Theoretical Berry curvature of the upper band for this lattice model
and corresponding Chern number shown on top.

The Chern number is determined by integrating the Berry curvature over the entire Brillouin zone:

C =
1

2π

∑
BZ

BC (S4)

The Chern number is a bulk topological invariant which provides crucial information about the global properties of
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the lattice, band structure and associated wavefunctions. In Figs. S2 and S3 we show the experimentally measured
Chern number in panel (c) and their corresponding analytical calculation in panel (f).

DISCRETE-STEP FLOQUET OPERATORS IN REAL SPACE

The discrete-step walk generated by the experimental setup is described by the general coupled equations. Equation
S5 is a more general form of Equation (1) of the main text.

α(n,m+ 1) = eiφ(n−1,m)(cos(θ(n− 1,m))α(n− 1,m) + i sin(θ(n− 1,m))β(n− 1,m))

β(n,m+ 1) = cos(θ(n+ 1,m))β(n+ 1,m) + i sin(θ(n+ 1,m))α(n+ 1,m)
(S5)

It shows how the original pulse splits at each time-step m depending on the value of the variable beam splitter θ and
acquires a phase due to the phase modulator φ acting on the α ring. α(n,m) and β(n,m) are the complex amplitudes
of light pulses in the long and short rings respectively. The system can be understood as a one dimensional quantum
walk with a parametric dimension φ.

To describe the light dynamics after four time steps, we replace m with m + 3 in Equation S5. We then iterate
Equation S5 to relate the complex amplitudes of α and β at time step m to those at time step m+3. For our four-step
protocol, the final equations of motion describing the time evolution during each full period are given by:

α(n,m+ 4) = (eiφ(n−1,m+3)eiφ(n−2,m+2)eiφ(n−3,m+1)eiφ(n−4,m)T (n− 4,m)T (n− 1,m+ 3)

× T (n− 2,m+ 2)T (n− 3,m+ 1))α(n− 4,m)

+ (ieiφ(n−1,m+3)eiφ(n−2,m+2)eiφ(n−3,m+1)eiφ(n−4,m)R(n− 4,m)T (n− 1,m+ 3)

× T (n− 2,m+ 2)T (n− 3,m+ 1))β(n− 4,m)

+ (−eiφ(n−1,m+3)eiφ(n−2,m+2)eiφ(n−3,m+1)R(n− 2,m)R(n− 3,m+ 1)T (n− 1,m+ 3)T (n− 2,m+ 2)

− eiφ(n−1,m+1)eiφ(n−1,m+3)eiφ(n−2,m)R(n,m+ 2)T (n− 2,m)R(n− 1,m+ 3)T (n− 1,m+ 1)

− eiφ(n−1,m+3)eiφ(n−2,m+2)eiφ(n−2,m)T (n− 2,m)R(n− 1,m+ 1)R(n− 2,m+ 2)T (n− 1,m+ 3))α(n− 2,m)

+ (ieiφ(n−1,m+3)eiφ(n−2,m+2)eiφ(n−3,m+1)T (n− 2,m)R(n− 3,m+ 1)T (n− 1,m+ 3)T (n− 2,m+ 2)

− ieiφ(n−1,m+3)eiφ(n−2,m+2)eiφ(n−2,m)R(n− 2,m)R(n− 1,m+ 1)R(n− 2,m+ 2)T (n− 1,m+ 3)

− ieiφ(n−1,m+1)eiφ(n−1,m+3)eiφ(n−2,m)R(n,m+ 2)R(n− 2,m)R(n− 1,m+ 3)T (n− 1,m+ 1))β(n− 2,m)

+ (eiφ(n−1,m+1)eiφ(n−1,m+3)R(n,m)R(n,m+ 2)R(n− 1,m+ 1)R(n− 1,m+ 3)

− eiφ(n−1,m+3)eiφ(n,m)T (n,m)T (n,m+ 2)R(n+ 1,m+ 1)R(n− 1,m+ 3)

− eiφ(n−1,m+3)eiφ(n−2,m+2)R(n,m)R(n− 2,m+ 2)T (n− 1,m+ 1)T (n− 1,m+ 3))α(n,m)

+ (ieiφ(n−1,m+3)eiφ(n−2,m+2)T (n,m)R(n− 2,m+ 2)T (n− 1,m+ 1)T (n− 1,m+ 3)

− ieiφ(n−1,m+3)eiφ(n,m)R(n,m)T (n,m+ 2)R(n+ 1,m+ 1)R(n− 1,m+ 3)

− ieiφ(n−1,m+1)eiφ(n−1,m+3)T (n,m)R(n,m+ 2)R(n− 1,m+ 1)R(n− 1,m+ 3))β(n,m)

+ (−eiφ(n−1,m+3)R(n+ 2,m)T (n,m+ 2)R(n− 1,m+ 3)T (n+ 1,m+ 1))α(n+ 2,m)

+ (ieiφ(n−1,m+3)T (n,m+ 2)T (n+ 2,m)R(n− 1,m+ 3)T (n+ 1,m+ 1))β(n+ 2,m)



6

β(n,m+ 4) = (ieiφ(n−1,m+1)eiφ(n,m+2)eiφ(n−2,m)T (n,m+ 2)T (n− 2,m)R(n+ 1,m+ 3)T (n− 1,m+ 1))α(n− 2,m)

+ (−eiφ(n−1,m+1)eiφ(n,m+2)eiφ(n−2,m)R(n− 2,m)T (n,m+ 2)R(n+ 1,m+ 3)T (n− 1,m+ 1))β(n− 2,m)

+ (ieiφ(n+1,m+1)eiφ(n,m)T (n,m)R(n+ 2,m+ 2)T (n+ 1,m+ 1)T (n+ 1,m+ 3)

− ieiφ(n−1,m+1)eiφ(n,m+2)R(n,m)T (n,m+ 2)R(n− 1,m+ 1)R(n+ 1,m+ 3)

− ieiφ(n,m)eiφ(n,m+2)T (n,m)R(n,m+ 2)R(n+ 1,m+ 1)R(n+ 1,m+ 3))α(n,m)

+ (eiφ(n,m)eiφ(n,m+2)R(n,m)R(n,m+ 2)R(n+ 1,m+ 1)R(n+ 1,m+ 3)

− eiφ(n+1,m+1)eiφ(n,m)R(n,m)R(n+ 2,m+ 2)T (n+ 1,m+ 1)T (n+ 1,m+ 3)

− eiφ(n−1,m+1)eiφ(n,m+2)T (n,m)T (n,m+ 2)R(n− 1,m+ 1)R(n+ 1,m+ 3))β(n,m)

+ (ieiφ(n+2,m)T (n+ 2,m)R(n+ 3,m+ 1)T (n+ 1,m+ 3)T (n+ 2,m+ 2)

− ieiφ(n,m+2)R(n,m+ 2)R(n+ 2,m)R(n+ 1,m+ 3)T (n+ 1,m+ 1)

− ieiφ(n+1,m+1)R(n+ 2,m)R(n+ 1,m+ 1)R(n+ 2,m+ 2)T (n+ 1,m+ 3))α(n+ 2,m)

+ (−eiφ(n,m+2)R(n,m+ 2)T (n+ 2,m)R(n+ 1,m+ 3)T (n+ 1,m+ 1)

− eiφ(n+2,m)R(n+ 2,m)R(n+ 3,m+ 1)T (n+ 1,m+ 3)T (n+ 2,m+ 2)

− eiφ(n+1,m+1)T (n+ 2,m)R(n+ 1,m+ 1)R(n+ 2,m+ 2)T (n+ 1,m+ 3))β(n+ 2,m)

+ (iR(n+ 4,m)T (n+ 1,m+ 3)T (n+ 2,m+ 2)T (n+ 3,m+ 1))α(n+ 4,m)

+ (T (n+ 4,m)T (n+ 1,m+ 3)T (n+ 2,m+ 2)T (n+ 3,m+ 1))β(n+ 4,m)
(S6)

where T (n,m) = cos(θ(n,m)) and R(n,m) = sin(θ(n,m)).
In the four-step model, the coupling angle θ and phase modulator φ have a cyclic behaviour, each alternating

between four distinct values within a single Floquet period TF . The four-step model exhibits double periodicity:
spatial (every two sites n i.e. sites 0, 2, 4, 6, · · · ) and temporal (every four-time steps m i.e. steps 4, 8, 12, · · · ) as
shown in Fig. S5. Therefore, in Eqs. S6 we fix the angles at different times m and sites n to

θ(n,m) = θ1,n = θ1, θ(n,m+ 1) = θ2,n = θ2, θ(n,m+ 2) = θ3,n = θ3, θ(n,m+ 3) = θ4,n = θ4

φ(n,m) = φ1,n = +φ, φ(n,m+ 1) = φ2,n = −φ, φ(n,m+ 2) = φ3,n = +φ, φ(n,m+ 3) = φ4,n = −φ
(S7)

This means that for a time step m all the coupling ratios and phase modulation are constant throughout the lattice,
inn a sequence that is repeated every four steps. In these conditions, Eq. S6 simplifies to,

α(n,m+ 4) = T1T2T3T4 α(n− 4,m) +R1T2T3T4i β(n− 4,m)

− (R2R3T1T4e
iφ +R1R2T3T4e

−iφ +R3R4T1T2e
−iφ)α(n− 2,m)

− (R1R2R3T4ie
iφ +R1R3R4T2ie

−iφ −R2T1T3T4ie
−iφ)β(n− 2,m)

− (R1R3T2T4 +R2R4T1T3 −R1R2R3R4e
−2iφ)α(n,m)

− (R1R2R4T3i−R3T1T2T4i+R2R3R4T1ie
−2iφ)β(n,m)

−R1R4T2T3e
−iφα(n+ 2,m) +R4T1T2T3ie

−iφ β(n+ 2,m)

β(n,m+ 4) = T1T2T3T4 β(n+ 4,m) +R1T2T3T4i α(n+ 4,m)

− (R1R2T3T4e
iφ +R3R4T1T2e

iφ +R2R3T1T4e
−iφ)β(n+ 2,m)

− (R1R3R4T2ie
iφ +R1R2R3T4ie

−iφ −R2T1T3T4ie
iφ)α(n+ 2,m)

− (R1R3T2T4 +R2R4T1T3 −R1R2R3R4e
2iφ)β(n,m)

− (R1R2R4T3i−R3T1T2T4i+R2R3R4T1ie
2iφ)α(n,m)

−R1R4T2T3e
iφβ(n− 2,m) +R4T1T2T3ie

iφ α(n− 2,m)

(S8)

where Tj = cos(θj) and Rj = sin(θj) with j = 1, 2, 3 and 4.
For an infinite lattice (i.e., a system without boundaries) under the four-step protocol, the full Floquet operator

UF,∞ is defined by Eq. S8. This operator characterizes the evolution of the infinite lattice in real space, incorporating
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spatially couplings θ, phase modulations φ, and its periodic temporal modulation. The operator UF,∞ can be expressed
as:

UF,∞ =



. . . U+ U++ 0 0 0 0
...

U− U0 U+ U++ 0 0 0 0
U−− U− U0 U+ U++ 0 0 0
0 U−− U− U0 U+ U++ 0 0
0 0 U−− U− U0 U+ U++ 0
0 0 0 U−− U− U0 U+ U++

0 0 0 0 U−− U− U0 U+

... 0 0 0 0 U−− U−
. . .


(S9)

the different blocks are given by:

U0 =

(
R1R2R3R4e

−2iφ −R2R4T1T3 −R1R3T2T4 R3T1T2T4i−R1R2R4T3i−R2R3R4T1ie
−2iφ

R3T1T2T4i−R1R2R4T3i−R2R3R4T1ie
2iφ R1R2R3R4e

2iφ −R2R4T1T3 −R1R3T2T4

)
(S10)

U+ =

(
−R1R4T2T3e

−iφ R4T1T2T3ie
−iφ

R2T1T3T4ie
iφ −R1R2R3T4ie

−iφ −R1R3R4T2ie
iφ −R1R2T3T4e

iφ −R3R4T1T2e
iφ −R2R3T1T4e

−iφ

)
(S11)

U++ =

(
0 0

R1T2T3T4i T1T2T3T4

)
(S12)

U− =

(
−R2R3T1T4e

iφ −R1R2T3T4e
−iφ −R3R4T1T2e

−iφ R2T1T3T4ie
−iφ −R1R3R4T2ie

−iφ −R1R2R3T4ie
iφ

R4T1T2T3ie
iφ −R1R4T2T3e

iφ

)
(S13)

U−− =

(
T1T2T3T4 R1T2T3T4i

0 0

)
(S14)

The eigenvectors of the infinite lattice |Ψ⟩ are expressed in the basis of {α, β}. This lattice configuration exhibits
periodic boundary conditions (PBC) in both the spatial dimension n and the synthetic dimension φ. In this context,
the matrix can be interpreted as a unitary representation of a dimerized lattice. The couplings between adjacent
dimers are characterized by U±, while the couplings between next-nearest neighbouring dimers are represented by
U±±.
The four-step model exhibits a temporal periodicity of four steps (i.e. 4, 8, 12, · · · ). Consequently, the Floquet

evolution operator UF,∞ in real space characterizes the system’s state at every fourth time step, denoted as m̄ = m
(mod 4). The evolution equation can be expressed as:

|Ψ⟩m̄+1 = UF,∞ |Ψ⟩m̄ (S15)

where

|Ψ⟩m̄ =



...
χm̄(n− 2)
χm̄(n)

χm̄(n+ 2)
...

 , (S16)

where we define vector χm̄(n) for the dimer (α, β) such that,

χm̄(n) =

(
α(m̄, n)
β(m̄, n)

)
. (S17)

|Ψ⟩m̄ is the vector representing the state of the system in real space at time step m̄.
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The bulk topology of our lattice, here we refer to it as intrinsic topology, in different regions of the phase diagram
of four-step model is well defined by the Chern number C because our lattice model corresponds to the D symmetry
class with particle hole symmetry (refer Eq. S34) [2] as shown in Fig.2(a) of main paper.

To implement open boundary conditions (OBC) and create a spatially finite lattice in dimension n, specific angles
must be fixed to θ = π/2 at the boundary to ensure full reflectance, as illustrated in Fig. S5(a). The synthetic
dimension φ retains its periodic boundary condition (PBC). Given the double periodicity of our lattice in the spatial
dimension n, we consider only the even site positions resulting in a finite lattice of size N , as compared with the
full lattice with n = 2N sites depicted in Fig. S5(a). The full reflection condition necessitates that θ2,−1 = π/2 and
θ4,−1 = π/2 at the left edge (site position n = −1), and θ2,2N+1 = π/2 and θ4,2N+1 = π/2 at the right edge (site
position n = 2N + 1). These conditions define the complete four-steps Floquet operator UF,N for the finite system.
The full matrix of size N ×N for the four-step model can be expressed as:

UF,N =



UL
0 UL

+ U++ 0 0 0 0

UL
− U0 U+ U++ 0 0

. . . 0

U−− U− U0 U+ U++
. . . 0 0

0 U−− U− U0
. . . U++ 0 0

0 0 U−−
. . . U0 U+ U++ 0

0 0
. . . U−− U− U0 U+ U++

0
. . . 0 0 U−− U− U0 UR

+

0 0 0 0 U−− UR
− UR

0


, (S18)

where the blocks modified due to the condition of full reflection at the edges are given by:

UL
0 =

(
R1R3e

−2iφ −R2T1T3 −R3T1ie
−2iφ −R1R2T3i

R3T1T2T4i−R1R4T3i−R2R3R4T1ie
2iφ R1R2R3R4e

2iφ −R1R3T2T4 −R4T1T3

)
(S19)

UL
+ =

(
−R1T2T3e

−iφ T1T2T3ie
−iφ

R2T1T3T4ie
iφ −R1R2R3T4ie

−iφ −R1R3R4T2ie
iφ −R1R2T3T4e

iφ −R3R4T1T2e
iφ −R2R3T1T4e

−iφ

)
(S20)

UL
− =

(
−R1T3T4e

−iφ −R2R3T1T4e
iφ −R3R4T1T2e

−iφ T1T3T4ie
−iφ −R1R2R3T4ie

iφ −R1R3R4T2ie
−iφ

R4T1T2T3ie
iφ −R1R4T2T3e

iφ

)
(S21)

UR
0 =

(
R1R2R3R4e

−2iφ −R1R3T2T4 −R4T1T3 R3T1T2T4i−R1R4T3i−R2R3R4T1ie
−2iφ

−R3T1ie
2iφ −R1R2T3i R1R3e

2iφ −R2T1T3

)
(S22)

UR
+ =

(
−R2R3T1T4e

iφ −R1R2T3T4e
−iφ −R3R4T1T2e

−iφ R2T1T3T4ie
−iφ −R1R3R4T2ie

−iφ −R1R2R3T4ie
iφ

T1T2T3ie
iφ −R1T2T3e

iφ

)
(S23)

UR
− =

(
−R1R4T2T3e

−iφ R4T1T2T3ie
−iφ

T1T3T4ie
iφ −R1R3R4T2ie

iφ −R1R2R3T4ie
−iφ −R1T3T4e

iφ −R3R4T1T2e
iφ −R2R3T1T4e

−iφ

)
(S24)

The evolution equation of the system in real space at time step m̄ = m (mod 4) for a finite lattice of size N can be
written as,

|Ψ⟩m̄+1 = UF,N |Ψ⟩m̄ (S25)

where

|Ψ⟩m̄ =


χm̄(0)
χm̄(2)

...
χm̄(2N − 2)
χm̄(2N)

 . (S26)
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FIG. S4. Band diagram for a lattice model with Chern number C+ = -2 and no edge winding i.e. νEdge = 0. The
model parameters are θ1 = 0.125π, θ2 = 0.25π, θ3 = 0.5π, and θ4 = 0.25π, resulting in

∑
ci = 0. (a) Experimentally measured

band diagram of the lattice. (b) Numerically simulated band diagram. (c) Dispersion spectra derived from the eigenvalues of
the Floquet operator UF,N .

Fig. S4.(c) shows the eigenvalue spectrum of the lattice with Chern number -2 in the upper band calculated from
the eigenvalues of UF,N . As mentioned above the lattice has PBC along synthetic dimension φ and OBC along the
real dimention n. The spectrum displays two chiral edge modes per edge in E = 0 gap. In our experiment we focus
only on the left edge. To excite the left edge mode of our system, we prepare |Ψ⟩0 such that,

|Ψ⟩0 =


χ0(0)
χ0(2)

...
χ0(2N − 2)
χ0(2N)

 (S27)

with χ0(0) =

(
1
0

)
and χ0(n) = 0 ∀n ≥ 2. That is, injection at site position n = 0 and time step m̄ = 0 in the α

sublattice (α(m̄ = 0, n = 0) = 1). We let the the system evolve according to the Equation S25. Then, the eigenvector
|Ψ⟩m̄ at time step m̄ is give by the expression:

|Ψ⟩m̄ = UF,N |Ψ⟩m̄−1 = (UF,N )m̄ |Ψ⟩0 . (S28)

|Ψ⟩m̄ describes the stroboscopic evolution of the system. Figure S7 shows the spatio-temporal non-stroboscopic
evolution of the sublattice α when edge of the lattice is excited for given value of φ. A 2D Fourier transform of
the stroboscopic spatio-temporal dynamics of α ring at time steps corresponding to integer Floquet periods (m =
4, 8, 12, · · · ) scanned over φ ∈ [−π, π] produces the band structure with chiral edge mode as shown in Fig. S4.(a).

DISCRETE-STEP FLOQUET OPERATORS AND EIGENVECTORS IN RECIPROCAL SPACE

Since the four-step model exhibits double periodicity – spatial (every two sites n) and temporal (every four-time
steps m)–, we can apply the following Floquet-Bloch ansatz to Eq. S8:(

α(n,m)
β(n,m)

)
=

(
α̃(k, φ)

β̃(k, φ)

)
ei

Em
4 ei

kn
2 (S29)

we can rewrite Equation S8 as,

eiE
(
α̃(k, φ)

β̃(k, φ)

)
= ŨF

(
α̃(k, φ)

β̃(k, φ)

)
(S30)

where ŨF is four-step Floquet operator in reciprocal space and Eq. S30 represents eigenvalue equation for our system.



10

ŨF (k, φ) =

(
ũ1 ũ2
ũ3 ũ4

)
(S31)

where,

ũ1 = T1T2T3T4e
−2ik −R2R4T1T3 −R1R3T2T4 +R1R2R3R4e

−2iφ −R1R4T2T3e
ik−iφ −R2R3T1T4e

−ik+iφ

−R1R2T3T4e
−ik−iφ −R3R4T1T2e

−ik−iφ

ũ2 = R3T1T2T4i−R1R2R4T3i+R1T2T3T4ie
−2ik −R2R3R4T1ie

−2iφ −R1R2R3T4ie
−ikeiφ −R1R3R4T2ie

−ike−iφ

+R4T1T2T3ie
ike−iφ +R2T1T3T4ie

−ike−iφ

ũ3 = R3T1T2T4i−R1R2R4T3i+R1T2T3T4ie
2ik −R2R3R4T1ie

2iφ −R1R3R4T2ie
ikeiφ −R1R2R3T4ie

ike−iφ

+R2T1T3T4ie
ikeiφ +R4T1T2T3ie

−ikeiφ

ũ4 = T1T2T3T4e
2ik −R2R4T1T3 −R1R3T2T4 +R1R2R3R4e

2iφ −R1R2T3T4e
ikeiφ −R3R4T1T2e

ikeiφ −R1R4T2T3e
−ikeiφ

−R2R3T1T4e
ike−iφ

(S32)

The Floquet operator ŨF in Equation S31 can also be written in the following compact form:

ŨF (k, φ) = U0 + U+e
ik + U++e

2ik + U−e
−ik + U−−e

−2ik (S33)

To find the corresponding bulk topological invariant, we first check that ŨF (k, φ) is in the D symmetry class with
particle-hole symmetry

PŨF (k, φ)P−1 = ŨF (−k,−φ), (S34)

implemented by the anti-unitary operator P = σzK, being K the complex conjugation operation. This implies that
the bulk topological invariant corresponds to the Chern number [2].

Eigenvalues and eigenvectors

Solving Equation S30 for the eigenvalues of ŨF we obtain the solutions of energies of the bands E±:

E±(k, φ) = ± cos−1[T1T2T3T4 cos(2k)−R2R4T1T3 −R1R2T3T4 cos(k + φ)−R3R4T1T2 cos(k + φ)−R1R4T2T3 cos(k − φ)

−R2R3T1T4 cos(k − φ)−R1R3T2T4 +R1R2R3R4 cos(2φ)],
(S35)

and the eigenvectors in reciprocal space are given by

|ψ⟩ =
(
α̃(k, φ)

β̃(k, φ)

)
=

1√
1 + |R±|2

(
1

|R±|eiΦ
±
αβ

)
, (S36)

where

R±(k, φ) =
β̃(k, φ)

α̃(k, φ)
=
eiE± −A

B
= |R±|eiΦ

±
αβ (S37)

with

A = T1T2T3T4e
−2ik −R2R4T1T3 −R1R2T3T4e

−i(k+φ) −R3R4T1T2e
−i(k+φ) −R1R3T2T4 +R1R2R3R4e

−2iφ

−R1R4T2T3e
i(k−φ) −R2R3T1T4e

−i(k−φ)

B = −R1R2R4T3i+R3T1T2T4i−R1R3R4T2ie
−i(k+φ) +R2T1T3T4ie

−i(k+φ) +R1T2T3T4ie
−2ik −R2R3R4T1ie

−2iφ

−R1R2R3T4ie
−i(k−φ) +R4T1T2T3ie

i(k−φ).
(S38)
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FIG. S5. (a) Discrete-step finite lattice after time demultiplexing of the pulses in the double ring set-up. (b) Discrete-step
finite lattice with modified edge operators in the left boundary of the lattice. (c) Discrete-step finite lattice with modified edge
operators in the bulk of the lattice.

COMPUTATION OF THE WINDING OF THE EDGE OPERATORS

Inspired by Ref. [3], we modify the phase modulators acting on the edge sites (see Fig. S5.(b)) to modify the
winding at the boundary of the finite lattice. As we will see below, this intuitive approach allows to easily design
the winding νEdge. The phase modulators of the left boundary are tuned using the parameter c ∈ Z such that
φ1,0 = ϕ1 = c1φ, φ2,−1 = ϕ2 = c2φ, φ3,0 = ϕ3 = c3φ and φ4,−1 = ϕ4 = c4φ. This modifies the initial Floquet
operator UF,N to XF,N for the lattice in Fig. S5.(b). When c1 = c3 = 1 and c2 = c4 = −1 we get XF,N = UF,N ,
that is, the original finite lattice without any modification Fig. S5.(a).

To calculate the winding number νEdge associated to the edge of the full Floquet operator XF,N , we now need to
compute Uedge. We follow the procedure introduced by Bessho and coworkers in Ref. [3] and express the full Floquet
unitary operator XF,N as a product of two unitary operators:

XF,N = UEdgeUF,N (S39)

We remind here that UF,N is the bulk Floquet operator with no modification of the phase modulation at the edges.
It is now straightforward to compute UEdge:

UEdge = XF,N (UF,N )−1 =



U1 U2 U3 0 0 0 0

U4 U5 U6 0 0 0
. . . 0

U7 U8 U9 0 0
. . . 0 0

0 0 0 I
. . . 0 0 0

0 0 0
. . . I 0 0 0

0 0
. . . 0 0 I 0 0

0
. . . 0 0 0 0 I 0
0 0 0 0 0 0 I


(S40)

where I is the identity matrix and the different blocks are given by:

U1 =

(
u11 u12
u13 u14

)
(S41)
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u11 = eiφ(c1+c4)R2
1R

2
2T

2
3 + eiφ(c2+c4+2)R2

1R
2
3 + eiφ(c1+c4)R2

2T
2
1 T

2
3 + eiφ(c2+c4+2)R2

3T
2
1 + eiφ(c4+1)T 2

2 T
2
3

u12 = −R3T3ie
−2iφ(R2

1 + T 2
1 )(R

2
2R4e

iφ(c1+c4) −R4e
iφ(c2+c4+2) +R4T

2
2 e

iφ(c4+1) −R2T2T4e
iφ(c1+c4+2) +R2T2T4e

iφ(c4+3))

u13 = R3T3i(R4e
iφ(c1+c3) −R4e

iφ(c2+c3+2) −R4T
2
2 e

iφ(c1+c3) +R2T2T4 +R4T
2
2 e

iφ(c3+1) −R2T2T4e
iφ(c1−1))

u14 = eiφ(c1−3)(R2
4T

2
3 e

iφ(c2−c1+c3+3) +R2
3T

2
2 T

2
4 e

2iφ +R2
3R

2
4T

2
2 e

iφ(c3−c1+2) +R2
2R

2
3R

2
4e

iφ(c3+1) +R2
2R

2
3T

2
4 e

−iφ(c1−3)

+R2
2T

2
3 T

2
4 e

−iφ(c1−3) + T 2
2 T

2
3 T

2
4 e

−iφ(c1−3) −R2R
2
3R4T2T4 +R2R

2
3R4T2T4e

iφ(c3−c1+4) +R2R
2
3R4T2T4e

−iφ(c1−1)

−R2R
2
3R4T2T4e

iφ(c3+3)),
(S42)

U2 =

(
u21 u22
u23 u24

)
(S43)

u21 = R3T3e
−iφ(R2

1 + T 2
1 )(R

2
2T4e

iφ(c1+c4) − T4e
iφ(c2+c4+2) + T 2

2 T4e
iφ(c4+1) +R2R4T2e

iφ(c1+c4+2) −R2R4T2e
iφ(c4+3))

u22 = −R2R4T2T
2
3 i(e

c4iφ − eiφ(c1+c4−1))

u23 = −ieiφ(c1−2)(R2R
2
3T2T

2
4 −R4T

2
3 T4e

iφ(c2−c1+c3+3) +R2
3R4T

2
2 T4e

2iφ +R2R
2
3R

2
4T2e

iφ(c3−c1+4) −R2
3R4T

2
2 T4e

iφ(c3−c1+2)

−R2R
2
3R

2
4T2e

iφ(c3+3) −R2
2R

2
3R4T4e

iφ(c3+1) +R2
2R

2
3R4T4e

−iφ(c1−3) −R2R
2
3T2T

2
4 e

−iφ(c1−1) +R2
2R4T

2
3 T4e

−iφ(c1−3)

+R4T
2
2 T

2
3 T4e

−iφ(c1−3))

u24 = R3T2T3e
−iφ(R2e

iφ(c3+1) −R2e
iφ(c1+c3) +R2T

2
4 e

iφ(c1+c3) −R4T2T4 −R2T
2
4 e

iφ(c3+1) +R4T2T4e
iφ(c1−1)),

(S44)

U3 =

(
R2T2T

2
3 T4(e

iφ(c4+1) − eiφ(c1+c4)) 0
−R3T2T3T4i(T2T4 −R2R4e

iφ(c3+1) − T2T4e
iφ(c1−1) +R2R4e

iφ(c1+c3)) 0

)
, (S45)

U4 =

(
u41 u42
u43 u44

)
(S46)

u41 = R3T3T4e
iφ(c1+c3−1) −R3T3T4e

iφ(c2+c3+1) +R3T
2
2 T3T4e

c3iφ −R3T
2
2 T3T4e

iφ(c1+c3−1) +R2R3R4T2T3e
iφ(c1−2)

−R2R3R4T2T3e
−iφ

u42 = ie−3iφ(R2R
2
3R

2
4T2 −R4T

2
3 T4e

iφ(c2+c3+2) +R2
2R

2
3R4T4e

2iφ +R2
2R4T

2
3 T4e

2iφ +R4T
2
2 T

2
3 T4e

2iφ −R2
2R

2
3R4T4e

iφ(c1+c3)

+R2R
2
3T2T

2
4 e

iφ(c1+c3+2) −R2R
2
3R

2
4T2e

iφ(c1−1) +R2
3R4T

2
2 T4e

iφ(c1+1) −R2R
2
3T2T

2
4 e

iφ(c3+3) −R2
3R4T

2
2 T4e

iφ(c3+1))

u43 = −R2R4T2T
2
3 i(e

c1iφ − eiφ)

u44 = R3T2T3e
−iφ(R2 −R2e

iφ(c1−1) −R2T
2
4 +R2T

2
4 e

iφ(c1−1) +R4T2T4e
iφ(c1+1) −R4T2T4e

2iφ),
(S47)

U5 =

(
u51 u52
u53 u55

)
(S48)

u51 = e−2iφ(T 2
3 T

2
4 e

iφ(c2+c3+2) +R2
2R

2
3R

2
4e

2iφ +R2
2R

2
4T

2
3 e

2iφ +R2
4T

2
2 T

2
3 e

2iφ +R2
2R

2
3T

2
4 e

iφ(c1+c3) +R2
3R

2
4T

2
2 e

iφ(c1+1)

+R2
3T

2
2 T

2
4 e

iφ(c3+1) −R2R
2
3R4T2T4 +R2R

2
3R4T2T4e

iφ(c1+c3+2) +R2R
2
3R4T2T4e

iφ(c1−1) −R2R
2
3R4T2T4e

iφ(c3+3))

u52 = −R3T2T3e
−2iφ(T2i+ T2 sin(φ(c1 − 1))− T2i cos(φ(c1 − 1))− T2T

2
4 i+ T2T

2
4 ie

iφ(c1−1) +R2R4T4ie
iφ(c3+1)

−R2R4T4ie
iφ(c1+c3))

u53 = −R3T2T3i(T2e
iφ(c1+1) − T2e

2iφ + T2T
2
4 e

2iφ −R2R4T4 − T2T
2
4 e

iφ(c1+1) +R2R4T4e
iφ(c1−1))

u54 = R2
4e

iφ(c1−1) −R2
4 +R2

2R
2
4 +R2

3R
2
4 −R2

2R
2
4e

iφ(c1−1) −R2
3R

2
4e

iφ(c1−1) −R2
2R

2
3R

2
4 +R2

2R
2
3R

2
4e

iφ(c1−1) + 1,
(S49)

U6 =

(
R3T2T3T4e

−iφ(R4T2 −R4T2e
iφ(c1−1) +R2T4e

iφ(c3+1) −R2T4e
iφ(c1+c3)) 0

R4T
2
2 T

2
3 T4i(e

c1iφ − eiφ) 0

)
, (S50)
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U7 =

(
R2T2T

2
3 T4(1− ec1iφ−iφ) −R3T2T3T4ie

iφ(c1−3)(R2R4 − T2T4e
2iφ)(e−iφ(c1−1) − 1)

0 0

)
, (S51)

U8 =

(
u81 u82
0 0

)
(S52)

u81 = R3T2T3T4e
−iφ(R2T4 −R2T4e

iφ(c1−1) −R4T2e
iφ(c1+1) +R4T2e

2iφ) (S53)

u82 = −R4T
2
2 T

2
3 T4ie

−2iφ(ec1iφ − eiφ) , (S54)

U9 =

(
u91 0
0 1

)
(S55)

u91 = T 2
2 T

2
3 − T 2

2 T
2
3 T

2
4 +R2

1R
2
2R

2
3R

2
4 +R2

1R
2
2R

2
3T

2
4 +R2

1R
2
2R

2
4T

2
3 +R2

1R
2
3R

2
4T

2
2 +R2

2R
2
3R

2
4T

2
1 +R2

1R
2
2T

2
3 T

2
4

+R2
1R

2
3T

2
2 T

2
4 +R2

2R
2
3T

2
1 T

2
4 +R2

2R
2
4T

2
1 T

2
3 +R2

3R
2
4T

2
1 T

2
2 +R2

2T
2
1 T

2
3 T

2
4 +R2

3T
2
1 T

2
2 T

2
4 + T 2

2 T
2
3 T

2
4 e

iφ(c1−1),
(S56)

***

To compute the invariant associated to the winding of UEdge, we use Eq. 2 in the main text:

νEdge = ν[UEdge] =
1

2π

∫ 2π

0

dφ Tr[UEdge(φ)
−1i∂φUEdge(φ)]. (S57)

To make this computation we note that UEdge is block diagonal with the first block of nine matrices being the only
one containing meaningful information. The other blocks are identity matrices in the main diagonal. To compute
νEdge we just need to apply Eq. S57 to the first block:

UL ≡

U1 U2 U3

U4 U5 U6

U7 U8 U9

 . (S58)

It is straightforward to show that

νEdge = ν[UEdge] = ν[UL] = −(c1 + c2 + c3 + c4) = −
4∑

i=0

ci. (S59)

This expression shows that the winding of the edge unitary operator can be arbitrarily modified through the design
of c1, c2, c3 and c4. A similar description can easily be provided for the right boundary if it is also modified. Unlike
a conventional 2D system we can modify the winding of left boundary without affecting the right boundary since the
parametric dimension φ in our lattice model has periodic boundary condition.

Let us simplify even further the above general expressions. For a very simple case where we modify only c4 and
c1 = 1, c2 = −1, c3 = 1 are unmodified as in original finite lattice, UEdge reduces to,

UEdge =



U1 0 0 0 0 0 0

0 I 0 0 0 0
. . . 0

0 0 I 0 0
. . . 0 0

0 0 0 I
. . . 0 0 0

0 0 0
. . . I 0 0 0

0 0
. . . 0 0 I 0 0

0
. . . 0 0 0 0 I 0
0 0 0 0 0 0 I


(S60)
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FIG. S6. Band diagram for a lattice model with Chern number C+ = -2 and edge winding number νEdge = -2.
The model parameters are θ1 = 0.125π, θ2 = 0.25π, θ3 = 0.5π, and θ4 = 0.25π, resulting in

∑
ci = 2. (a) Experimentally

measured band diagram of the lattice. (b) Numerically simulated band diagram. (c) Dispersion spectra derived from the
eigenvalues of the Floquet operator XF,N .

where

U1 =

(
eiφ(c4+1) 0

0 1

)
= UL (S61)

The winding number of the edge unitary can be calculated as νEdge = ν[UEdge] = ν[UL] = −(c4 + 1).
The eigenvalues of XF,N for a finite size lattice with Chern number -2 in the lower band and edge winding of -2 at

the left boundary are shown in Fig. S6.(c). In the E = 0 gap we observe the cancellation of the left chiral edges, while
the right chiral edges associated to the Chern bulk topology are still present at the right edge. The edge mode band
traversing the E = π gap arises fully from the winding of UEdge The corresponding experimental results are shown in
Fig. S6.(a).

COMPUTATION OF THE WINDING OF THE STRIPE OPERATORS IN THE BULK

For a special case of inducing chiral localised modes within the bulk of the lattice we select a cell far from the edges
(nb = 22) and implement locally the Floquet sequence of phases such that φ1,nb

= ϕ1 = ϕnb
1 = c1φ, φ2,nb−1 = ϕ2 =

ϕnb
2 = c2φ, φ3,nb

= ϕ3 = ϕnb
3 = c3φ and φ4,nb−1 = ϕ4 = ϕnb

4 = c4φ similar to the previous case. This modifies the
initial Floquet operator UF,N to Xb

F,N of the lattice in Fig. S5.(c) and the corresponding stripe operator to Unb
such

that,

Unb
= Xb

F,N (UF,N )−1 =



I 0 0 0 0 0 0 0 0 0

0
. . . 0 0 0 0 0 0 0 0

0 0 I 0 0 0 0 0 0 0
0 0 0 U1 U2 U3 U4 0 0 0
0 0 0 U5 U6 U7 U8 0 0 0
0 0 0 U9 U10 U11 U12 0 0 0
0 0 0 U13 U14 U15 U16 0 0 0
0 0 0 0 0 0 0 I 0 0

0 0 0 0 0 0 0 0
. . . 0

0 0 0 0 0 0 0 0 0 I


(S62)

where I is the identity matrix and the different blocks are given by:

U1 =

(
1 0
0 T 2

4 (e
iφ(1+c2) − 1) + T 2

3 T
2
4 (T

2
2 − eiφ(1+c2) + eiφ(c1−1) − T 2

2 e
iφ(c1−1)) + 1

)
(S63)

U2 =

(
0 0
u21 u22

)
(S64)
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u21 = − sin(2θ4)

8
[2ieiφ(c2+2) − 3ieiφ + iec1iφ − iec1iφ cos(2θ2) + iec1iφ cos(2θ3) + ieiφ cos(2θ2) + ieiφ cos(2θ3)

− 2ieiφ(c2+2) cos(2θ3)− iec1iφ cos(2θ2) cos(2θ3) + ieiφ cos(2θ2) cos(2θ3)]

u22 = −R3T3T4e
−iφ(R4T

2
2 −R4e

iφ(1+c2) +R4(cos(φ(c1 − 1)) + i sin(φ(c1 − 1)))−R4T
2
2 e

iφ(c1−1) −R2T2T4e
iφ(1+c1)

+R2T2T4e
2iφ)

(S65)

U3 =

(
0 0
u31 u32

)
(S66)

u31 = R3T3T4(T4ie
iφ(1+c2) − T4ie

iφ(c1−1) − T 2
2 T4i+ T 2

2 T4ie
iφ(c1−1) +R2R4T2ie

2iφ −R2R4T2ie
iφ(1+c1))

u32 = R2R4T2T
2
3 T4(e

iφ(c1−1) − 1)
(S67)

U4 =

(
0 0

−R2T2T
2
3 T

2
4 (ie

iφ − iec1iφ) 0

)
(S68)

U5 =

(
0 R4T4ie

c4iφ(eiφ(c2+1) − 1 + T 2
2 T

2
3 + T 2

3 e
iφ(c1−1) − T 2

3 e
iφ(c2+1) − T 2

2 T
2
3 e

iφ(c1−1))
0 R3T3T4e

−iφ(R4e
(2+c2+c3)iφ −R4e

(c1+c3)iφ +R4T
2
2 e

(c1+c3)iφ −R2T2T4 −R4T
2
2 e

(1+c3)iφ +R2T2T4e
(c1−1)iφ)

)
(S69)

U6 =

(
u61 u62
u63 u64

)
(S70)

u61 = e(c4+1)iφ −R2
2R

2
4e

(c4+1)iφ −R2
3R

2
4e

(c4+1)iφ +R2
2R

2
4e

(c1+c4)iφ +R2
2R

2
3R

2
4e

(c4+1)iφ +R2
3R

2
4e

(c2+c4+2)iφ

−R2
2R

2
3R

2
4e

(c1+c4)iφ

u62 = iR3T3(e
(c2+c4)iφ − e(c1+c4−2)iφ − T 2

4 e
(c2+c4)iφ − T 2

2 e
(c4−1)iφ + T 2

2 T
2
4 e

(c4−1)iφ + T 2
2 e

(c1+c4−2)iφ + T 2
4 e

(c1+c4−2)iφ

− T 2
2 T

2
4 e

(c1+c4−2)iφ)− iR2R3R4T2T3T4(e
(c4+1)iφ − ec1+c4)iφ)

u63 =
i

2
sin(2θ3)(e

(c1+c3)iφ − e(c2+c3+2)iφ)− iR3T3(T
2
2 + T 2

4 )e
(c1+c3)iφ + iR3T3(T

2
2 e

(c3+1)iφ + T 2
4 e

(c2+c3+2)iφ

− T 2
2 T

2
4 e

(c3+1)iφ + T 2
2 T

2
4 e

(c1+c3)iφ) + iR2R3R4T2T3T4(1− e(c1−1)iφ)

u64 = e(c1−3)iφ(R2
2R

2
3T

2
4 e

(3−c1)iφ +R2
2T

2
3 T

2
4 e

(3−c1)iφ + T 2
2 T

2
3 T

2
4 e

(3−c1)iφ +R2
3T

2
2 T

2
4 e

2iφ +R2
3R

2
4T

2
2 e

(c3−c1+2)iφ

+R2
2R

2
4T

2
3 e

(c2+c3−c1+3)iφ +R2
4T

2
2 T

2
3 e

(c2+c3−c1+3)iφ +R2
2R

2
3R

2
4e

(c3+1)iφ

+R2R
2
3R4T2T4(−1 + e(c3−c1+4)iφ + e(1−c1)iφ − e(c3+3)iφ))

(S71)

U7 =

(
u71 u72
u73 u74

)
(S72)

u71 = −R3T3(
sin(2θ2)e

iφ(2+c4)

2
−R2T2e

iφ(1+c1+c4) +R4T4e
φ(i+c2i+c4i) −R4T4e

iφ(c1−1+c4) +R2T2T
2
4 e

iφ(1+c1+c4)

−R2T2T
2
4 e

iφ(2+c4) +R4T
2
2 T4e

iφ(c1−1+c4) −R4T
2
2 T4e

c4iφ)

u72 = R2T2T
2
3 ie

iφ(c1−1+c4)(T 2
4 − 1)(eiφ(1−c1) − 1)− ie−iφ(2−c1)(R2R

2
3T2T

2
4 +R2

3R4T
2
2 T4e

2iφ +R2R
2
3R

2
4T2e

iφ(4−c1+c3)

−R2
3R4T

2
2 T4e

iφ(2−c1+c3)

u73 = −R2
2R4T

2
3 T4e

iφ(3−c1+c2+c3) −R4T
2
2 T

2
3 T4e

iφ(3−c1+c2+c3) −R2
2R

2
3R4T4e

iφ(1+c3) −R2R
2
3T2T

2
4 e

iφ(1−c1)

−R2R
2
3R

2
4T2e

iφ(3+c3) +R2
2R

2
3R4T4e

iφ(3−c1) +R2
2R4T

2
3 T4e

iφ(3−c1) +R4T
2
2 T

2
3 T4e

iφ(3−c1))

u74 = −R3T2T3e
−iφ(R2e

iφ(c1+c3) −R2e
iφ(1+c3) −R2T

2
4 e

iφ(c1+c3) +R4T2T4 +R2T
2
4 e

iφ(1+c3) −R4T2T4e
iφ(c1−1))

(S73)
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U8 =

(
R2R4T2T

2
3 T4(e

iφ(1+c4) − eiφ(c1+c4)) 0
−R3T2T3T4(T2T4i+R2R4ie

iφ(c1+c3) −R2R4ie
iφ(1+c3) − T2T4ie

iφ(c1−1)) 0

)
(S74)

U9 =

(
0 u91
0 u92

)
(S75)

u91 = R3T3T
2
4 i(T

2
2 e

iφ(c3−1) − eiφ(c2+c3) + eiφ(c1+c3−2) − T 2
2 e

iφ(c1+c3−2))−R2R3R4T2T3T4i(e
−2iφ − eiφ(c1−3))

u92 = R2R4T2T
2
3 T4(e

iφ(c1−1) − 1)
(S76)

U10 =

(
u101 u102
u103 u104

)
(S77)

u101 = R2R3T2T3(T
2
4 − 1)e−iφ +R2R3T2T3e

(c1−2)iφ +R3R4T
2
2 T3T4(e

c3iφ − e(c1+c3−1)iφ)

+R3R4T3T4(e
(c1+c3−1)iφ − e(c2+c3+1)iφ)

u102 = ie−3iφ(R2R
2
3R

2
4T2(1− ec1iφ) +R2

2R
2
3R4T4(e

2iφ − e(c1+c3)iφ) +R2
2R4T

2
3 T4e

2iφ(1− e(c2+c3−2)iφ)

+R4T
2
2 T

2
3 T4e

2iφ(1− e(c2+c3−2)iφ) +R2R
2
3T2T

2
4 (e

(2+c1+c3)iφ − e(3+c3)iφ) +R2
3R4T

2
2 T4(e

(1+c1)iφ − e(1+c3)iφ))

u103 = R2T2T
2
3 i(T

2
4 − 1)(ec1iφ − eiφ)

u104 = R3T2T3e
−iφ(R2(1− e(c1−1)iφ)(1− T 2

4 )−R4T2T4(e
2iφ − e(1+c1)iφ))

(S78)

U11 =

(
u111 u112
u113 u114

)
(S79)

u111 = e−2iφ(R2
2R

2
3R

2
4e

2iφ +R2
2R

2
4T

2
3 e

2iφ +R2
4T

2
2 T

2
3 e

2iφ +R2
2T

2
3 T

2
4 e

iφ(2+c2+c3) + T 2
2 T

2
3 T

2
4 e

iφ(2+c2+c3)

+R2
2R

2
3T

2
4 e

iφ(c1+c3) +R2
3R

2
4T

2
2 e

iφ(1+c1) +R2
3T

2
2 T

2
4 e

iφ(1+c3) −R2R
2
3R4T2T4 +R2R

2
3R4T2T4e

iφ(2+c1+c3)

+R2R
2
3R4T2T4e

iφ(c1−1) −R2R
2
3R4T2T4e

iφ(3+c3))

u112 = −R3T2T3e
−2iφ(T2i+ T2(sin(φ(c1 − 1))− i cos(φ(c1 − 1)))− T2T

2
4 i+ T2T

2
4 ie

iφ(c1−1) −R2R4T4ie
iφ(c1+c3)

+R2R4T4ie
iφ(1+c3))

u113 = −R3T2T3(T2ie
iφ(1+c1) − T2ie

2iφ + T2T
2
4 ie

2iφ −R2R4T4i− T2T
2
4 ie

iφ(1+c1) +R2R4T4ie
iφ(c1−1))

u114 = R2
4e

iφ(c1−1) −R2
4 +R2

2R
2
4 +R2

3R
2
4 −R2

2R
2
3R

2
4 −R2

2R
2
4e

iφ(c1−1) −R2
3R

2
4e

iφ(c1−1) +R2
2R

2
3R

2
4e

iφ(c1−1) + 1
(S80)

U12 =

(
R3T2T3T4e

−iφ(R4T2 +R2T4e
iφ(1+c3) −R4T2e

iφ(c1−1) −R2T4e
iφ(c1+c3)) 0

−R4T
2
2 T

2
3 T4i(e

iφ − ec1iφ) 0

)
(S81)

U13 =

(
0 R2T2T

2
3 T

2
4 i(e

−iφ − e(c1−2)iφ)
0 0

)
(S82)

U14 =

(
R2R4T2T

2
3 T4(1− eiφ(c1−1)) −iR3T2T3T4e

−iφ(3−c1)(R2R4 − T2T4e
2iφ)(eiφ(1−c1) − 1)

0 0

)
(S83)

U15 =

(
R3T2T3T4e

−iφ(R2T4 −R4T2e
iφ(1+c1) −R2T4e

iφ(c1−1) +R4T2e
2iφ) R4T

2
2 T

2
3 T4i(e

−iφ − eiφ(c1−2))
0 0

)
(S84)

U16 =

(
u161 0
0 1

)
(S85)

u161 = T 2
2 T

2
3 − T 2

2 T
2
3 T

2
4 +R2

1R
2
2R

2
3R

2
4 +R2

1R
2
2R

2
3T

2
4 +R2

1R
2
2R

2
4T

2
3 +R2

1R
2
3R

2
4T

2
2 +R2

2R
2
3R

2
4T

2
1 +R2

1R
2
2T

2
3 T

2
4 +R2

1R
2
3T

2
2 T

2
4

+R2
2R

2
3T

2
1 T

2
4 +R2

2R
2
4T

2
1 T

2
3 +R2

3R
2
4T

2
1 T

2
2 +R2

2T
2
1 T

2
3 T

2
4 +R2

3T
2
1 T

2
2 T

2
4 + T 2

2 T
2
3 T

2
4 e

−iφ(1−c1)

(S86)
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***

The stripe operator Unb
is intrinsically linked to the edge operator UEdge. As illustrated in Figure S5, when we

apply this particular stripe pattern of phase modulations to the system at an edge, Unb
transforms into UEdge. To

compute the invariant associated to the winding of Unb
we use the Eq. S57. Since the winding is in the bulk we note

that in the block diagonal Unb
the sixteen matrices containing the meaningful information of the winding is inside

the Unb
unlike when we had winding in the edge. Since all other blocks are identity matrices in the main diagonal

the winding can be calculated using this block of sixteen matrices:

UB ≡


U1 U2 U3 U4

U5 U6 U7 U8

U9 U10 U11 U12

U13 U14 U15 U16

 . (S87)

It is straightforward to show that the winding number of the stripe unitary inside the bulk is,

νnb
= ν[Unb

] = ν[UB ] = −(c1 + c2 + c3 + c4) = −
4∑

i=0

ci. (S88)

This expression shows that the winding of the stripe unitary operator can be arbitrarily modified through the design
of c1, c2, c3 and c4 even inside the bulk.

Again when we simplify even further the above general expressions for a very simple case where we modify only c4
and c1 = 1, c2 = −1, c3 = 1 are unmodified as in original finite lattice, Unb

reduces to,

Unb
=



I 0 0 0 0 0 0 0

0
. . . 0 0 0 0 0 0

0 0 I 0 0 0 0 0
0 0 0 U1 0 0 0 0
0 0 0 0 I 0 0 0
0 0 0 0 0 I 0 0

0 0 0 0 0 0
. . . 0

0 0 0 0 0 0 0 I


(S89)

where

U1 =

(
eiφ(c4+1) 0

0 1

)
(S90)

The winding number of the stripe unitary inside the bulk can be calculated as νnb
= ν[Unb

] = −(c4 + 1). The
corresponding experimental results of bulk localised modes are shown in Fig.5 of the main text when the pulse injection
is at the site nb = 22 in the α ring for lattice in Fig. S5.(c).

EDGE MODES IN REAL SPACE

To generate edge modes in real space precise values for the variable beamsplitter and phase modulator were chosen.
The lattice was made with fully reflecting edges (θ = π/2) as shown in Fig. S5.(a).

The presence of edge modes is readily visible in the experiments and simulations via the localisation of light at the
edge regions. Two examples are displayed in Figs. S7 and S8. In Fig. S7, we observe edge states in a lattice with
Chern number of -2 in the upper band and νEdge = 0. In this case the edge states arise solely from the bulk Chern
topology. Figure S8 shows the situation of a lattice model with trivial bulk topology and νEdge = −1. In this case,
the edge states appear solely as a consequence of the nontrivial winding of UEdge.
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SimulationExperiment

FIG. S7. Spatio-temporal dynamics in a lattice model
with Chern number C+ = -2 and edge winding num-
ber νEdge = 0. The lattice parameters are θ1 = 0.125π,
θ2 = 0.25π, θ3 = 0.5π, and θ4 = 0.25π. (a) Experimen-
tally measured spatio-temporal dynamics of the α ring when
a single site at the boundary is excited. (b) Corresponding
numerical simulation of the spatio-temporal dynamics.

=    2=    2

In
te

ns
it

y 
(a

rb
. u

ni
ts

)

1

0

SimulationExperiment(a) (b)

FIG. S8. Spatio-temporal dynamics in a lattice model
with Chern number C+ = 0 and edge winding num-
ber νEdge = -1. The lattice parameters are θ1 = 0.125π,
θ2 = 0.25π, θ3 = 0.438π, and θ4 = 0.438π. (a) Experimen-
tally measured spatio-temporal dynamics of the α ring when
a single site at the boundary is excited. (b) Corresponding
numerical simulation of the spatio-temporal dynamics.
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