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Observation of Extrinsic Topological Phases in Floquet Photonic Lattices
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Discrete-step walks describe the dynamics of particles in a lattice subject to hopping or splitting events at
discrete times. Despite being of primordial interest to the physics of quantum walks, the topological
properties arising from their discrete-step nature have been hardly explored. Here we report the observation
of topological phases unique to discrete-step walks. We use light pulses in a double-fiber ring setup whose
dynamics maps into a two-dimensional lattice subject to discrete splitting events. We show that the number
of edge states is not simply described by the bulk invariants of the lattice (i.e., the Chern number and the
Floquet winding number) as would be the case in static lattices and in lattices subject to smooth
modulations. The number of edge states is also determined by a topological invariant associated to the
discrete-step unitary operators acting at the edges of the lattice. This situation goes beyond the usual bulk-
edge correspondence and allows manipulating the number of edge states without the need to go through a
gap closing transition. Our Letter opens new perspectives for the engineering of topological modes for

particles subject to quantum walks.
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The topological classification of phases of matter is a
powerful tool to understand and predict the existence of
surface transport channels in a wide a variety of electronic
[1], photonic [2], acoustic [3], and soft condensed matter
systems [4]. It relies on the definition of appropriate
topological invariants describing global properties of the
eigenmode spectrum of an infinite crystalline system. In
static lattices the most spectacular manifestations of non-
trivial topology include the integer and fractional quantum
Hall effects, topological insulators and Weyl semimetals,
which appear in electronic systems characterised by either
Chern or Z, indices. Interestingly, when a lattice is subject
to a time-periodic driving described by a time-dependent
Hamiltonian, new topological phases appear even when the
Chern bulk invariant is zero. These are the so-called
anomalous Floquet topological phases, and they are char-
acterized by a winding number that accounts for the
micromotion evolution of the lattice within one driving
period [5,6].

In both Chern and anomalous phases, the bulk invariants
are computed from the structure of the eigenmodes of an
infinitely large system, and their values faithfully describe
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the number of surface states appearing when the lattice is
ended at a boundary. However, there is an important class
of systems that cannot be described by Hamiltonian
operators and whose topological properties remain largely
unexplored. We refer to systems governed by a discrete-
step temporal evolution. Examples include active matter in
lattices of circulators [7], light pulses in lattices of coupled
ring resonators [8,9], electromagnetic scattering networks
[10,11], acoustic excitations in resonator lattices [12] and,
importantly, quantum walks in a wide variety of quantum
systems such as photons, atoms, and ions [13-17], includ-
ing the boson sampling problem in which indistinguishable
photons are subject to a cascade of beam splitters [18].

In all these systems, the movement of particles toward
subsequent sites is described by a series of discrete-
step unitary evolution operators. The discrete nature
of the evolution prevents the characterisation of the
dynamics using a continuous microscopic time-dependent
Hamiltonian. For this reason, the topological toolbox
employed to characterize the usual Chern and anomalous
phases cannot be applied to systems subject to a discrete-
step evolution, and bulk invariants are not sufficient to
describe their topological properties [19-22]

Actually, discrete-step lattices in one and two dimen-
sions have been shown to host anomalous topological edge
states similar to those expected in Hamiltonian systems
under continuous periodic driving [5,6,23-25]. But
recently it has been proposed the existence of topological
phases unique to lattices subject to discrete-step dynamics

© 2025 American Physical Society
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Discrete-step lattice. (a) Scheme of the experimental setup with beam splitters BS, variable beam splitter VBS, electrooptic

modulator EOM, phase modulator PM, photodiodes PD, Erbium doped amplifier G that compensates for losses, and frequency shifter
FS to create a local oscillator for the measurement of the eigenvectors and eigenvalues. The a and f rings have a length of 45.34 m and
44.63 m, respectively. (b) Discrete-step lattice after time demultiplexing of the pulses in the double ring where gray squares correspond
to @ = z/2 (fully reflecting edge). (c) Measured light intensity in the a ring in an example of step evolution after injection at a single site
for a lattice model with 8, = 0.125z, 6, = 0.257z, 63 = 0.375x, and 0, = 0.125z and ¢ = 0. (d) Measured band tomography as a

function of quasimomenta k and ¢ for the 0; parameters of (c).

in two dimensions [26,27]. In this case, the number of edge
states is given by the combination of a bulk topological
invariant and an invariant associated to the winding of the
unitary operators acting on the edge. For this reason this
topological phase is referred to as “extrinsic topology,” in
contrast to the bulk topology that defines the properties of
Hamiltonian systems. Such winding of the edge operators
cannot be engineered in conventional Floquet Hamiltonian
systems due to the algebraic constraints imposed by the
hermiticity of the underlying evolution, but it is possible in
systems described by discrete unitary operators, which do
not need to be hermitian.

In this Letter we provide an experimental implementation
of extrinsic topological phases in two dimensions using a
synthetic photonic lattice in a system of two-coupled fiber
rings filled with coherent pulses of light. We show finite-
size lattices with a topologically trivial bulk and O, 1, and 2
edge state bands depending on the winding of the edge
operators. The discrete-step nature of the system allows for
the number of edge states to be modified without passing
through a band gap closing transition. When a lattice with
nonzero Chern number is used, we demonstrate the can-
cellation of the Chern edge states via the proper design of
the step-evolution operators acting on the edge. Our results
unveil the topological phases that are relevant to quantum
walks. They show that the engineering of edge states can be
performed by acting only on edge sites.

The synthetic lattice system we employ is sketched in
Fig. 1(a) and described in detail in Refs. [28-30]. It is made
of two coupled fibre rings of slightly different length. A
short laser pulse of ~1.4 ns with a large number of photons
is injected in the a ring and starts circulating. A splitting
event takes place at the variable beam splitter at every round
trip generating new pulses that fill discrete time positions n
in both the  and f rings. To compensate for extraction and
impedance mismatch losses, we use commercial Er doped

amplifiers inside each of the rings. The dynamics can be
mapped into the discrete-step evolution of light pulses in a
one-dimensional lattice subject to a discrete-step walk every
round trip [see Fig. 1(b)], lattice sites are labeled n and time
steps m). Similar lattice arrangements have been used to
investigate parity-time defects and solitons [31-33], Bloch
oscillations [34], anomalous transport [35], Zak phases
[36,37], artificial gauge fields [38], the non-Hermitian skin
effect [39], superfluidity [40], and winding bands [28]. To
study effective two-dimensional systems we introduce a
phase modulator that adds a controlled phase ¢,, to pulses
traveling through the a ring with a value alternating between
@ and —¢ at odd and even steps. The phase ¢ acts as a
generalized quasimomentum resulting in a parametric
dimension (¢ € (-, x]) in addition to the quasimomentum
k (the conjugate of the spatial position n of the pulses in the
lattice).

The time evolution of light pulses within the rings
follows the set of equations [25,28,41]

aptl = (cosB,ai, +isind,pr,)e

m+1 Qi m m
" ising,ay | +cos6,p

(1)
with o and g} being the amplitude of the pulses in the
long and short rings, respectively, at spatial position n
and time step m. The splitting amplitude at the variable
beam splitter is cos 6,,, which can be controlled electroni-
cally from fully reflective (0,, =0) to fully transmis-
sive (8,, = 7/2).

Eq. (1) can be written in the form of a series
of unitary operators U, acting on an initial vector state:
|, ), = U Uy - - Upla, f))- We employ a sequence
of four ordered values of the splitting angle 0, 6,, 63, 0,4
which we repeat every four steps [i.e., the Floquet period;
see Fig. 1(b)]: Ur = U4U3U,U,. When periodic boundary
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FIG. 2. Chern phase diagram. (a) Bulk topological phases
according to the Chern number of the upper band for 6; =
0.1257 and 6, = 0.257 as a function of 05 and 6,. Solid lines
show the closing of the E = 0 (blue) and E = # (red) gaps. (b)
Measured Berry curvature of the upper band for lattice models
corresponding to the pink (left panel) and green (right panel)
diamonds in (a), respectively. The measured Chern number is
shown on top.

conditions are considered, the eigenvalues of Uy form two
bands separated by gaps at E = 0 and E = 7 as depicted in
Fig. 1(d) and derived analytically in Ref. [30]. The periodic
Floquet modulation of the lattice results in a Brillouin zone
periodic both in quasimomenta and quasienergy. A typical
experimental spatiotemporal diagram of the step evolution
in the lattice after injection at a bulk site in the a ring for
@ = 0is shown in Fig. 1(c). A heterodyne detection scheme
[30] allows accessing the relative phase of the pulses at
different positions and time steps. A direct Fourier trans-
form of the measured spatiotemporal dynamics for a given
value of ¢ at Floquet stroboscopic times (every four steps)
provides direct experimental access to the eigenvalues of
Ur and its eigenvectors [28,29]. By repeating the experi-
ment at different values of ¢ we can reconstruct the two-
dimensional bands [Fig. 1(d)] and eigenvectors.

Figure 2(a) shows the phase diagram of the four steps
Floquet model. To reduce the number of parameters, we
focus on a corner of parameter space in which 8; = 0.125z,
6, = 0.25z, and 65 and 6, can vary between 0 and 0.5z.
The red lines in the diagram correspond to the closure of the
E = & gap, and the blue lines of the £ = 0 gap. The colors
represent the Chern number obtained analytically for the
highest energy band. Figure 2(b) displays the measured
Berry curvature for the upper band in the regions marked
with diamonds in Fig. 2(a). The Berry curvature is
computed from the measured eigenvectors following the
procedure developed in Refs. [29,42] and detailed for this
specific case in Ref. [30]. The integration of the exper-
imental Berry curvature over the whole Brillouin zone
matches well the expected Chern numbers.

Once we have characterised the topological properties
of the bulk bands we draw our attention to the existence of
edge states. In a discrete-step lattice, gapless edge states
have two origins [27]. The first one is the bulk topology
of the stroboscopic Floquet operator Up. According to
the Autler-Zinbauer symmetry classification, our two-
dimensional lattice is in the D class with particle-hole
symmetry (see Ref. [30] for a demonstration). Therefore,

the bulk topological invariant is the Chern number [43].
Contrary to lattice systems described by a microscopic
Hamiltonian, this invariant is not enough to infer the
number of edge states in discrete-step walks. In addition,
we need to consider the topology of the unitary operators
acting on the considered edge as recently discussed by
Bessho and coauthors [27]. To do so, we separate the
unitary Floquet operator Xy acting on the finite size
lattice shown in Fig. 1(b) in two parts, X y = UggeeUr y»
where N denotes the number of lattice sites and Uy y is the
bulk Floquet operator of the finite size lattice. It is the
finite lattice version in real space of Up. The unitary
operator Uggg, describes local modifications at the sites
corresponding to one of the edges. If no particular change
of splitting ratios @ or phase modulator phases ¢ is
introduced at the edge sites, Uggge = 1.

The total number of edge states N at a particular gap
and the sign of their group velocity is then given by
N=C+ Ugdge» Where C is the Chern number of the band
below the gap and vggg is the winding of the unitary
operator Ugge.. In our case we consider an edge in the
spatial dimension n [Fig. 1(b)], and the winding of the edge
operators is defined along the ¢ quasimomentum direction,

1 2
VEdge = EA do Tr[UEdge((p>_1ia(pUEdge((p>]‘ (2)

Recently, we showed that the geometry of the edges plays
an important role in the existence of edge states in discrete-
step lattices [29]. Let us now demonstrate that the number of
edge states in the lattice under consideration can be
manipulated by modifying the winding of the edge unitary
operators. We implement a lattice with an edge with the void
in the spatial dimension by setting the splitting angle 6 to
/2 at the leftmost splitter, as illustrated in Fig. 1(b).
Figure 3(a) displays the measured band diagram in the
region with zero Chern number corresponding to the pink
diamond in Fig. 2(a) when an initial pulse is injected at site
0 in the a ring. Two bands are separated by two gaps at
E = 0 and E = z, and their shape and population match the
simulation of Eq. (1) in the same conditions [Fig. 3(d)]. No
edge state bands traverse any of the gaps as expected from a
phase with C =0 and no winding of the edge opera-
tors: Uggee = 1.

We can induce the emergence of edge state bands
traversing both gaps by designing edge operators with
Vkgge # 0. To do so, we modify the values of the phase
modulator at the edge sites [marked in violet in Fig. 1(b)] to
follow the sequence ¢p; = ¢, p» =0, p3 = —@ and ¢, = ¢
at each Floquet period. The phase modulators in the bulk are
not modified and keep the sequence +¢@, —¢ at odd and
even steps. A single band of edge states traverses both gaps
as seen in Fig. 3(b) in the experiments and Fig. 3(e) in the
simulations. These states are localised at the left edge of the
lattice, see Ref. [30]. The reason for their appearance is that
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FIG. 3. Extrinsic topology with C = 0. (a) Measured band
diagram (intensity in the « ring) for a model with 6, = 0.125z,
6, = 0257, ;3 =0.4387 and 0, = 0.438z and full reflection
at the boundary in site n = —1. Injection takes place at n = 0.
(b),(c) Same as (a) when phase modulators add a winding of —1
and —2, respectively, to the edge operators. The color scale is
lightly saturated for a better visualization of the edge state bands.
(d)—(f) Numerical simulations of Eq. (1) in the conditions of
(a)—(c), respectively. In the band diagrams, the dotted green box

highlights the £ = 0 gap and the dotted blue boxes combined
highlight the E = 7 gap.

the edge unitary operator Ugg,. now has a nontrivial
winding given by vggee = — > i_o¢; With ¢; = ¢,/ (see
Ref. [30]). In this case, vggee = —1. Therefore, any number
edge state bands with desired group velocity can be
implemented. For instance, we can increase the number
of chiral edge states by increasing the winding of the edge
operators using the sequence ¢p; = ¢35 = ¢, o = ¢p, = 0 as
illustrated in Figs. 3(c) and 3(f), now two edge state bands
traverse each gap with vgg,. = —2.

An interesting situation occurs when the lattice has a
nontrivial Chern number. This is studied in Fig. 4 for a
lattice in the blue region marked with a green diamond in
Fig. 2(a), with C = =2 for upper band (C = +2 for lower
band). When the operators at the edge follow the 4+¢, —¢
sequence of the bulk, the measured and simulated band
diagrams in Figs. 4(a) and 4(d), respectively, display two
bands of edge states traversing the £ = 0 gap, and no edge
states traversing the E = z gap. This is what we would
expect from a pure Chern phase with vgge. = 0. The
extrinsic topology can cancel or enrich the number of
edge states of Chern origin. Figures 4(b) and 4(e) show the
case of vgq,e = —2, with the set of edge phase modulators
¢ =¢3 =@, ¢ = ¢4 =0. The winding of the edge
unitary operators cancels the Chern edge states resulting
in a trivial edge mode at the £ = 0 gap that wiggles but
does not connect the bands. Simultaneously, two new edge
state bands appear at the £ = 7 gap. If vgg,. is modified to
have the value of +2 through the sequence ¢; = ¢3 = —¢,
¢, = ¢4 = 0, the middle gap now shows four edge state

< Intensity (arb. units)

< Intensity (arb. units)

0
14

FIG. 4. Extrinsic topology with C = —2 for upper band (C = +2
for lower band). (a) Measured band diagram (intensity of the a
ring) for a model with 6, = 0.125z, 6, = 0.25z, 03 = 0.5z and
0, = 0.257 and full reflection at the boundary in site n = —1.
Injection takes place at n = 0. (b),(c) Same as (a) when phase
modulators add a winding of —2 and +2, respectively, to the edge
operators. The color scale is lightly saturated for a better
visualization of the edge state bands. (d)—(f) Numerical simu-
lations of Eq. (1) in the conditions of (a)—(c), respectively. In the
band diagrams, the dotted green box highlights the £ = 0 gap and
the dotted blue boxes combined highlight the E = 7z gap.

bands. They are the addition of the Chern and extrinsic
topology edge states.

Finally, we take advantage of the possibility to induce
nontrivial windings in local unitary operators to arrange
chiral modes within the bulk of the lattice. For this purpose
we use a lattice with parameters corresponding to the pink
diamond in Fig. 2(a) with bands with C = 0. The bulk
bands are displayed in Figs. 3(a) and 3(d). To create chiral
states within the bulk, we select a cell far from the edges
(n, = 22) and implement locally the Floquet sequence of
phases ¢1" = @, ¢5" = ¢3* = ¢,* = 0. The winding of the
local U,,, operators is—1. If we inject a pulse of light in the
ring at this site, we observe a mode bound to this unit cell in
Fig. 5(a). The observed residual spread out of the mode
arises from the coupling of the initial injection to bulk
modes. A tomography of the bands as a function of the ¢
quasimomentum is displayed in Fig. 5(b). It reveals a single
band of states traversing each of the gaps once. They are
unidirectional chiral in-gap modes in the bulk of an
otherwise homogeneous lattice. Similar results were found
in the bulk of lattices with C = %2 (not shown). Therefore,
their origin is not related to a change of topology at either
side of an interface, but to the winding of the discrete-step
unitary operators acting on a particular site. Similarly to the
extrinsic edge modes, these bulk localised modes can be
described via the winding of a local operator [30].

An interesting perspective of our Letter is the inves-
tigation of the existence of extrinsic topology phases in
higher dimensional lattices. The double ring set-up used
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FIG. 5. Winding modes localised in the bulk. (a) Measured
(left) and simulated (right) spatiotemporal evolution in the
a sites in a lattice with C =0 (@; values of Fig. 3) when a
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with ¢ = z/2. (b) Band diagram as a functlon of ¢. A mode
traverses both gaps. The semitransparent overlay in the right
panel highlights the bulk modes.
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here is a good candidate for that: by adding additional beam
splitters, the dimensionality of the discrete-step lattice can
be arbitrarily increased [33,38]. Another direction is the
study of Kerr-type nonlinearities. They modify the phase
of a wave packet and could result in nonlinear windings.
Even though the results reported in this Letter focus on
light pulses in the classical regime, they provide a crucial
demonstration of topological phases relevant for quan-
tum walks in which individual particles are subject to
discrete-step dynamics [18]. Our Letter calls for further
studies on the effects of quantum interference in this type of
setting.
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