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ABSTRACT

Valley photonic crystals provide efficient designs for the routing of light through channels in extremely compact geometries. The topological
origin of the robust transport and the specific geometries under which it can take place have been questioned in recent studies. In this article,
we introduce a design for valley photonic crystals with richer arrangement possibilities than the standard valley photonic crystals based on two
holes of different sizes in the unit cell. Our approach is based on the permutation of three sets of rhombi in a hexagonal lattice to investigate
the interplay between Berry curvature, valley Chern number, and chirality of interfaces to achieve robust edge-modes propagation along
domain walls. We study three types of interfaces with different symmetries: the non-chiral interface with glide-mirror symmetry commonly
used in honeycomb-type valley crystals, and two chiral interfaces with or without inversion symmetry of the adjacent bulk lattices. In the
latter case, no valley topology is expected. We show that for the three families, edges preserving the shape of the interface through 120° sharp
corners can sustain edge-modes with comparable robustness. Moreover, interfaces with glide-mirror symmetry offer promising performances
in circuits with more exotic configurations, like 60° and 90° corners or arbitrary curves in which valley preservation is not guaranteed. Our
work raises questions about the topological origin of the robustness of transport in valley photonic crystals, discusses the role of the chirality
of the interfaces in the propagation around sharp corners, and provides a lattice scheme with broad design possibilities.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).

I. INTRODUCTION like structural random variations or localized defects.”'” Based on

this, photonic crystal designs relying on valley topology have been
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Topological photonics relies on mimicking quantum Hall
effects in solid-state physics to transport an electromagnetic signal
through topologically protected edge-modes ~ in order to realize
compact and low-loss devices in integrated photonics.” " A most
favored strategy relies on valley topological photonics, where an
interface is created between two mirror-image photonic crystals with
broken inversion symmetry. The topological phase transition
at the interface ensures the change in sign of valley Chern num-
bers, at the origin of the existence of topological modes that travel
along T'K and I'K’ interfaces. Those edge-modes have been demon-
strated to sustain robust propagation in the sense that they show
low backscattering or valley number conversion in a variety of cir-
cuits, typically presenting sharp bends or lattice imperfections
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shown to be beneficial in photonic circuitry experiments. In quan-
tum photonics, the suppression of backscattering allows decreasing
propagation losses in compact circuits with sharp bends'” or design-
ing elaborated functions like add-drop filters by a suitable selection
of interfaces and their connection angles.'® Recent realizations in
terahertz communications have demonstrated a frequency-selective
diplexer exploiting the valley-number conservation and bandgap
tuning'” and that a very high degree of compactness can be reached
by a careful engineering of the interfaces, their connections, and
their separation lengths to achieve a topological beamformer with
multi-link capabilities.

However, the topological interpretation of the transport prop-
erties of photonic devices faces a major obstacle: no robust
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topological protection is expected for photons in bi-dimensional sys-
tems unless time-reversal symmetry is broken, which is realized in
Chern photonic insulators.”' >’ Without magneto-optic effects, the
topological properties of photonic bands rely on crystalline sym-
metries that are broken by the interface or structural defects. The
two main strategies consist in emulating either the quantum spin-
Hall effect”® or the quantum valley-Hall effect.'” Contrary to the
first approach, topological edge modes in valley photonic crystals
are excited below the light-cone avoiding out-of-plane scattering,
which induces additional propagation losses. However, both valley-
Hall and spin-Hall photonics suffer from a lack of strong bulk-edge
correspondence,’* and valley Chern number C, is not expected to be
a true topological number in the sense that nothing guarantees that
it should be an integer or half an integer.'"”” In particular, the often
discussed value of C, = +1/2 is only reached in the limit of small
gaps,' >’ when the Berry curvature is the most confined around
K/K' points. For a larger bandgap, the Berry curvature extends far
from the K/K' points and the valley Chern number takes arbitrary
values, decaying to zero. Employing a honeycomb lattice consist-
ing of two circular holes with different sizes per unit cell, Yang
et al’® showed that if the radius of one hole reduces to zero, the
chiral phase vorticity characteristic of the eigenmodes in a lattice
with broken inversion symmetry remains, and an interface still sus-
tains robust edge modes even though the Berry curvature and valley
Chern numbers reach zero.

The question of the robustness to structural defects has also
been addressed recently in several works,'””” showing in particu-
lar that the long-range protection to small imperfections inherent
to micro-/nano-fabrication is not better for linear topological wave-
guides as compared to trivial waveguides in the slow-light regime.”®
In addition, the problem of the relation between the exact geome-
try of the interface and the topological bulk properties is still under
question, and it is of important matter for the optimal design and
choice of lattices for applications. For instance, it has been noted that
for valley photonic crystals of equal bulk geometry, zigzag (face-to-
face) interface channels are more robust to backscattering at 120°
corners than bearded interfaces and that triangular holes show more
protection than circular holes.”” In recent work, Yu et al.”’ have
investigated the modification of edge states at the interface of two
valley photonic crystals made of triangular holes with mirror sym-
metry when the interface is shifted away from the usual zigzag
interface. They showed that the interface states changed from an
ungapped to a gapped dispersion, which results in much stronger
backscattering at obstacles in the latter case. This body of work
demonstrates that the existence and the robustness to defects of
valley-dependent edge states depend not only on the design of the
bulk (in particular through its Berry curvature and valley Chern
number) but also on the interface geometry.

In this article, we introduce a design for valley photonic crys-
tals with richer arrangement possibilities than the standard val-
ley photonic crystals based on two holes of different sizes in the
unit cell. Our purpose is to enlarge the number of possible inter-
face geometries between different photonic crystals with nontrivial
valley topology. In this way, we can provide a systematic study
of the presence of interface states and their robustness to sharp
corners of different geometries (we do not address in this work
the protection to random disorder or localized defects). We pro-
pose a versatile design based on a Kagome lattice investigated by

N
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Vakulenko ef al.,’’ where a dielectric membrane is drilled with a
periodic arrangement of three rhombi air holes per primitive cell.
We adapt this geometry to the valley Hall effect, considering a super-
cell made of nine rhombi gathered in three sets differing by their
size. Permutations of those sets in the lattice do not modify its band
structure or the valley Berry curvature, but allow the creation of
three distinct families of bearded interfaces between a lattice and
its image through a given permutation. The first family corresponds
to interfaces with glide-mirror symmetry, the second to interfaces
between lattices differing by a combination of glide-mirror symme-
try and a sub-lattice translation, and the last to interfaces between
lattices differing only by a sub-lattice translation. We then compare
the propagation of interface modes along domain walls with dou-
ble 120° corners and through triangular resonators, and finally along
more exotic edges like 60° corners, 90° corners, and arbitrary curves.
This system greatly expands the number of interfaces offered by pop-
ular geometries consisting of honeycomb lattices with two units per
primitive cell, which can only support two types of crystalline inter-
faces. It allows probing the interplay of Berry curvature, valley Chern
number, and the symmetry of the interface in robust edge-mode
propagation. We show that even interfaces without inversion of the
valley Chern number can support robust transport through sharp
corners. We discuss how the local arrangement of the rhombi along
the interface plays a major role in photonic transport along domain
walls. Our study is focused on photonic crystals for THz applica-
tions, but the results can be extrapolated to other wavelengths by
direct geometrical scaling.

Il. DESCRIPTION OF THE PHOTONIC CRYSTAL LATTICE

The lattice is shown in Fig. 1(a), with the primitive cell empha-
sized by a white-dashed line. The full system is composed of three
subsets of rhombus air holes, identified by their colors, which rep-
resent different sizes. A complementary representation consists of
three nonequivalent sub-lattices of point rotation axes, identified by
blue triangles (« sites), green disks (f sites), or red squares (y sites).
Each point axis with a given color is a Cs axis for the subset of
rhombi with the same color but reduces to a three-fold symmetry
axis for the whole lattice if the three colors are different (i.e., if the
three sets of rhombi have a different hole size). With this definition,
the spatial arrangement of the colored rhombi is equivalent to the
configuration of the three sub-lattices of point rotation axes. The
band structure and Berry curvature of the photonic crystal can be
modified by changing the geometry of the lattice, parameterized by
the lengths by, by, and b, as shown on Fig. 1(b), in addition to the
period b. Figure 1(c) shows the reciprocal lattice (blue dots) with
basis vectors R, and Ry, together with the chosen first Brillouin zone
in green.

The period of the lattice is fixed to b = 73 ym, and the refrac-
tive index of the dielectric material is n = 3.5. We consider only TE
polarization, the magnetic field being perpendicular to the xy plane
of the lattice. All simulations have been performed with COMSOL
Multiphysics. We examine first a reference lattice where all rhombi
have the same dimensions (mono-color crystal, b, = b, = b.) with an
edge length of 14.6 ym, as represented in red on Fig. 1(d). Its disper-
sion diagram in red dashed-lines shows a Dirac cone at K points and
frequency F = 1.055 THz. The gap can be opened by taking differ-
ent dimensions for all three subsets of rhombi. If only one subset
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FIG. 1. (a) Representation of the lattice, together with the three families of rotation axes associated with each subset of rhombi. (b) Parameterization of the lattice, where b
is the period and bs, by, and b are the sizes of each rhombi. (c) Reciprocal lattice and first Brillouin zone in green. (d) Dispersion diagram of the crystal with identical (resp.
different) rhombus sizes in dashed red (resp. solid black) lines. () Representation of the primitive cell with air holes in white and solid material in gray. (f) Distributions of H,
amplitude and phases at the K points on both limits of the bandgap. (g) Distribution of the Berry curvature for the first band and degenerate second and third bands in the

first Brillouin zone.

has a size different from the two others, the corresponding rota-
tion axis remains six-fold for the full crystal, and the gap does not
open. The chosen primitive cell is shown in Fig. 1(e) and leads to
a bandgap of about 160 GHz centered at F = 1.14 THz. One sub-
set is composed of rhombi with zero size (b, = 0); the small rhombi
have the same dimension as in the reference lattice, b, = 14.6 ym,
and the large rhombi have an edge, b, = 29.7 ym. In order to com-
pensate for the fact that the gap tends to close when the total surface
area of the air increases within the primitive cell, the tips of the
rhombi have been truncated using a disk with a radius r. = 10.4 ym
located at each Cs axis. Distributions of the magnetic field ampli-
tude, |H,|, and phase, ¢,, inside the primitive cell are plotted in
Fig. 1(f) at the K point for frequencies corresponding to the upper
and lower limits of the bandgap and indicated by the colored circles
in Fig. 1(d). As expected for a valley topological crystal, magnetic-
field singularities with opposite phase vorticities are observed for
the low- (respectively high-) frequency mode at the a (resp. f3)
sites.

The topological nature of the gap is confirmed by the distri-
bution of the Berry curvature and associated valley Chern numbers
(VCNs)*** shown in Fig. 1(g). The Berry curvature is plotted for the
isolated first band and the degenerate second and third bands con-
sidered together. For the first band, the Berry curvature reaches its
largest magnitude but with opposite signs at K and K’ points, as the
Berry curvature is odd under parity symmetry. The same behavior is
obtained for the degenerate second and third bands, however, with
opposite signs as compared to the first band at each K and K’ points.

APL Photon. 9, 126107 (2024); doi: 10.1063/5.0233892
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The VCNs computed by integrating the Berry curvature over half
of the first Brillouin zone centered at the K’ point are C,, = 0.127
for the first band and C, = —0.038 for the degenerated second
and third bands, confirming that the lattice exhibits valley topology
features.

lll. FAMILIES OF POSSIBLE INTERFACES

Once the bulk of the lattice has been characterized, we identify
the types of interfaces that can be constructed between two lattices
with distinct arrangements of rhombi. By arrangement, we mean
the different image lattices obtained after any permutation of the
rhombi colors or sub-lattices of point axes of an arbitrary origi-
nal lattice. In Sec. I of the supplementary material document, we
show that among the five possible permutations not equal to iden-
tity, the cyclic permutation (f3,y, &) (resp. (y,a, 8)) corresponds to
a sub-lattice translation by any vector of form &, fa, or yp (resp.
ap, By, or y&). In this case, the original lattice and the image lat-
tice after permutation have identical Berry curvatures and valley
Chern numbers. The three last permutations are the transpositions
(e, 9,8), (9,8, ), or (B, at, y), with the sub-lattice of axes a, 3, or y,
respectively, unchanged. The original and image lattices differ by a
parity transformation and a sub-lattice translation. They have Berry
curvatures and valley Chern numbers of opposite signs. As a com-
parison, in standard valley photonic crystals made of a large and a
small hole in a honeycomb lattice, only one type of image lattice
is possible by permuting the small and large holes of the primitive

9, 126107-3
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cell. In this case, the transformation is fully equivalent to a parity
operation.

In this work, we restrict our study to bearded interfaces, which
always present a glide-mirror symmetry in honeycomb valley crys-
tals with two-holes per unit-cell. Using this geometrical interface, we
will study the properties of interface channels when different per-
mutations of the initial lattice are considered on each side of the
interface. The corresponding delimitation between the original and
image lattices is represented as a thick black line on the four super-
cells in the top panels of Figs. 2(a)-2(c). The dispersion diagrams of
those uni-dimensional interfaces with period b have been simulated
by applying Floquet conditions (FC) along the boundaries in red,
perpendicular to the interface [see Fig. 2(a)], and perfect-conductor
(PC) conditions along the two remaining horizontal boundaries of
the rectangular supercells.

Depending on the specific permutations between the original
and image lattice, we identify three families of interfaces, labeled
glide mirror [Fig. 2(a)], broken mirror [Fig. 2(b)], and displacement
[Fig. 2(c)]. Panels (a) and (b) correspond to cases where the origi-
nal (top) and image (bottom) lattices differ by a transposition: they
are mirror-symmetric (up to a sub-lattice translation) and one of the
three sub-lattices of rotation axes is left unchanged. The supercell
shown in the top-left part of panel (a) presents a glide-mirror sym-
metry materialized by the dashed line; it is the analog of the bearded
interface between two symmetric honeycomb lattices with two holes
per unit-cells. Six distinct interfaces are obtained by applying the
six possible permutations of the rotation axes in the original (and
automatically in the image) lattice. They are shown in the six top
central panels of Fig. 2(a). The bottom panel of Fig. 2(a) displays
the calculated dispersion of the interface modes for the six possible
permutations shown in the panels above, (i)-(vi). As expected, due

(a) Glide mirror

(b) Broken mirror

to the glide-mirror symmetry, the dispersion curves are all folded
at the edges of the first Brillouin zone of the interface, k¢ = +7/b,
leading to a degeneracy point. Some of the interface modes traverse
completely the bandgap, and others do not. We will discuss their
differences below.

In the second family of interfaces, corresponding to panel
Fig. 2(b), the original and image lattices are related by a transpo-
sition for which the unchanged sub-lattice of rotation axes is on
the delimitation of the bearded interface [for example, the y axes
in the supercell of Fig. 2(b)]. In this situation, the glide-mirror sym-
metry is broken: the image lattice is obtained by the combination
of a glide-mirror and a sub-lattice translation. Six distinct “broken-
mirror” interfaces are obtained, and all the edge modes are gapped
at ky = +7/b.

In the last case, panel (c), the original and image lattices are
related by a cyclic permutation of the three sub-lattices of rotation
axes, equivalent to a translation. There are two families of three
interfaces depending on whether the cyclic permutation is in one
direction or the other. As the original and image lattices differ only
by a translation, those interfaces are called “displacement” edges in
the following. Interestingly, and instead of interfaces obtained by
transpositions, the band diagrams show that all six interfaces sustain
edge-modes, which are also all gapped.

In the following, glide-mirror, broken-mirror, and displace-
ment interfaces will be labeled, respectively, gm —x, bm —x, and
di — x, where x =1i,...,vi is the number of the interface in the
corresponding panel of Fig. 2. Note that broken mirror and dis-
placement interfaces are both chiral; the interface cannot over-
lap by translation and rotation with its image obtained by any
reflection. On the other hand, the glide-mirror interfaces are not
chiral.

, (c) Displacement

° (i) =l (iv) —AL [0 . (iv) ==
i) (4 Bn A
- A Na A r »

L — - - LA A

i) = ) (ii) —(v) T
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FIG. 2. (a) Top: Supercell of a typical interface obtained by transposition with glide-mirror symmetry between original and image lattices and corresponding six possible
interfaces; bottom: dispersion diagrams of the six interfaces. A solid line indicates robust protection against backreflection at sharp corners, and a dashed line corresponds
to strong reflection. (b) Same as (a), but for a transposition breaking the glide-mirror symmetry. (c) Same as (a) but for cyclic permutations. (d) Amplitude profiles of the

edge-modes propagating along a Z-interface for selected frequencies and interfaces.
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IV. STUDY OF THE ROBUSTNESS OF PHOTONIC
TRANSPORT AROUND CORNERS

In the lower panels of Figs. 2(a)-2(c), we have identified in solid
lines the portions of each dispersion curve corresponding to robust
unidirectional propagation. To do so, we have simulated the field
distributions of edge-modes propagating along an interface made
of two consecutive 120° sharp corners; see Fig. 2(d) and Fig. S2
of the supplementary material document for all interfaces. Edge-
modes with negligible backscattering at corners have been identified
directly on the field maps, as they show a constant average amplitude
of the electric field along the domain wall. The modes are excited
from the left side of the edge by a localized in-plane electric dipole.
The 14 edge-modes obtained for the glide-mirror, broken-mirror,
and displacement interfaces, Figs. 2(a)-2(c), present all a portion
of their dispersion curve with robust propagation characterized by
low reflection at corners and identified by solid lines on the disper-
sion diagrams. This is, for example, the case for the gm-i interface at
F =1.12 THz, which is represented in the top panel of Fig. 2(d). The
parts of the dispersion curves plotted as a dashed line correspond
to edge-modes with noticeable backscattering at the first corner,
which occurs in two situations. In the case where a dispersion curve
presents an extremum, two modes with equal frequencies but differ-
ent wave-vectors can be simultaneously excited by the source, with
only one of them showing robust propagation. For example, the field
distribution of the edge-mode propagating along the gm-ii inter-
face at F = 1.12 THz shows a clear interference pattern between the
source and the first sharp corner due to large backscattering of the
low-wavevector edge-mode, while the smoother profile beyond the
first corner is attributed to the robust edge-mode with larger wave-
vector. In the second situation where the dispersion curve has no
extremum, like for the broken-mirror interface bm-v at frequencies

close to F = 1.2 THz, the mode is strongly back-reflected at the first
corner.

The robustness of the propagation is expected for edge-
modes corresponding to glide-mirror and broken-mirror interfaces,
which separate two topological lattices with opposite Berry cur-
vatures and VCNs and then must obey valley number conserva-
tion along the propagation direction. However, the equal robust-
ness of edge-modes along displacement interfaces is more sur-
prising, as both sides of the interface have local VCNs of the
same signs. For example, Fig. 2(d) clearly shows that the mode at
F =1.08 THz of interface di-i propagates without noticeable reflec-
tion through both sharp corners. This confirms previous reports
in which robust propagation along specific displacement inter-
faces in triangular photonic crystals has been reported,”® even
though neither of the two interfaced lattices had any local Berry
curvature.

To gain further insights into the scattering properties of the
corners, we have simulated the propagation of three types of edge-
modes (gm-i, bm-i, and di-i) along circuits consisting of a triangular
resonator connected to a line interface waveguide (see Fig. 3).
In all three cases, the triangles have a side length of 28 periods.
Figures 3(a), 3(d), and 3(h) show the geometry of the three configu-
rations with detailed views of the lattice in the regions of connection
between the resonator and the line waveguide and of one corner of
the resonator. For better visualization of the different interfaces, the
small rhombi in the unit cells along the edge are emphasized in blue.
For bm-i [Fig. 3(d)] and di-i [Fig. 3(h)], two configurations with
exchanged original and image lattices are considered, displayed in
black and red in the upper panels. Each of them has a different local
configuration at the corners. Below we will analyze their influence
on the robustness of transport.

1.0
0.8
c <
2 S
Bos o6
®) F &
< 0.4 c 04
© E
= =
0.2 0.2
0.0, ; l 0.0 . - - T T
1.05 1.10 115 1.20 104 106 108 110 112 114

Frequency (THz) Frequency (THz)

104 106 108 110
Frequency (THz)

FIG. 3. Simulation of the transmission spectra of an edge-mode through a triangular resonator addressed by a straight waveguide. (a) Case of the glide-mirror symmetric
interface. The structure of the lattice is plotted around the splitter and the corner, and the small rhombi are shown in blue. The wave is launched along the red arrow from
a dipole located at the green star. (b) Transmission spectra, where the colored area indicates the bandwidth of the edge-mode. (c) Amplitude of the magnetic mode for
F = 1.092 THz (black arrow on the dispersion diagram). The white line shows the limit of the lattice. (d)-(g) Same as (a)—(c) for the broken-mirror interface. The black and
red circuits correspond to interfaces where the original and image lattices of Fig. 2 have been exchanged. (h)-(k) Same as (d)—(g) for the displacement interface.
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In the simulations, a mode is excited by a dipolar source located
at the green stars. The transmission spectra are shown in Figs. 3(b),
3(e), and 3(i) after normalization by the power flowing along the
straight waveguide alone. Typical distributions of the magnetic-
field amplitude are plotted for a frequency F=1.092 THz in
Figs. 3(c), 3(f), 3(g), 3(j), and 3(k). The white dashed line indicates
the limit of the photonic crystal, fully embedded in the homogeneous
dielectric environment. Note that in all simulations, the shape of the
boundary between the lattice and the external domain is oblique at
both ends of the line waveguide to minimize backreflections.'” In
such a circuit, an edge-mode with perfect reflection-free propaga-
tion would follow the directions indicated by dark-blue arrows in
the left panel of Fig. 3(a), corresponding to transport along a single
valley with conserved forward propagation. As a consequence, the
edge-mode cannot be backscattered in the direction of the source,
and the transmission should be unity. In the topological interpre-
tation, any observation of resonances in the transmission spectrum
should then be related to unperfect valley-number conversion either
at the connection between the resonator and the straight waveguide
or at the corners of the resonator.

The transmission spectrum for the interface with glide-mirror
symmetry, Fig. 3(b), is flat and very close to unity inside the trans-
mission band of the mode (gray area), except for frequencies beyond
1.17 THz where the dispersion curve tends to flatten in Fig. 2(a).
Shallow resonances, close to 1.06, 1.08, and 1.15 THz, are the signa-
ture of weak backreflection at the cavity corners or at the connection
with the straight waveguide. However, overall, transmission is quasi-
unity, highly unidirectional propagation in the circuit, which can
be interpreted as nearly perfect conservation of the valley number.
In accordance, the typical amplitude distribution inside the circuit,
Fig. 3(c), is smooth and exempt from any interference pattern at the
input waveguide.

The second case corresponds to the broken-mirror interface
displayed in the middle panel of Fig. 3. The edge is now chiral in
the sense that it does not overlap by rotation with its image by any
reflection. Therefore, two distinct circuits can be constructed: one
from a given broken-mirror interface and a second one from its
mirror-symmetric with respect to the propagation direction. These
two possible circuits are plotted in black and red in Fig. 3(d). Note
that the blue triangles flip from one side of the edge to the other
when going from the black to the red configurations, resulting in
different local arrangements of the holes at the splitter and corners.
The transmission spectra for both circuits are nevertheless very sim-
ilar and close to unity within the transmission band [red area in
Fig. 3(e)], except near 1.07 and 1.08 THz, where two shallow reso-
nances are observed. Moreover, transmission minima are deeper for
the circuit underlined in black, which shows that the different con-
figurations of corners and splitter resulting from the edge chirality
affect the amount of backscattering within the circuit, even if low.
Far from those resonances, the transmission is nearly unity, and the
field distributions are again very smooth, Figs. 3(f) and 3(g).

The last configuration we have considered is displayed in the
right panels of Fig. 3. The circuit is based on a displacement inter-
face. This interface is also chiral and leads to two non-overlapping
circuits, Fig. 3(h). The transmission is also high in the transmis-
sion band shown in blue in Fig. 3(i). Four resonances are visible
between 1.06 and 1.08 THz, with the transmission minima being
lower for the black circuit than for the red one. Beyond 1.08 THz,
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the transmission spectra are almost unity; no backscattering occurs,
as shown by the flat edge-mode field distributions of Figs. 3(j) and
3(k). Those simulations confirm the above-mentioned observation
that a displacement edge, which separates two photonic crystals with
equal VCN and, therefore, does not present any valley topological
properties, can support propagation around sharp corners as robust
as an interface made of two mirror-image crystals with opposite
VCNs.

As no topological phase transition occurs at the displacement
interface, valley topology cannot explain the robustness of the prop-
agation. We can, however, observe that, for a chiral interface, an
edge-mode traveling along a given direction will not “see” the same
environment as an edge-mode traveling along the opposite direc-
tion. For instance, on the left circuit of Fig. 3(h), the edge-mode
emitted by the source sees blue triangles on the right, which is
always the case if it propagates along directions indicated by dashed
arrows on Fig. 3(a), allowing unity transmission. If the edge-mode
is backscattered at the splitter or a corner, it propagates along the
opposite direction and sees the triangles on its left. Finally, for an
edge-mode traveling along an interface, we can arbitrarily attribute
a helicity of +1 (resp. —1) to the corresponding direction if the
blue diamonds point to the right (resp. left) when oriented by the
wave-vector of the edge-mode. Hence, for this specific situation,
robust propagation along a chiral interface can be phenomenolog-
ically related to the interface-related helicity conservation instead of
bulk-related valley number conservation. We can conclude that, in
a similar way to interfaces with valley topological transition, which
can sustain robust edge-modes [but not systematically, as seen for
configurations (iii) and (vi) of glide-mirror interfaces on Fig. 2(a)],
a chiral interface can as well support edge-modes [however, not
always; see interfaces (iii) and (vi) on Fig. 2(b)]. In the case of
120° turns, their robustness can be as high as for valley topological
interfaces.

V. TRANSMISSION AROUND ARBITRARY CORNERS

At this point, no qualitative differences seem to appear in the
propagation around corners between valley- or helicity-protected
edge modes. However, several studies have evidenced that valley
topological edge modes have good propagation properties along
more exotic shapes of the domain wall such as corners with angles
departing from 120°: robust transmission has been demonstrated
along 60° and 90° corners, despite the fact that in the first case, dif-
ferent interfaces are connected, and in the second case, propagation
occurs along TM directions.”””*"” In the following, we investigate
how the glide-mirror, broken-mirror, and displacement edge modes
behave in similar configurations.

Asapreamble, we note that there are several ways of connecting
two interfaces with 120° or 60° corners in the investigated lattices.
As shown in Fig. 4 for a gm-i interface, with the proper choice of
unit cell highlighted with a dashed line, a 120° corner conserves the
geometry of the interface, while a 60° corner connects the gm-i to
the gm-iv edge, where i and iv correspond to the interfaces in Fig. 2.
Similarly, the gm-ii interface can be connected to the gm-v inter-
face, and the gm-iii to the gm-vi interface. This is fully equivalent
in a standard honeycomb lattice to connecting a large holes bearded
interface with a small holes bearded interface in a 60° corner. Sim-
ilarly, bm-i and di-i interfaces are connected, respectively, to bm-i
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and di-i interfaces for a 120° corner but to bm-iv and di-iv inter-
faces in a 60° corner. Choosing other unit cells mixes glide-mirror
and broken-mirror interfaces (see Fig. S3), but we will not consider
those cases in this work.

Figure 5 compares the propagation of edge-modes along 60°
and 90° double-corners, only for combinations of interfaces (i) and
(iv) in glide-mirror (a), broken-mirror (b), and displacement (c)
families. The dispersion relations are plotted in each case for 'K and
I'M interfaces. The typical shape of a 90° corner and the supercell
with period by/3 used to compute the dispersion relations of the TM

(a) Glide mirror

(b) Broken mirror

FIG. 4. Relations between interfaces with
120° (a) or 60° (b), depending on the
shape of the unit cell (dashed black line),
for a gm-i interface.

edge-modes are illustrated in Fig. S4 of the supplementary material.
The label (i)-(iv) for IM interfaces means that they can be seen as
alternating interfaces of type (i) and (iv). Note that the I'M edge-
modes are gapped close to the frequency for which I'K interfaces (i)
and (iv) cross.

The computed transmission spectra for 120°, 60°, and 90° dou-
ble corners are displayed in the middle row of Fig. 5. Distributions
of magnetic field amplitude for selected wavelengths for 60° and 90°
corners are shown in the lower row of Fig. 5 (see Figs. S5 and S6 in
the supplementary material for simulations of all other interfaces).
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FIG. 5. Transmission of edge-modes through 120°, 60°, and 90° double corners for interfaces built on (i) and (iv) types for glide-mirror (a), broken-mirror (b), and

displacement (c), families. Top: dispersion curves of TK (black and green lines, ky € [0, 7/b], projected bulk modes in gray) and TM (red lines, k. € [0, 7/b/+/3],
projected bulk modes in red hatching) interfaces. Middle: Transmission spectra. Bottom: Distributions of magnetic-field amplitude for selected wavelengths.
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Compared to 120° double corners, where all three edge modes travel
without noticeable backscattering, in the case of 60° and 90° corners
the considered interfaces show qualitative differences: indeed, only
edge-modes propagating along glide-mirror symmetric interfaces,

, show high transmission with a small amount of backreflec-
tion, both along 60° and 90° corners (in which case the transmission
drops by a maximum of 10% beyond 1.12 THz). For this type of
interface, in the case of a 60° corner, the high transmission can still
be associated with topological arguments, as despite the geometrical
intuition, the propagation occurs along the same valley.”® Indeed,
such an angle connects the gm-i, with positive group velocity, and
the gm-iv, with negative group velocity, interfaces. If we suppose that
the gm-i modes travel along the I'K direction, the energy flows along
the 'K’ directions for the gm-iv edge modes, but its wavevector is
actually along the I'K direction, reversed as compared to the energy
flow. The large transmission along 90° corners can be interpreted
based on the fact that this edge is actually a succession of short (i)
and (iv) interfaces with alternating +60° angles, preserving then the
valley number.

(d)
0.8 1
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Transmission for broken-mirror interface drops on average by
10% and 20%, respectively, for 60° and 90° corners, while for dis-
placement interfaces it drops by more than 40% in both cases [see
middle panels of and 5(c)]. The presence of backreflection
clearly appears in the form of interference patterns in the field dis-
tributions in the first and second segments of the waveguides [lower
panels of and 5(¢)].

Finally, we compare the transmission of edge-modes along a
domain wall with arbitrary shapes for glide-mirror and displacement
interfaces. As shown on , the wall has been constructed in
such a way that on the length scale of a period it consists of a suc-
cession of short portions of alternating (i) and (iv) interfaces. This
is ensured by the shape of the unit cells, highlighted with a thick
black line centered on a sub-lattice rotation axis and preventing
the mixing between glide-mirror and broken-mirror interfaces (see
Fig. S3). We consider two configurations: a single curved boundary
separating the original (A) and image (B) lattices [ ], and
the same edge but coupled with an approximately round resonator
[ ]. Transmissions along the domain wall without or with the

FIG. 6. Transmission of edge-modes through a domain wall with an arbitrary shape. (a) Close view of the edge separating lattices A and B. (b) and (c) Global form of the
domain-wall, without (b) and with (c) round resonator. The source is located at the position of the green star. (d) Transmission spectra along the edge built on gm-i and
gm-iv interfaces, without (black) and with (red) resonators. (e) and (f) Magnetic field amplitude distribution along the edge, respectively, without and with resonators. (g)—(i)

Same as (d)—(f) for displacement interfaces.
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cavity are plotted on Fig. 6(d), respectively, in black and red, with
corresponding magnetic-field distributions shown in Figs. 6(e) and
6(f). Figures 6(g)-6(i) correspond to the displacement interfaces, but
1 — R (R begins the power reflection coefficient) has been plotted
instead of transmission, as some energy is leaking out of the pho-
tonic crystal at the sharp resonance taking place at F ~ 1.09 THz [see
Fig. 6(i)]. The intermediate case of the broken-mirror domain-wall
is shown in Fig. S7 of the supplementary material.

The qualitative differences are striking between the two families
of interfaces shown in Fig. 6. For the waveguide without resonator
constructed from glide-mirror interfaces, the transmission stays rel-
atively high [black line in Fig. 6(c)]: above 50% for a frequency
between 1.06 THz and 1.13 THz, and above 75% in the range
1.06-1.10 THz. It drops rapidly after 1.14 THz, close to the low
limit of the 'M bandgap in Fig. 5(a). The coupling to the cav-
ity introduces a series of clear resonances visible in the red line of
Fig. 6(c) with a frequency periodicity of about 12 GHz. A transmis-
sion minimum is observed at 1.078 THz, as plotted in Fig. 6(¢). These
results are very similar to the case of simple straight waveguides cou-
pled to triangular resonators investigated earlier, with the difference
that for the configuration of Fig. 6, weak backscattering occurs all
along the waveguide. This is clearly visible as interference patterns in
movies M1 and M2 in the supplementary material. Such distributed
backscattering events were expected as the edge now does not show
any local translation symmetry on a distance larger than a few peri-
ods, and simulations for corners different from 120° show weak but
non-zero backscattering even for glide-mirror interfaces.

The simulations for the edge constructed from displacement
interfaces are displayed in Figs. 6(f)-6(h). Contrary to the glide-
mirror interface, the transmission is very low except for a single
frequency close to 1.090 THz, where a sharp resonance with trans-
mission close to unity is observed. This isolated event is related to
random coherent backscattering along the edge leading to destruc-
tive interferences of the reflected edge-mode. The average low
transmission originates in the larger backreflection already observed
along 60° and 90° double-corners for displacement interfaces, as
plotted in Fig. 5(c). Interestingly, the waveguide built on broken-
mirror interfaces (see supplementary material document) shows
intermediate behavior, with a low level of transmission but a larger
number of narrow resonances with higher transmission than for the
displacement edge (Fig. S7).

VI. CONCLUSIONS

Those results evidence that the robustness of the propaga-
tion of electromagnetic waves along domain walls separating valley

topological photonic crystals is not uniquely determined by the
topological figures of the bulk (Berry curvature and valley Chern
numbers), but also by the symmetry of the interface and the shape
of the domain wall on a length-scale on the order of a few peri-
ods. A striking conclusion of our work is that robust propagation
along 120° shape corners is not necessarily related to a valley topo-
logical phase transition at the interface, as an edge constructed
between two valley photonic crystals differing only by a translation
(with identical valley Chern number on both sides of the interface
but non-zero Berry curvature) leads to as robust propagation as
canonical interfaces built on glide-mirror image VPCs. In the latter
case, robust propagation is attributed to valley number conservation,
which is a global property of the bulk lattice, while in the former
case, the helicity of the edge-mode propagating along a chiral inter-
face is conserved, which is a property of the interface (in particular,
glide-mirror interfaces are not chiral). However, along domain walls
composed of long (many periods) linear parts connected with 60° or
90° corners, it appears that an actual topological phase transition
is a necessary condition to ensure robustness, related to the con-
servation of the valley number despite connecting locally different
interfaces. Even if this condition is ensured, the robustness seems to
be lower if the glide-mirror symmetry is broken, in our case by an
additional sub-lattice translation of the image VPC, corresponding
to the broken-mirror interfaces in our work. Finally, in the extreme
case where the domain wall takes an arbitrary shape, which means
that it is built from a succession of short (down to a few periods)
interfaces connected with 120°, 60°, or 90° angles, the local arrange-
ment of the rhombi along the edge has to present a glide-mirror
symmetry in order to reach appreciable transmission coefficients,
however lower than unity.

Our work, together with recent publications,””” tends to ques-
tion the relation between the valley topology of the bulk lattice and
the robustness of the propagation, particularly in circuits built on
a strict succession of 120° corners. It, however, establishes a clear
hierarchy between more complex domain walls built at interfaces
separating lattices with inversion of the Berry curvature and those
without, while at the same time confirming the strong role of the
geometry and symmetry of the interfaces on the long and short
length-scale.

Those conclusions have been obtained with bearded interfaces,
but the methodology described in this article can be extended to
other configurations. Actually, the rhombi lattice supports many
types of edges whose characterization would allow a full exploration
of the possibilities offered by our design. This requires an exhaus-
tive enumeration and simulation of all possible interfaces, which is
beyond the scope of this work. Nevertheless, we present on Fig. 7
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three typical families of edges for illustration. Figure 7(a) recalls
the glide-mirror interface together with the elements of symmetry
of the unit cell: in addition to the glide-mirror, there are two mir-
rors orthogonal to the edge direction (blue lines) and two inversion
centers (blue dots). The geometry of a symmetric zig-zag inter-
face is shown on Fig. 7(b), where we identify one horizontal and
two orthogonal mirrors, together with two inversion centers. The
rhombi plotted as a dashed-line can be freely chosen among the
three types of rhombi of the bulk lattice without changing the sym-
metry of the edge. Figure 7(c) introduces a last configuration that is
specific to our design, with only two inversion centers, and where
the bottom lattice is obtained from the top lattice by a combina-
tion of a horizontal glide-mirror and a vertical mirror. In each case
(b) and (c), less symmetric interfaces can be built by permuting the
subset of rhombi of the bottom lattice, following the methodology
employed for bearded interfaces (a). As a last extension, we note that
lattices emulating quantum spin-Hall effect, possibly combined with
valley-Hall characteristics as recently investigated in Ref. 37, can be
constructed based on our design, as shown on Fig. 7(d). Again, addi-
tional interfaces with lower symmetries can be created by permuting
the subsets of rhombi within the bottom lattice. We believe that the
conclusions of our work and the possibilities offered by our design
can be of interest for the development of new efficient and compact
photonic platforms.

SUPPLEMENTARY MATERIAL

We provide a supplementary material where the reader will
find complementary explanations and figures related to this work,
referenced in the current main article. In addition, two anima-
tions showing the distribution of the magnetic field amplitude as
a function of the frequency illustrate the propagation of an edge-
mode along a domain wall with an arbitrary shape for gm-i/gm-iv
interfaces.
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