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1. THEORETICAL MODEL

The starting point for our model is a quantum well exciton coupled to a planar microcavity photon

mode. The non-dissipative dynamics of such a system are governed by a Hamiltonian given by1

H =
∫

dx ∑
i, j∈{X ,C}

Ψ̂
†
i (x)h0

i, j Ψ̂(x)

+
h̄κ

2

∫
dxΨ̂

†
X(x)Ψ̂

†
X(x)Ψ̂X(x)Ψ̂X(x)

+
h̄ΩR

nsat

∫
dxΨ̂

†
C(x)Ψ̂

†
X(x)Ψ̂X(x)Ψ̂X(x)+H.c.

+ h̄
∫

dxFp(x, t)e−iωpt
Ψ̂

†
C(x)+H.c. (1)

Here Ψ̂C,X are the spatially-dependent quantum field annihilation operators that describe excitons

(X) and cavity photons (C) and the kinetic energy term of the planar microcavity is given by

h0 = h̄

 ωX(−i∇) ΩR

ΩR ωC(−i∇)+VC(x)

 (2)

where VC(x) is the photon confining potential and h̄ωC and h̄ωX are the photon and exciton energies

respectively. ΩR is the vacuum Rabi frequency, giving the coupling rate between photons and

excitons. There are two nonlinearities in the system: The first is a due to Coulomb-mediated

interaction between excitons with a coupling rate κ; the second one is due to the exciton oscillator

strength saturation at high density, characterized by nsat. The photonic pumping term is given by

Fp and is assumed to be monochromatic with a frequency ωp.

In the case of strong photonic confinement, the only relevant modes are the fundamental cavity

photon mode with spatial wavefunction φc(x) and the exciton mode with the same spatial shape1.

This simplifies the Hamiltonian (1) to

H = h̄ωX b†b+ h̄ωCa†a+ h̄ΩR(b†a+ba†)

+
h̄ωnl

2
b†b†bb− h̄αsatΩR(b†b†ab+a†b†bb)

+ h̄F (t)e−iωpta† + h̄F ∗(t)eiωpta (3)

where a and b are bosonic annihilation operators of the cavity photon mode and the exciton mode

respectively. The effective photon drive strength F , and effective nonlinearities αsat and ωnl are

given by F (t) =
∫

dxFp(x, t)φ∗C(x), αsat =
∫

dx |φC(x)|4/nsat, and ωnl = κ
∫

dx |φC(x)|4.
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Finally, we note that the saturation parameter is negligible for typical microcavity parameters2 and

go into the interaction picture to remove the bare photon and exciton energies. This yields the

effective Hamiltonian

Heff = h̄∆ωX b†b+ h̄∆ωCa†a+ h̄ΩR (b†a+a†b)

+
h̄ωnl

2
b†b†bb+ h̄F (t)(a† +a) (4)

where without loss of generality we have taken F (t) to be real and defined the detunings ∆ωc =

ωC−ωp and ∆ωX = ωX −ωp. In order to make contact with the experimental parameters ∆ and

∆LP used in the main text, we note that ∆ωC = ∆/2−∆LP +
√

Ω2
R +∆2/4 and ∆ωX = ∆ωC−∆.

The Hamiltonian (4) describes a system consisting of a single-mode photon field (a) and a single-

mode exciton field (b). The two fields are coupled with a Rabi frequency ΩR, and the exciton field

has a self-coupling nonlinearity with strength ωnl. The photon field has a time-dependent drive

F (t) which is related to the laser power via F (t) =
√

P(t)γC/h̄ωp where P(t) is the input power

into the cavity mode and γC is the optical cavity decay rate.

In order to study the cavity dynamics and photon correlation functions it is also necessary to

include dissipation and loss. This requires a master equation description of the system. We denote

the density matrix of the system by ρ(t), and introduce losses γC and γX , corresponding to the

homogeneous linewidths of the photons and excitons respectively, resulting in a master equation

for the system given by

dρ

dt
=

i
h̄

[
ρ,Heff

]
+

γC

2

(
2aρa†−a†aρ−ρa†a

)
+

γX

2

(
2bρb†−b†bρ−ρb†b

)
. (5)

Due to the fact that the photonic driving term describes a Gaussian pulse rather than continuous

excitation, we must find the full time-dependent solution to (5) and not merely find the steady

state solution. To do this we treat the master equation as a time-dependent matrix differential

equation, and numerically solve it in a tensor product Fock basis for the operators a and b. We

truncate the basis by limiting the number of excitations in both the photon and exciton modes. For

parameters describing our experiment, we found that an acceptable cutoff was between five and

eight excitations in each mode depending on laser power.

Given the time-dependent solution ρ(t), it is possible to use the quantum regression theorem to

find two-time correlation values. For example, the two-time second-order coherence function for
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the photon field is given by:

G(2)(t, t ′) = Tr
(

aU(t, t ′)
[
aρ(t ′)a†

]
a†
)

(6)

and the normalized version by:

g(2)(t, t ′) =
Tr
(
aU(t, t ′)

[
aρ(t ′)a†]a†)

Tr(aρ(t)a†)Tr(aρ(t ′)a†)
(7)

where U(t, t ′) is the evolution superoperator that acts on the density matrix as ρ(t) =U(t, t ′)ρ(t ′).

However, we note that the experiment does not find the actual function g(2)(t, t ′) within the laser

pulse, as the pulse width is shorter than the time resolution of the detectors used. Rather, over

many pulses, the experiment registers all possible coincidences between t and t ′ and bins them

together. In this situation the correct quantity to compare to experiment is3

ḡ(2)(0) =
2
∫ T

−T
dt1
∫ T

t1
dt2 G(2)(t1, t2)∫ T

−T
dt1
∫ T

−T
dt2 I(t1)I(t2)

(8)

where the limits (−T, T ) encompass the full duration of each pulse, and I(t) = Tr
[
ρ(t)a†a

]
is

the average photon flux at time t. It is this quantity ḡ(2)(0) that is used in the main text when

comparing the experimental results to the theoretical model.

2. POLARITON-POLARITON INTERACTIONS

As mentioned previously, the polaritonic nonlinearity can be traced back to the exciton-exciton

exchange interaction h̄κ (in units of meV·µm2) in a quantum well1,4,5. In a laterally confined

mode, this interaction is enhanced by the forced proximity of the excitons into h̄ωNL = h̄κ ×∫
dxdy |ϕX(x,y)|4, where ϕX(x,y) is the normalized excitonic in-plane wavefunction, and A−1 =∫
dxdy |ϕX(x,y)|4 is an inverse area that characterizes this enhanced overlap 1. For polaritons in

a cavity with lateral confinement, and under resonant excitation into the lower polariton state,

the polaritonic wavefunction is imposed by the photonic confinement, and in the strong coupling

regime, it is linearly related to the excitonic wavefunction by the Hopfield coefficient Cx. As a

result, the polaritonic nonlinearity can be derived from the excitonic one as U = h̄κ|Cx|4×A−1 =

h̄ωNL|Cx|4 (in units of meV), and h̄g = h̄κ|Cx|4 = h̄ωNL|Cx|4×A (in units of meV·µm2).

As discussed in the main text, when determining the exciton-exciton nonlinearity in our exper-

iment, the best fit is obtained for a confinement-enhanced exciton-exciton interaction constant
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h̄ωNL = 0.018± 0.010 meV. To obtain a more generic polariton-polariton interaction strength

h̄g it is necessary to scale h̄ωNL by the mode overlap between the photonic cavity mode and

the exciton wavefunction. Using a finite element calculation of the whole structure (see Sec-

tion 6), we find that the mode is Gaussian with a waist size w0 = 1.17 µm (see SI). In this case,

h̄g = h̄ωNL|Cx|4πw2
0, using the scaling area πw2

0. With an excitonic fraction |Cx|2 = 51% this anal-

ysis yields h̄g = 0.020± 0.011 meV·µm2. The confidence of this value is illustrated by the plot

in Figure 4c in the main text that shows the coefficient of determination R2(h̄g) of the theoret-

ical fit to our data. R2(h̄g) exhibits a clear maximum for g = g0, as well as a peaked structure

from which the uncertainty is well-defined. The associated exciton-exciton interaction strength

h̄κ = 0.076±0.042 meV·µm2.

3. PULSE SHAPING

Tuning the time duration of the excitation pulse is of critical importance in achieving polariton

blockade and obtaining stronger quantum correlations.

The better antibunching is due to the blockade becoming more effective as the spectral width of the

pulse shrinks below the nonlinear energy shift imparted due to the presence of a second polariton.

The shift in the minimum is beneficial as it moves the peak g(2)(0) antibunching into the region

where there is better signal (i.e. more counts due to being near resonance), enhancing the signal

to noise ratio of the measurement.

This is illustrated in Figure S.1.b, which shows an energy diagram with two different pulsed exci-

tation conditions. (1) corresponds to a situation where δL > τLP, so that the spectral width of the

pulse is less than γLP. (2) corresponds to the opposite situation, were δL ≤ τLP, so the pulse spec-

tral width is on the order of or greater than γLP. This results in a compressed (1) or expanded (2)

excitation laser range (δ (∆LP)) where the antibunching / bunching photon statistics are observed.

Experimentally, the excitation pulses are generated by a picosecond Ti:sapphire laser. These pulses

are too short as compared to γLP and thus need to be reshaped. They are sent into a monochromator

through an iris of variable diameter, which controls the input numerical aperture, and hence the

spectral resolution at the output slit. The pulse length could thus be adjusted between 15 ps and

50 ps as is shown by a characterization with a streak camera (Figure S.2).
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FIG. S.1. Effect of pulse width on the correlations. a) Calculated g(2)(0,∆LP) for different excitation

pulse duration δL =10,20,30 and 60ps. b) Schematic representation of the polariton excitation ladder. The

pulse width is shown for comparison with the polariton linewidth γLP and the blueshift U . Label "1" refers

to the case where the pulse duration is longer than the lower polariton lifetime; and "2", where the pulse

duration is shorter than or similar to the lower polariton lifetime.

4. NEGATIVELY CHARGED TRION AS A LOSS CHANNEL FOR POLARITONS

As explained in the main text, photoluminescence (PL) spectra of the polariton states under non-

resonant excitation at 825 nm show a small but distinct spectral feature approximately 1.2 meV

red detuned from the bare exciton (X0) resonance which can be seen in Figure S.3. A similar

feature has been reported before in fiber based cavity experiments6 and has been interpreted as an

impurity resonance in the semiconductor. However, owing to its spectral properties, this feature

better agrees with the negative trion state (X−1)7.

This trion resonance plays an important role as energy-dependent source of loss and decoherence

for polaritons that will be key for understanding the results of our correlation measurements. To

quantify this trion-induced loss mechanism, we now develop a simple theoretical model treating

the trion resonance as additional irreversible loss channel8 in order to estimate the overall lifetime
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FIG. S.2. Measured laser pulse duration. Streak camera characterization of the pulses duration tuned by

the pulse shaper.

dependence on ∆. This loss channel constitutes an additional source of noise that shows up in the

measured correlations.

We model the polariton decay time τLP as the sum of two energy dependent contributions:

1
τLP(ELP)

=
1−|CX(ELP)|2

τC
+ |CX(ELP)|2γT (ELP) (9)

where CX(ELP) is the excitonic Hopfield coefficient, and τC is the bare cavity lifetime. The first

term is the "usual" polariton loss channel throughout the cavity mirrors. γT (ELP) describes the

irreversible elastic scattering of a polariton into the trion density of states. Within a Fermi golden

rule approach, this mechanism is proportional to the trion density of state at the polariton energy
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FIG. S.3. Photoluminescence (PL) under non-resonant excitation at 825nm. The PL intensity is color-

coded from white (dim) to black (bright). The black anti-crossing lines are the upper and lower polariton

modes. The black dotted lines show the neutral exciton (X0) and negative trion (X−1) states. The top

spectrum is a slice in this map, taken for a slightly negative detuning, shown by the red solid line. The X−1

state is found ∼ 1.2meV red detuned from the neutral exciton state.

ELP. We assume for simplicity that the latter takes a Gaussian shape such that

γT (ELP) = Sexp
(
− [ELP−EX −EB]

2 /2σ
2
T

)
, (10)

where S is the characteristic scattering rate, EX −EB is the trion transition energy in terms of the

neutral exciton energy minus the binding energy, and σT is the trion linewidth. All the parameters

in this model are known from photoluminescence measurement of the lower polariton and trion

state (see inset in Fig. S.4b), except for S, and within a small range, τC.

In order to include the effect of this additional loss channel into the master equation model, we

define an effective excitonic lifetime as:

1
τeff

X
= γT . (11)

Following this definition we include τeff
X as a parameter in the master equation model described

above, identifying γX = γT , which encompasses all forms of excitonic loss. This effective param-

eter varies with ∆, and is calculated via Eqs. (9) – (10).
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FIG. S.4. Polariton decay time. a) Experimental LP lifetime decay curve recorded at ∆ = -3.53 meV (la-

belled "1") and ∆ = +0.82 meV (labelled "2"). Red discontinuous lines corresponds to fits based on a single

exponential decay (1) and on a bi-exponential decay (2), respectively. b) Experimentally measured Lower

Polariton (LP) decay time measured under resonant excitation vs ∆ (black dots). The data are compared

with a two-coupled-oscillator model that includes polariton losses by elastic scattering into the negative

trion X−1 density of states (solid red line), or by elastic scattering into the disordered neutral exciton den-

sity of states (dashed line). Inset: Photoluminescence spectra under non-resonant excitation at 1.503eV.

Black lines are Lorentzian fits of the neutral exciton and negative trion.

To obtain a numerical estimate of this effective excitonic lifetime, we performed lifetime measure-

ments of the polariton modes under resonant excitation for different ∆. Figure S.4 shows τLP(ELP)

data as obtained from time resolved decay measurement of the polariton state under resonant exci-

tation. When the lower polariton mode is tuned far away on the red side of the trion resonance, the

polariton decay is monoexponential in time as shown in Fig. S.4a, and the characteristic lifetime

is well accounted for by taking into account the bare cavity lifetime and the excitonic fraction.

In this approximation, the lifetime is expected to increase for increasing ∆, consistent with our
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observations up to ∆'−1 meV. For larger ∆, however, as the polariton mode approaches the trion

resonance, the trion starts to provide a second loss channel in addition to the direct photon loss

through the cavity. In this regime, the decay becomes bi-exponential (Fig. S.4a) and the polariton

lifetime sharply decreases for increasing ∆. On resonance with the trion (∆' 0.6 meV) this addi-

tional loss channel dominates9, and exceeds the cavity losses by a factor ∼ 2. The fast part of the

bi-exponential decay curve corresponds to the polariton decay with τLP ≈ 8 ps, including both the

cavity decay and irreversible loss into the large trionic density of states. The slow decay can be at-

tributed to re-emission from the trion resonance into the polariton mode with a characteristic time

of ≈ 65 ps. The solid red line in Figure S.4b is a fit using the aforementioned model showing very

good agreement, allowing us to extract the bare cavity lifetime τC = 16 ps, and a trion-mediated

characteristic loss rate of S = 0.134 ps−1. Interestingly, if we neglect the trion contribution and

replace it with losses into a localized neutral exciton density of state by setting EB to zero and set

σT to σX , we cannot fit the data in a convincing way (dashed line).

We note that our theory model does not explicitly include a quantitative description of how photon

correlations are affected by the trion resonance or the neighboring polariton mode πY , as this

would require new theoretical developments that clearly go beyond the scope of the present paper.

Instead, in order to better facilitate the comparison between experiment and theory, we determine

the range of validity of the model. In order do so, in the main text we used a quantity T̃ (∆LP)

which parameterizes the accuracy of our model at a given T̃ (∆LP), which we now define.

We take T̃ (∆LP) = TX(∆LP)/[TX(∆LP)+TY (∆LP)+TX−1(∆LP)], and as such it quantifies the frac-

tion of laser light transmitted by the πX polariton mode alone. It estimates the amount of pertur-

bation this mode is subject to for a given ∆LP, due to its spectral overlap with the other perturbing

transitions. TX(∆LP), TY (∆LP), and TX−1(∆LP) are the contributions to the transmission spectra

of the πX and πY polariton modes, and of the trion resonance, respectively, determined from the

transmission measurements. Hence, T̃ = 1 means that the πX polariton mode is unperturbed. For

this ideal case, we expect the best possible agreement with the single-mode theory. The smaller

T̃ , the more the πX polariton mode is perturbed, and the more the experiment is expected to depart

from the single-mode theoretical expectation.
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5. SECOND-ORDER ZERO-DELAY CORRELATION: DETERMINATION AND

ERROR BARS

The avalanche photodetectors (APDs) that we used in this experiment have a time resolution of

' 350 ps. Since the polariton dynamics under resonant excitation is < 40 ps, we can reasonably

assume that the correlations between two photons delayed by this timescale are equally spread

over the whole measured zero-delay coincidence peak. On the other hand, it also means that

since the other coincidence peaks are separated by an integer multiple of 13 ns (laser repetition

period), they cannot feature any polariton correlations. Figure S.5 shows an extended raw two-

photon coincidences histogram and the corresponding integrated coincidences histogram for our

strongest antibunching in Figure 3c of the main text (data point (i)). Given the rather small contrast

of the antibunching and the overall noise in the data, a careful statistical analysis is needed.

In order to maximize the statistical significance of our data, we chose to truncate the data of the

zero delay peaks (centered at bin zero) at time bins±W , and hence reject the far edges of the peaks

that which contain more dark coincidence counts from the APDs than actual signal. To determine

the optimal W , we modeled the coincidence counts in each time bin j as being the sum of the

signal S j, the statistical noise related to the number of counts uncertainty and the dark coincidence

counts. As a result the sum of the zero delay coincidences reads

A0 =
W

∑
j=−W

S j, (12)

and the corresponding signal-to-noise:

SNR(W ) =

W
∑

j=−W
S j√

W
∑

j=−W
S j +(2W +1)SD

, (13)

where SD is the number of dark coincidence counts which is a constant over all bins (whether it

is due to dark/dark, dark/signal or signal/dark coincidences). The signal to noise function (13)

exhibits a maximum that depends on the parameters. Figure S.6 shows a typical raw zero delay

correlation peak. A dark count of SD = 0.5 counts per bin is found, and the Gaussian best fit of the

peak exhibits a full width at half maximum of 600 ps and an amplitude of 95 counts i6 the central

bin. With these parameters the largest signal-to-noise ratio is achieved for a truncation window of

2W = 896 ps full width.

11



FIG. S.5. Anti-bunched raw coincidence data and integrated coincidences histogram. (upper panel)

Extended coincidence counts histogram for the raw data displayed in Figure 3d of the main text. The mean

peak value is indicated by a dotted black line. (lower panel) Integrated coincidences histogram (blue bars)

extracted from the raw data by following the analysis protocol described in the text further below. The mean

integrated value is indicated by the dotted green line.

g(2)(0) = A0
〈A〉 is then determined as the ratio of the sum of the counts in the zero delay peak within

the truncation window (A0) and the average sum of the counts in the uncorrelated peaks within the

same truncation window (〈A〉). The experimental uncertainty on A0 is derived from the measured

standard deviation σ of Ak, the sum of the counts in the peak k (also truncated) where k runs

over every peak of uncorrelated events (300 peaks in total). Then, according to the central limit

theorem, the uncertainty over 〈A〉 is given by ε(〈A〉) = σ√
Np

, where Np = 300 is the number of

peaks of uncorrelated events. We have also included two more corrections: subtraction of the

noise correlations from the APD dark counts10 and the compensation of the slow long delay decay

caused by the finite efficiency of the detectors and by the count rate of the APDs. Figure S.7

shows the g(2)(0) values obtained and their error bars after applying this method. It corresponds
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FIG. S.6. Typical zero-delay raw coincidences peak. The FWHM of the zero-delay peak is 0.6 ns, with

a maximum of 95 coincidence counts. Dark coincidence counts from the detectors are delay independent,

and amount here to 0.5 counts on average (Inset).

FIG. S.7. Extracted second order autocorrelation function at zero time delay. g(2)(0) values extracted

following the analysis protocol described in the text.

to Figure 4.a of the main text.

In order to check the robustness of our method, we analyzed two values of g(2)(0) (∆LP = -0.010

meV and +0.037 meV in Figure S.7), as a function of W and Np, for W = 0.512 ns, 0.832 ns, 1.216

ns and 1.600 ns, and np = 300, 100, 30 and 10 peaks. Figure S.8 shows the result: As expected,
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FIG. S.8. Sensitivity of the result on the analysis parameters. Values obtained for g(2)(0) (at

∆LP) = -0.010 meV and +0.037 meV in Figure S.8), from analysis of the raw data, using W =

{0.512,0.832,1.216,1.600} ns, and np = {300, 100,30,10} peaks.

accounting for the maximum number of peaks, plus a truncation width W chosen within this time

interval maximizes the signal to noise ratio. Figure S.9 shows raw photon correlation measurement

for both laser detunings until 11 consecutive correlated pulses.
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FIG. S.9. Raw photon correlation histograms (i) Raw photon correlation histogram from main text Figure

4.b with laser detuning ∆LP = -0.010 meV until 11 consecutive correlated pulses. (ii) Raw photon correlation

histogram from main text Figure 4.b with laser detuning ∆LP = +0.037 meV until 11 consecutive correlated

pulses. Arrows indicate the position of the zero delay peak.

6. FINITE ELEMENTS SIMULATION OF THE CAVITY MODE

We have calculated the exact shape of the polariton lowest transverse mode within the cavity vol-

ume by numerical simulations of Maxwell’s equations, using the finite element software COM-

SOL. We assumed a circular symmetry around the axis z of the optical fiber. Taking into account

the expected symmetries of the mode, the calculation is carried out in the r,z plane, with r ≥ 0,

and only for the in-plane components of the electric field E = (Er,Ez). The simulations geometry

is shown in Figure S.10 (a). The origin of the r,z space is taken at the interface between the MBE

grown sample and the vacuum. Calculations are limited to the space defined by 0≤ r ≤ rmax and

−zmin ≤ z≤ zmax, with rmax =10 µm and zmin and zmax large enough so as to fully encompass the

bottom and top DBR reflectors and a small portion of GaAs substrate and SiO2 fiber. Before the

top and bottom boundaries, a 300 nm-thick perfectly matched layer is used in order to absorb any

outgoing wave without reflection. As a consequence one assumes a boundary condition E = 0 for

r = rmax, z = zmax and z =−zmin. On the z axis, one assumes Ez = 0 (perfect electric conductor).
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FIG. S.10. Finite element analysis of the cavity mode. (a) Sketch of the geometry used in the numerical

simulation, the colors refer to a specific material. (b) is a zoom of the cavity geometry in the vicinity of the

QW. (c) color-coded intensity map I(r,z) of the fundamental transverse mode resonant with ωX , the position

of the QW is indicated by the arrow.

For the fiber DBR, we assumed that the coating is made of successive layers deposited by a direc-

tional method. As a consequence each interface is a replica of the initial profile etched on the fiber.

the etched profile is measured to be of Gaussian form, which is what we use in the simulation: the

interface between the final dielectric layer and the vacuum is taken as:

h(r) = hfiber +ρ× e
−

r2

2w2
m .

Interferometric measurements of the fiber profile yield ρ = 1.3 µm and a radius of curvature R'

13 µm at r = 0. Thus one has wm =
√

ρ×R= 4.11 µm. The low temperature refraction indices for

AlxGa1−xAs, Ta2O5 and SiO2 are taken from Refs.11,12 and13 respectively. The QW background

index of refraction is assumed to be that of GaAs. This assumption has a negligible influence on

the mode shape in real space.

16



The software searches for field eigenmodes of the form E = Ê(r,z)e−iωct for the above described

structure where ωc is in the vicinity of ωX = EX/h̄. The calculated eigenfrequencies ωc are com-

plex numbers whose imaginary part reflects the losses of the corresponding mode. A fundamental

transverse mode is found with ωc ' ωX for hfiber = 205 nm in good agreement with the experi-

ments. Its Q factor ∼ 30000, which is limited by the absorption in the Ta2O5 layers and its value

would be closer to the experimental value if one considered the absorption in the GaAs layers.

Figure S.10(c) shows a 2D-map of its intensity distribution I(r,z) in the region of interest. As

expected, it presents an antinode at the QW layer (arrow). The intensity I(z = zQW,r) agrees with

a gaussian function I0e−2r2/ω2
0 , over several orders of magnitude, with ω0 = 1.17 µm.

7. PHOTON CORRELATION MEASUREMENT IN A SECOND CAVITY

We carried out a second set of photon correlation measurements in a second fiber cavity with

different cavity parameters. While the radius of curvature for this cavity was similar to the previous

one, the cavity lifetime of 8.3 ps was significantly shorter than for the other cavity. Figure S.11 a)

displays the low-temperature photoluminescence (PL) map as a function of cavity detuning (∆),

obtained under non-resonant excitation (at EL = 1.55 eV). The characteristic avoided crossing of

the excitonic and photonic modes was observed, producing the Lower Polariton (LP) and Upper

Polariton (UP) dressed states. We find a vacuum Rabi splitting of 2h̄ΩR = 3.04 meV, with slightly

higher QW exciton energy (EX = 1480.65 meV) than in the spot studied in the main text of the

paper.

In order to evaluate the best ∆ to carry out photon correlation measurements and to minimize the

effect of the trion transition, we measured resonant transmission spectra in the close vicinity of

∆ = 0. Figure S.11 b) displays the evolution of the experimental LP linewidth (γExp) (blue filled

circles) and the calculated LP radiative linewidth (γRad) (black filled squares) as a function of ∆.

As displayed, at ∆ ' −0.45 meV both quantities start to diverge, as a consequence of the losses

produced by the scattering with the trion transition.

As a second control parameter we calculated the following figure of merit ρ0:

ρ0 =
|CX |4

√
R0

γExp
× fP; fP =

γRad

γExp
; R0 =

R2
Det
θ

(14)

where RDet is the detector count rate and θ is the pulsed laser frequency. ρ0 therefore measures

the detector count rate versus the polariton linewidth promising the best signal-to-noise ratio for
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FIG. S.11. Optical characterization and photon correlation measurement on a second fiber cavitya)

Low-temperature photoluminescence (PL) map as a function of cavity detuning (∆). b) Experimental LP

linewidth (γExp) (blue filled circles) and the calculated LP radiative linewidth (γRad) (black filled squares) as

a function of ∆. c) evolution of the figure of merit ρ0 as a function of ∆. In both b) and c) figures ∆ =−0.45

meV (redish shadow) shows the best signal-to-noise ratio for the photon correlation measurements. d)

Measured resonant transmission spectra of the the πX LP transition (black dots), and Lorentzian fitting to

both linear LP transitions (bluish shadows). Red continuous line represents the cumulative fit. e) Photon

correlation measurements as a function of laser detuning (∆LP) for ∆ = −0.45 meV and two excitation

powers: 700 pW (open circles) and 200 pW (filled circles).

the measurements at its maximum value. Figure S.11 c) shows the evolution of ρ0 as a function of

∆, with ∆ = −0.45 meV corresponding to the position of its maximum. As both direct linewidth

and ρ0 criteria coincide, we have performed photon correlation measurements as a function of

laser detuning (∆LP) for ∆ = −0.45 meV and two excitation powers. Figure S.11 e) shows the

measured g(2)(0) value when scanning the low energy tail of the πX LP transition (Figure S.11 d))

with the excitation laser. Here we used two different average excitation powers: 700 pW (open

circles) and 200 pW (filled circles). When using high excitation power, all measurements return

g(2)(0)≥ 1. However, when the excitation power is reduced to 200 pW, we find a clear minimum
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g(2)(0) = 0.984± 0.014 < 1 at ∆LP ' −0.05 meV. Due to the low count rate at this power, the

integration time for this single data point was 96 hours. The result from our polariton-model

simulations with h̄ωNL = 0.018 meV is shown as continuous orange line.

The loss of antibunching statistics with higher excitation power is in line with the theoretical

prediction of Verger et al.1, and coincides with the results presented by Delteil et al.14, with their

data following a very similar trend to the one observed here.
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Nature Photon. 6, 93 (2012).
4C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann, Phys. Rev. B 58,

7926 (1998).
5F. Tassone and Y. Yamamoto, Phys. Rev. B 59, 10830 (1999).
6T. Fink, A. Schade, S. Höfling, C. Schneider, and A. Imamoğlu, Nat. Phys. First Online,
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