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Abstract
The experimental study of edge states in atomically thin layeredmaterials remains a challenge due to
the difficult control of the geometry of the sample terminations, the stability of dangling bonds, and
the need tomeasure local properties. In the case of graphene, localized edgemodes have been
predicted in zigzag and bearded edges, characterized by flat dispersions connecting theDirac points.
Polaritons in semiconductormicrocavities have recently emerged as an extraordinary photonic
platform to emulate 1D and 2DHamiltonians, allowing the direct visualization of thewavefunctions
in both real- andmomentum-space as well as of the energy dispersion of eigenstates via
photoluminescence experiments. Here we report on the observation of edge states in a honeycomb
lattice of coupledmicropillars. The lowest two bands of this structure arise from the coupling of the
lowest energymodes of themicropillars, and emulate the π and π* bands of graphene.We show the
momentum-space dispersion of the edge states associatedwith the zigzag and bearded edges, holding
unidimensional quasi-flat bands. Additionally, we evaluate polarization effects characteristic of
polaritons on the properties of these states.

Introduction

Graphene is a 2D material with extraordinary trans-
port properties. Many of them arise from its non-
trivial geometry with two identical atoms per unit cell,
resulting in linear bands crossing at two non-equiva-
lent Dirac points. The spinor character of the wave-
functions gives rise to a Berry phase of ±π when
circumventing each of these points in momentum
space. This feature is at the origin of its non-conven-
tional transport properties like ballistic Klein propaga-
tion [1, 2], antilocalization in the presence of disorder
[3], or Veselago lensing effects when traversing a
potential step [4]. The non-zero Berry phase around
the Dirac points has an interesting consequence: the
existence of edge states in finite-size samples. Indeed,
it has been recently shown that the existence of such
states can be related to the non-zero Berry phase along
a straight trajectory in momentum space defined by
the geometry of the considered edge [5–7]. Because

the Berry phase depends on the trajectory, not all
possible edge geometries present localized states [8].

The most commonly considered graphene termi-
nations are the so-called armchair, zigzag, and bear-
ded. Among them, only the last two present localized
states, characterized by a flat dispersion linking the K
and K’Dirac points [8–11]. Although these edge states
may play an important role in the localization and
transport in small-size graphene nanoribbons, experi-
mental studies on the spatial distributions of the wave-
functions and their dispersion are not straightforward.
While different kinds of terminations can be prepared
in graphene and visualized using scanning tunneling
microscopy [12, 13], the existence of electronic edge
states has only been evidenced via the measurement of
the local density of states, which provides information
on their energy and on the curvature of their disper-
sion, but misses any information on their microscopic
spatial structure and on their momentum distribu-
tion [12].
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Photonic graphene analogues are an ideal plat-
form to experimentally address the single particle phy-
sics of 2D lattices [14]. Optically induced honeycomb
lattices in photorefractive crystals have been employed
to study conical diffraction effects [15, 16] and the spi-
nor character of the wavefunctions on the honeycomb
lattice [17]. Arrays of photonic coupled waveguides
can be engineered with single site precision, and they
have been recently used to engineer artificial gauge
fields in strained honeycomb lattices [18] and to fabri-
cate a photonic analogue of a Floquet–Chern insulator
[19]. Lattices of microwave resonators have also been
shown to mimic several properties of electronic gra-
phene [20, 21]. The possibility to control both the
local geometry and the coupling has been used in both
systems [7, 22], as well as in experiments with ultra-
cold atoms [23], to study exciting phenomena like the
topological transition associated to the merging of
Dirac cones, as first suggested by Montambaux et al
[24, 25], and edge states. Moreover, photonic systems
allow realizing any type of lattice termination, even
those that are not stable in graphene such as the bear-
ded edge. The spatial and momentum distributions of
certain edge wavefunctions have been studied using
microwave resonators [26] and coupled waveguides
[7, 27]. However, neither of these two systems pro-
vides the combined information on real, momentum,
and energy spaces needed to reconstruct the band dis-
persion of the eigenfunctions, and in particular of the
edge states.

In this sense, arrays of coupled micropillars in
semiconductor microcavities provide a versatile plat-
form to study 1D and 2D photonic lattices. In a single
micropillar, photons are confined in the three spatial
dimensions, and they are strongly coupled to quantum
well excitons placed at the maxima of the electro-
magnetic field. The new eigenstates of the micropillars
are polaritons, with a mixed exciton–photon nature
that provides them with significant interactions [28].
By partially overlapping twomicropillars, we can engi-
neer the hopping of photons, and thus polaritons,
between different pillars [29, 30]. By extending this
coupling to 2D arrays, a polariton honeycomb lattice
has been recently realized [31]. Other techniques to
engineer polariton lattices have been recently reported
[32–37].

The coupled micropillar system is well described
by a tight-bindingHamiltonian giving rise to polariton
dispersions analogue to the electronic π and π* bands
of graphene. One of its main assets is that the escape of
photons out of the microcavity provides all the infor-
mation regarding the amplitude, phase, momentum,
and energy of the polariton eigenstates: angularly
resolved spectroscopy reveals the energy bands of the
system, evidencing the characteristic linear dispersion
around the Dirac cones, as shown in [31]. In the pre-
sent work, we report on the observation of localized
edge states along zigzag and bearded edges in such a
honeycomb lattice of coupled micropillars. We

observe a flat band dispersion for these edge states,
connecting K and K’ points at complementary regions
in momentum space, as expected from tight-binding
calculations [8]. Despite the non-zero next-to-nearest
neighbor coupling in our lattices, the observed edge
states remain flat up to the resolution given by the
polariton linewidth. Our results are promising in view
of observing topologically protected edge states when
combining polariton polarization effects and external
magnetic fields to realize a photonic topological insu-
lator [38–40].

The polariton honeycomb lattice

In our experiments we use a Ga0.05Al0.95As λ/2 cavity
embedded in two Ga0.05Al0.95As/Ga0.8Al0.2As Bragg
mirrors with 28 (40) top (bottom) pairs, the same as in
the original realization of the polariton honeycomb
lattice [31]. The cavity contains three sets of four 70 Å
GaAs quantum wells located at the three central
maxima of the confined electromagnetic field, result-
ing in a Rabi splitting of 15 meV. The planar micro-
cavity, grown by molecular beam epitaxy, is etched
down to the substrate in the form of a series of
honeycomb lattices of coupled micropillars, as shown
in figure 1 of [31]. The zero dimensionality of the
micropillars imposes quantized energy levels for
polaritons. Therefore, they behave like artificial photo-
nic atoms. The lowest energy polariton eigenstate of an
individual micropillar presents cylindrical symmetry,
like the pz orbitals of graphene. To introduce the
coupling between the micropillars, we etch them so
that they partially overlap (the interpillar distance is
set to be smaller than their diameter). The narrow
region between the pillars represents a potential
barrier for photons and thus, for polaritons, through
which they can evanescently tunnel. The coupling
strength can be tuned by choosing the size of the pillars
and the distance between them [29]. To enhance the
tunneling we consider lattices with predominantly
photonic polaritons, at −17 meV exciton–photon
detuning.

By properly designing the lithographic mask used
to etch the planar cavity into a honeycomb lattice, we
engineer different types of edges in our samples.
Figure 1(a) shows a lattice containing the most com-
monly considered edge types: zigzag, armchair, and
bearded. The lattice consists of nearly 30 unit cells
along the crystallographic axes. This size is large
enough for the properties of the bulk to be dominant
when probing lattice sites located near the center,
while simultaneously showing edge physics when
probing the properties in the edges.

Before reporting on the experimental results, we
first consider the graphene dispersion relation for the
bulk and edge bands using a tight-binding model
including next-nearest-neighbor hopping t’= –0.08 t,
where t is the nearest neighbor coupling. This is the
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value used in [31] to describe our lattices. Figure 1(b)
shows the calculated momentum-energy relation for
an infinite honeycomb lattice without edges. It fea-
tures positive and negative energy bands intersecting
at two inequivalent Dirac points in the first Brillouin
zone. To calculate the dispersion of the edge states we
consider a nanoribbon geometry: an infinite lattice in
the y-direction and of finite width in the x-direction,
ending with the same type of boundary on both sides.
Therefore, the calculated dispersions are continuous
along ky, with several transverse modes corresponding
to the confinement in the x-direction. The result is
shown in figure 1(c) for ribbons with either zigzag or
bearded edges. Each of the different transverse modes
corresponds to each individual line in the figures. Edge
bands appear for the zigzag and bearded edges in com-
plementary regions of ky connecting the Dirac cones
[8, 9] as indicated in red and green, respectively, in
figure 1(d). The zigzag edge band appears for ky(zigzag) є
[−2, −1]ky0 U [1, 2]ky0, and the bearded edge band for
ky(bearded) є [−1, 1]ky0, with ky0 = 2π/(3√3a) and a
being the interpillar distance. The dispersion of the
edge states deviates from a perfect flatband as a con-
sequence of the next-nearest-neighbor hopping para-
meter included in the calculation. However this
deviation is rather small: 50 μeV in total for a value of
t= 250 μeV.

Spatially, the edge states are localized on the outer-
most sites, with an exponentially decaying amplitude

into the bulk ( )x e( ) .edge
x l/ eψ ∼ − In the absence of

next-nearest-neighbor coupling the penetration
length follows [8]:

( )( )
l

a

ln cos k a

3

2 2 3 /2
(1)e

y

 =

The finite penetration results in a finite width in
momentum space for the edge states. Figure 1(e)
shows the kx−kymomentum distribution of the zigzag
and bearded edge states calculated by Fourier trans-
forming with respect to x the spatial distributions of
the edge state for each ky as obtained from the solution
of the tight-binding Hamiltonian. The edge modes are
spread around straight lines connecting the Dirac
points at the border of the Brillouin zone, as schemati-
cally represented in figure 1(d). The edge states with ky
corresponding to the center of the zigzag band
(ky=±1.5 ky0) are fully delocalized in the ky-direction
(see dashed line in figure 1(e)). Correspondingly,
these states are spatially fully localized, down to a sin-
gle site (see figure 1(f)). In the case of the bearded edge
state, maximum spatial localization is attained at
ky= 0, with a penetration length of 2.2a, larger than
the maximally localized zigzag edge state. At the Dirac

Figure 1.Honeycomb lattice edges. (a)Opticalmicroscope image of the sample containing the three considered types of edges. (b)
Calculated band-structure of an infinite honeycomb lattice in the tight-binding approximationwith nearest- and next-nearest-
neighbor coupling. (c) Calculated band-structure for graphene nanoribbons with bearded (green) and zigzag (red) edges. The
different blue lines correspond to the projection on the ky-E plane of the dispersion of the different transversemodes due to the
confinement in the x-direction. The red and green lines show the edge bands corresponding to zigzag and bearded terminations,
respectively. (d) First and adjacent Brillouin zones showing the regions in k spacewhere the edge states are expected. (e) Simulation of
themomentumdistribution for zigzag and bearded edge states obtained by Fourier transforming along x the calculated spatial
wavefunction of the edge states corresponding to different ky values. Dashed lines show fully delocalized edge states along kx. (f)
Penetration length of the amplitude of the edge states wavefunction according to equation (1).
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points, the penetration length becomes infinite, and
the edge states merge into bulk modes. Note that no
edge state is formed for armchair edges.

To experimentally access the polariton wavefunc-
tions and dispersions we perform low temperature
(10 K) photoluminescence experiments, analogous to
the procedure carried out in [31]. We excite the sam-
ple non-resonantly using a Ti:Sapph monomode laser
at 740 nm, about 100 meV above the lowest band of
the honeycomb lattice. The excitation creates elec-
tron–hole pairs in the quantum wells, which relax
incoherently and, under low power excitation, popu-
late all polaritonic energy bands. We analyze the far-
field emission arising from photons escaping out of
the cavity. Owing to momentum-conservation laws,
each photon is emitted with in-plane momentum
equal to the in-plane momentum of the polariton in
which it originated. Thus, there is a direct correspon-
dence between the angle of emission and the in-plane
momentumof polaritons up to a reciprocal lattice vec-
tor. Each angle of emission corresponds to a point in
the Fourier plane of the collecting lens, a high numer-
ical aperture microscope objective (NA= 0.65), which
is also used for the excitation. By imaging the Fourier
plane on the entrance slit of a spectrometer, we resolve
in energy and in-plane momentum the far-field emis-
sion along the line given by the slit (parallel to ky), for a
given value of kx, which we record on a CCD camera.
By varying the position of the image of the Fourier
plane on the slit, we collect the dispersion for different
values of kx. We are thus able to reconstruct a 3D
matrix whose axis are kx, ky and the emission energy
[41]. The described tomography process is also carried

out for the real-space emission to reconstruct the spa-
tial distribution of the emitted light at a given energy,
and study the localization of the edge state. We select
the linear polarization of the emission using a set of
half-waveplates and linear polarizers.

We study a graphene simulator similar to the one
shown in figure 1(a), containing zigzag edges. The dia-
meter of the pillars (d= 3 μm) and the interpillar dis-
tance (a= 2.4 μm) result in a significant tunneling
strength, t= 250 μeV, in combination with a relatively
narrow linewidth ∼150 μeV. For the excitation, we
focus the laser in a Gaussian spot with a diameter of
3 μm, covering around one pillar. We select the emis-
sion linearly polarized along the y axis, parallel to the
edge. Since the emission arisesmainly from the excited
area, we are able to selectively image the dispersion
from the bulk or the edge. Figure 2(a) shows the
momentum-space emission at the energy of the Dirac
point (zero energy) when exciting the lattice in the
bulk. We observe six isolated bright spots at the Dirac
points, which identify the first Brillouin zone hexagon.
These are the points in which upper and lower bands
meet (figure 1(b)). The triangular shape of the points
is due to the trigonal warping known to be present in
the honeycomb lattice spectrum for non-zero energies
[42], visible here because of the finite linewidth.
Figure 2(b) shows the energy-resolved far-field emis-
sion along line 1, parallel to ky at kx= 1.7·(2π/3a). We
select a line passing through the second Brillouin zone
in order to evidence the upper band, whose emission is
strongly reduced in the first Brillouin zone due to
destructive interference effects [31]. In figure 2(b), we
can identify the upper and lower energy bands

Figure 2. Zigzag edge,momentum-space emission. (a), (d)Measured photoluminescence intensity inmomentum space at the
energy of theDirac points (E0 = 1569.2 meV) under bulk (a) and zigzag edge (d) excitation. (b), (e) Spectrally resolved far-field
emission along line 1 in (a) and (d), passing through the secondBrillouin zone for excitation in the bulk (b) and in the zigzag edge (d).
(c), (f)Measured dispersion along line 2 in (b) and (d), respectively. The black lines show fits to the tight-binding honeycomb
dispersion.
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separated by a gap as expected for the graphene disper-
sion for this value of kx (figure 1(b)). The black curve
in figure 2(b) depicts the dispersion expected from the
tight-binding approximation with t= 250 μeV and
t’= –0.08 t (i.e., –20 μeV). Note that the next-nearest
neighbor coupling is evidenced via the asymmetry of
the bands above and belowE0.

Zigzag edge

Wenow address the situation when the excitation spot
is moved to one of the external pillars forming the
zigzag edge. Figure 2(d) shows the luminescence at the
energy of the Dirac points for this excitation config-
uration. The Dirac cones are now continuously
connected by a bright line in the ky(zigzag) region while
there is a dark region in the middle at the ky(bearded)
region, as expected from figures 1(d), (e). Addition-
ally, along line 3 we observe a spread emission in kx,
indicating a fully localized edge mode. This feature
matches the state marked by a dashed line in the
simulation shown in figure 1(e). The overall emitted
intensity in momentum space is asymmetric since
light is collected at the edge and translational symme-
try is broken. When analyzing the energy-resolved
emission along line 1 (figure 2(e)), two additional
lobes are clearly observed in the gap between the upper
and lower bands. Their location in momentum space
corresponds to that expected for the edge states shown
in figure 1(d) (red lines). The measured full-width-at-

half-maximum of the lobes along the ky-direction in
figure 2(e) is 0.75 ky0, in agreement with the theoretical
prediction for the edge states along the same line in
momentum space extracted from the simulation
shown infigure 1(e), within a 20% error.

The quasi-dispersionless character of the band
associated to the edge states can be evidenced by select-
ing a spectral cut along line 2 in figure 2(d), which
contains the ky(zigzag) region. Figure 2(f) shows a flat
band linking the twoDirac cones. No such state is pre-
sent in the bulk (figure 2(c)), where only the corre-
sponding bulk dispersion is detected. Only the states
with group velocities propagating towards the bulk
(positive slope) emit light, explaining the asymmetry
of figure 2(f). For a clearer comparison with the edge
states band, a fit of the bulk bands is presented in
figures 2(e) and (f) by a black curve. Although our sys-
tem exhibits effects of next-nearest-neighbor tunnel-
ing for the bulk bands, the edge states band stays flat
within the linewidth. Indeed themagnitude of the cur-
vature obtained in the tight-binding calculations
(50 μeV) is small compared to the emission linewidth
(150 μeV). Note that emission from bulk states is also
present infigures 2(e) and (f).

In addition tomomentum-space imaging, our sys-
tem allows evidencing the localization of the edge
states by looking at the real-space emission. For this
purpose, we use a large Gaussian laser spot, 20 μm in
diameter, covering around 30 pillars. In this way, we
are able to excite edge modes on several pillars, and to

Figure 3. Zigzag edge, real-space emission. (a), (c)Measured real-space emission at the energy of the bulk band (a) (energymarked
with a black arrow in figure 2(e)), and at the energy of the edge state (c) (red arrow infigure 2(e)). Dashed lines show the half-
maximum intensity of the excitation laser spot. The lower part of the panels shows an opticalmicroscope image of the edge. (b), (d)
Simulations of emission of a driven-dissipative polaritonic honeycomb lattice coherently pumped at an energy corresponding to bulk
states (b), and at the energy andmomentumof a zigzag edge state (d).
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compare the emission of the edge and bulk states from
a single set of measurements. Figure 3(a) shows the
emitted intensity at the energy of the middle of the
upper bulk band, 0.5 meV above the Dirac points
(black arrow in figure 2(e)). The bulk modes present
the expected honeycomb pattern, with an intensity
distribution following the pump spot. Figure 3(c)
shows the real-space emission at the energy of the edge
state (E0, red arrow in figure 2(e)). In this case, the out-
ermost line of pillars shows a stronger emission, corre-
sponding to the localized edge state.

This interpretation is supported by simulations of
a driven-dissipative model of the honeycomb lattice.
In the simulations, we added to the tight-binding
Hamiltonian a monochromatic resonant pump and
cavity losses of γ= 0.1 t for all lattice sites.We calculate
the steady state with a pumping beam at E0 that covers
the whole sample with an incident momentum

( )( )k k1/ 2 3 , 3/2 ,y0= corresponding to the center

of the segment connecting the Dirac points where the
zigzag edge state is expected. The result is shown in
figure 3(d), revealing the edge state fully localized on
the outermost pillars, as expected from equation (1).
The same simulation at the energy of the bulk bands
shows emission from the whole lattice, as depicted in
figure 3(b).

One of the specific characteristics of polaritons,
different from other photonic simulators like coupled
waveguides or microwave resonators, is their sig-
nificant polarization-dependent properties. The
polarization-dependent penetration of the electro-
magnetic field in the Bragg mirrors forming the cavity
results in a linearly polarized TE-TM splitting whose
magnitude increases quadratically with the in-plane
momentum [43], resulting in the so-called optical
spin-Hall effect [44–46]. Additionally, the polariza-
tion-dependent hopping between coupled micro-
pillars [47] has been shown to give rise to spin–orbit
coupling effects in hexagonal photonic molecules in

the polariton condensation regime [48].When analyz-
ing the spontaneous emission from the bulk of the
honeycomb lattice presented here we observe negli-
gible effects. The reason is that the period of the lattice
is big enough to restrict the first Brillouin zone to small
values of in-plane momenta where the TE-TM split-
ting is expected to be smaller than the measured
linewidth.

Nevertheless, we do observe significant polariza-
tion effects when analyzing the emission from the edge
states. Figure 4(a) reproduces figure 2(e) showing the
energy-resolved far-field emission upon small spot
excitation located at one of the outermost pillars of the
zigzag edge. Here, we select the emission linearly
polarized parallel to the direction of the edge (y), as in
all the results we have presented so far.When selecting
the opposite linear polarization direction, perpendi-
cular the edge, we observe that the edge state is located
at a lower energy ΔE= 160 μeV. Similar polarization
splittings have been reported in 1D polariton micro-
wires [49, 50]. The splitting may arise from the inter-
play between two effects. First, the asymmetric
photonic confinement along and perpendicular to the
edge could induce a linear polarization splitting of the
confined photonic modes. Second, the finite-size
etched structure may give rise to strain crystal fields
resulting in the splitting of the excitonic modes with
polarization directions along and perpendicular to the
strain field. In the considered structure, a strain mis-
match between the x- and y-directions could take
place close to the edge of the honeycomb lattice. Given
the significant value of ΔE, the excitonic origin of the
splitting seems the most likely. Indeed, photonic con-
finement effects are expected to result in polarization
splittings of 5–10 μeV in this kind of structures [48],
much smaller than the linewidth. Note that the strain
field might penetrate a few sites into the lattice, thus
affecting the energy of the bulk bands close to the edge.

Figure 4. Polarization effects.Measured dispersion along line 1 infigure 2(d) when excitation is performed on the zigzag edge. Linear
polarization of detection is parallel (a) and perpendicular (b) to the edge.ΔE indicates the energy splitting between the edgemodes
with opposite linear polarizations.
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This is the origin of the observed redshift of the bulk
bands infigure 4(b)with respect tofigure 4(a).

Bearded edge

Bearded terminations have also been predicted to
exhibit edge states [11]. Experimental investigation of
this type of edge band is not feasible in carbon graphene
where dangling bonds specific to this kind of termina-
tion are chemically unstable. Thus, it has been studied
mostly theoretically and using graphene analogues
[8, 26, 27]. To study the energy-momentum dispersion
of this kind of edge state, we have fabricated a lattice
containing bearded edges, with pillar diameter of
d=2.5 μm, and interpillar distance a=1.76 μm, giving
the same tight-binding tunneling amplitudes as in the
lattice with the zigzag edges. However, the smaller pillar
diameter results in non-radiative losses that give rise to
a larger linewidth (∼350 μeV). Experiments are per-
formed under the same conditions as described pre-
viously, in both real and reciprocal space
configurations. Figure 5(a) shows the momentum
space at the energy of theDirac pointswhen exciting the
bulk of the lattice. Again, we are able to identify the six
Dirac points of the first Brillouin zone with gaps
betweenthem.Theyare lesspronouncedthan infigure2
due to the broader linewidth. The bulk dispersion along
line 1 defined in figure 5(a), containing the ky(bearded)
region, is shown in figure 5(b). The expected shape of
the bands is observed, with crossings at two Dirac
points. When the probe is placed on the edge of the
sample, different patterns are observed. The

momentum-spacemap at theDirac point energy shows
an enhanced emission in the ky(bearded) and equivalent
regions (figure 5(e)), revealing the edge states band. Its
full-width-at-half-maximum along the kx-direction at
ky=0 is 0.50 kx0, with kx0 = 2π/(3a), in excellent
agreement with the prediction in figure 1(e), where this
value is 0.45 kx0. The dispersion along line 1
(figure 5(f)) shows now a flatband connecting the two
Dirac points in the momentum-space region corre-
sponding to ky(bearded). As previously described for the
zigzag edges, the linewidth detain us from observing
non-flatness of the edge band.

To study the spatial location of the state we per-
form measurements and simulations of the real-space
emission under excitation with a large pump spot.
Figure 5(h) shows a simulation of the emitted intensity
when exciting the edge state at ky= 0. The observed
bearded edge state resides on the sublattice corre-
sponding to the bearded ending, and it penetrates sev-
eral lattice sites into the bulk, as expected from
equation (1). In the experiment (figure 5(g)), we
observe bright spots on the outermost pillars of the lat-
tice. This emission is absent at the energy of the bulk
modes (figure 5(c)), and thus it corresponds to the
edge state. The penetration depth is, however, difficult
to estimate experimentally due to the emission from
the bulkmodes at the same energy.

Conclusion

We have used a photonic graphene simulator to
directly visualize the localized states associated with

Figure 5. Bearded edge. (a), (e)Measured photoluminescence intensity inmomentum space at the energy of theDirac points, in the
bulk (a) and on the bearded edge (e). (b), (f) Spectrally resolved far-field emission along line 1 in (a), passing through the regionwhere
edge states are expected, in the bulk (b) and on the bearded edge (f). (c), (g)Measured real-space emission at the energy of the bulk
band (black arrow in (f)), and at the energy of the edge state (red arrow in (f)).E0 = 1578.1 meV.Dashed lines show the half-maximum
intensity of the excitation laser spot. The polarization of detection is parallel to the edge (vertical). (d), (h) Simulations corresponding
to resonant excitation of bulk and edgemodes, respectively.
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the bearded and zigzag types of graphene edges.
Clear identification of the different kinds of edge
states is possible thanks to real-space and far-field
imaging. Although we mainly used the photonic
nature of polaritons in the present experiments in a
honeycomb lattice, their excitonic content offers the
exciting possibility of exploring nonlinear effects
[28]. Virtually unfeasible in natural graphene,
phenomena such as soliton solutions to the non-
linear Dirac equation expected for instance in the
armchair edge [51] can be experimentally
addressed.
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