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FIG. 1. Photoluminescence emission in the far �eld: (a) at
the Dirac points energy at very low pump intensity, (b) energy
dispersion along the white line in (a) at pump power P/Pth

= 0.1, (c) P/Pth = 0.3 and (d) P/Pth = 1.1

CONDENSATION IN THE π∗ BAND:
EXPERIMENTS

In order to prove that the state at which polariton con-
densation takes place is located at the top of the π∗ band,
as reported in Fig. 3, we show here a detailed power de-
pendence of the emission across the condensation thresh-
old. At low power (Fig. 1(b)), below threshold, all the low
energy bands are populated. At the Γ point a brighter
point is observed showing e�cient relaxation towards
that state. When we approach the threshold for con-
densation we observe that particles start to accumulate
at the top of the π∗ band (Fig. 1(c)). Above threshold
it is that particular state the one that becomes macro-
scopically occupied (Fig. 1(d)). Note that the π and π∗

bands continuously blueshift when increasing the exci-
tation power due to the repulsive interactions between
polaritons populating that band and the highly popu-
lated exciton reservoir located at the bare exciton energy
(about 20 meV above in energy).

CONDENSATION IN THE π∗ BAND:
SIMULATIONS

To simulate polariton condensation in the honeycomb
structure we have used a 2D Gross-Pitaevskii equa-
tion with additional terms describing the polariton life-
time, spontaneous polariton scattering (noise), stimu-
lated scattering term (included in the form of a satu-
rated gain, accounting for scattering from the reservoir)
and kinetic energy relaxation that takes the form of an
energy-dependent decay term [1]:
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Here m is the polariton mass, Λ = 3 × 10−3 is the ki-
netic energy relaxation term, α = 3Eba

2
b is the polariton-

polariton interaction constant (Eb = 10 meV is the exci-
ton binding energy and ab = 10 nm is the exciton Bohr
radius), U(r) is the honeycomb lattice potential (height
20 meV), containing an imaginary part accounting for
the shorter lifetime induced by the evanescent part of
the modes outside of the pillars. U(r) eventually gives
rise to the honeycomb dispersion, including the S and P
bands. UR(n) is the potential induced by the reservoir,
which we take to be equal to 1 meV for the considered
injected polariton density n. The reservoir has a Gaus-
sian shape with a width of 45 µm given by the size of
the excitation spot. τ is the polariton lifetime (30 ps),
γ(n) is the saturated stimulated scattering rate from the
reservoir to the condensate, and ξ is the Gaussian noise
term with amplitude 10−3~/2τ .
For this set of parameters the simulations reproduce

condensation at the Γ point on the top of the π∗ band,
as in the experiment. The condensation mechanism in
that negative mass state can be understood as follows.
First, the reservoir of excitons created by the nonresonant
pump creates a repulsive potential for polaritons, which
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FIG. 2. Spatial image of the condensate constructed from
the simulation of the modi�ed 2D Gross-Pitaevskii equation
(Eq.1) with (a) negligible interactions α |Ψ|2 ≪ UR(n) and (b)
signi�cant interactions α |Ψ|2 ∼ UR(n). (c) Fourier transform
of the simulated emission corresponding to (a). (d) Spatial
transverse pro�le passing through the center of the excitation
spot extracted from (a) (black) and (b) (red).

pushes away particles created by spontaneous scattering,
preventing the formation of the condensate in the states
with positive mass. However, the states with negative
mass are on the contrary trapped in this potential, and
serve as a seed for stimulated scattering. A second reason
for the condensation of polaritons on top of the π∗ band
is that the lifetime of anti-symmetric states is in general
longer than that of the symmetric one [2]. This is due to
the fact that the evanescent fraction of the mode outside
the pillars is reduced for these modes due to the presence
of the zeroes of the wavefunction at all junctions between
the pillars, where there is a larger density of non-radiative
centers that contribute to the lifetime reduction. This
aspect favors the Γ point of the π∗ band with respect
to (for example) the Γ points of the non-�at P bands,
which might also have negative mass, or with respect to
the �at band, which possess much shorter lifetimes due
to the location of the wavefunction lobes on the junctions
between the pillars (see Fig. 4(b) of the main text).

Figure 2(a) shows the simulated emission from the con-
densate in the real space and Fig. 2(c) in the reciprocal
space, in the absence of polariton-polariton interactions
(α |Ψ|2 ≪ ~

2τ , UR(n)). The simulation is in quantitative
agreement with the experimental observations (Figs. 3(b)
and (a), respectively), including the absence of emission
from the Γ point in the �rst Brillouin zone due to interfer-
ence e�ects. When varying the poition of the pump spot
with respect to the center of the lattice, a very similar

spatial and momentum space patterns are obtained.
The spatial extension of the condensate coincides with

that of the excitation spot that populates the reser-
voir. When interactions in the condensate become non-
negligible compared to the interactions induced by the
reservoir (α |Ψ|2 ∼ UR(n)) we expect the state to evolve
into a gap soliton bound to the reservoir, as a conse-
quence of the same mechanisms that have allowed its
observation in a 1D periodic lattice for polaritons [3].
The increase of the polariton-polariton interaction term
α |Ψ|2 in the simulation leads to the shrinking of the
spatial extension of the emission (see Fig. 2(b)). Even
the smallest interactions within the condensate bring its
energy up, further into the gap. The modi�cation of
the simulated transverse pro�le of the condensate corre-
sponding to Fig. 2(a, b)) is shown in Fig. 2(d). Limitation
in the highest available excitation density in the experi-
ment prevents us from seeing the expected modi�cation
in the spatial pro�le when the condensate evolves into a
gap soliton.

P BANDS: 2D SCHRÖDINGER EQUATION
SIMULATION

In order to con�rm the phenomenological model used
to describe the results reported in Fig. 4, in which we as-
sume that the tunnelling probability is energy dependent,
we have performed a 2D Schrödinger equation simulation
for polaritons in the low density limit. Since the S and
P bands are located close to the bottom of the lower po-
lariton branch, we use the e�ective mass approximation:
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Here m is the polariton mass, τ = 30 ps is the polari-
ton lifetime, and U is the external potential describing
the etched honeycomb lattice. In our simulation we use
a rectangular sample made out of coupled micropillars
of round geometry and same dimension as in the experi-
ment, arranged in a lattice with 16 by 16 unit cells. The
height of the polariton con�ning potential in the micropil-
lars was taken 20 meV. The last term of the equation sim-
ulates a pulsed probe that will excite the di�erent eigen-
states of the Schrödinger equation, thus allowing their
visualization. P0 is the amplitude of the probe, arriving
at the sample at t0, τ0 = 0.2 ps is the pulse duration,
σ = 0.7 µm the spot size. Using a short pulse and a
small spot allows exciting several bands of the dispersion
at the same time. r0 is the pump location (center of
the sample, which does not correspond to the center of
a particular pillar) and ω is the pump central frequency,
centered 4 meV above the bottom of the lower polariton
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FIG. 3. Simulation of |Ψ(k, E)|2 along the same momentum
space direction as Fig. 4(a) in the main text, based on the
solution of Eq. 2.

branch to mainly excite the P band multiplet. Let us
note that the probe pulse excites di�erent parts of the
dispersion with di�erent e�ciency, depending on their
symmetry.
The Schrödinger equation is then integrated over time

for 100 ps with a spatial grid 512x512 (the size of the grid
is 80×80µm) using a NVIDIA graphic card. The solution

of the equation Ψ(r, t) is then Fourier-transformed over
time and space to obtain the dispersion |Ψ(k, E)|2. The
result is shown in Fig. 3 along the same momentum-space
direction as in Fig. 4(a) of the main text. The simula-
tion is in excellent quantitative agreement with the ex-
perimental observation: the lowest P band is indeed �at,
while the upper band is dispersive. The full 2D model re-
produces this behavior correctly, because it automatically
takes into account the exponential increase with energy
of the tunneling rate of the P states of the individual
pillars, as explained in the main text and illustrated by
the tight-binding model calculations.

∗ Now at IM2NP UMR CNRS 7334 Aix-Marseille Université
[1] E. Wertz, A. Amo, D. D. Solnyshkov, L. Ferrier, T. C. H.

Liew, D. Sanvitto, P. Senellart, I. Sagnes, A. Lemaître,
A. V. Kavokin, G. Malpuech, and J. Bloch, Physical Re-
view Letters 109, 216404 (2012).

[2] I. L. Aleiner, B. L. Altshuler, and Y. G. Rubo, Physical
Review B 85, 121301 (2012).

[3] D. Tanese, H. Flayac, D. Solnyshkov, A. Amo,
A. Lemaître, E. Galopin, R. Braive, P. Senellart, I. Sagnes,
G. Malpuech, and J. Bloch, Nature Communications 4,
1749 (2013).


