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The realization of photonic crystal waveguides with high topological protection enables robust light prop-
agation against defect-induced scattering. It should allow the design of very compact devices by exploiting
guiding through sharp bends with low losses and backreflection. In this work we use valley topological triangular
resonators coupled to an input waveguide to evaluate the conversion between helical topological edge modes with
opposite helicity at sharp bends or routing elements like splitters. To that purpose, we first analyze via numerical
simulations the existence of backward scattering at cavity corners or transmission with helicity conversion at
the splitter between the input waveguide and the cavity. We show evidence that such processes take place, in
particular at sharp corners, which results in transmission minima and split resonances, otherwise nonexistent. In
order to evaluate the small coupling coefficients associated with this effect, a phenomenological model based
on an exact parametrization of scattering matrices at splitters and corners of the resonators is then introduced.
By comparison with the numerical simulations, we are able to quantify the helicity conversion at sharp bends
and splitters. Finally, we use the obtained set of phenomenological parameters to compare the predictions of the
model with full numerical simulations for fractal-inspired cavities based on the Sierpiński triangle construction.
We show that the agreement is overall good but shows more differences for the cavity composed of the smallest
triangles. Our results suggest that even in a system exempt from geometrical and structural defects, helicity
conversion is not negligible at corners, sharp bends, and splitters. However, simpler but predictive calculations
can be realized with a phenomenological approach, allowing simulations of very large devices beyond the reach
of standard numerical methods, which is crucial to the design of photonic devices which gather compactness and
low losses through topological conduction of electromagnetic waves.

DOI: 10.1103/PhysRevA.108.043505

I. INTRODUCTION

Topological photonics has recently become a disrup-
tive paradigm enabling exotic ways to manipulate light
propagation [1–5]. Among the different platforms to im-
plement photonic structures relying on topological effects,
two-dimensional (2D) high-index photonic crystal slabs dis-
play interesting features such as lossless propagation and large
bandwidth, compatible with standard microfabrication tools
[6–12]. An interesting proposal to build a topologically pro-
tected waveguide in a 2D photonic crystal was presented by
Wu and Hu [13]. Essentially, the idea is to design the unit
cell of a honeycomb lattice so that it shows a Dirac cone at
the � point at a given frequency. Then by either shrinking
or expanding the motif inside unit cells, a topological band
gap arises. The interface between two semi-infinite shrunken
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and expanded lattices supports topologically protected modes
showing certain pseudospins for given propagation directions
[13]. Remarkably, when this approach is applied to 2D pho-
tonic crystal slabs, the guided modes are always over the light
line, meaning they are always radiative, a property that has
been used to identify the pseudospin of the guided modes via
far-field measurements [9,10]. The realization of large-scale
photonic integrated circuits requires, however, waveguides
that do not radiate. In photonic crystal slabs, this means that
the guided modes should be below the light line to ensure per-
fect confinement by total internal reflection. The realization of
topological waveguides supporting fully guided modes would
require thus a honeycomb lattice or other geometries showing,
when undeformed, a Dirac point at symmetry points different
from � in the first Brillouin zone. In contrast to the shrunken-
expanded configuration, which mimics the spin Hall effect
for photons, photonic analogs of the valley Hall effect have
been proposed [14,15] and experimentally realized [7,8,16].
Since experimental works use standard silicon technology,
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valley Hall photonic waveguides show a huge potential to
become key elements in silicon photonics. One of the great
advantages over light waveguiding along line defects in trivial
photonic crystals is the ability, due to the topological protec-
tion, to conduct light even along sharp corners, with angles
as large as 120◦ [7,8,17,18]. This would allow for increasing
the compacity and decreasing the footprint of future devices
for information and communication technologies. However,
unlike in other topological photonic systems in which the
time-reversal symmetry is broken (for instance, by applying
an external magnetic field [19,20]), in photonic crystals the
band structure is symmetric with respect to the wave vector in
the propagation direction. This means that for any topological
guided mode having a certain helicity relying on its valley
number and wave vector, there will be an identical state with
opposite helicity. In particular, as the valley Chern number,
obtained by integration of the Berry curvature on half of the
unit cell around K or K ′ points [21], is not a topological
invariant, no bulk-boundary correspondence applies and strict
topological protection does not happen [22,23] (except for a
certain class of perturbations [24]) in those systems: Although
the topology of the system provides certain robustness to the
propagation [7,8], helicity conversion is not prohibited by na-
ture. Recently, several groups have evaluated the topological
protection in valley photonic crystals. Arora et al. [18] made a
direct experimental quantification of that protection by prob-
ing in situ the topological modes along series of sharp bends
of zigzag edges in valley photonics crystals made of triangular
holes. Protection against random structural imperfections is as
well a crucial property, which has been assessed on topologi-
cal slow light propagation numerically by Arregui et al. [25]
and experimentally by Rosiek et al. [26]. We propose here a
quantitative evaluation of the topological protection by eval-
uating the helicity conversion in perfect topological crystals
due to corners and other routing elements like splitters. Such
a study allows assessing the applicability of those concepts
to more complex photonic systems, particularly in the case of
ringlike cavities in which the finesse is highly sensitive to the
geometry of the circuit due to the continuous recirculation of
light.

We analyze via numerical simulations the properties of
valley topological edge modes built in 2D photonic crystals.
In particular, we focus on the helicity conversion at sharp
corners and splitters of triangular resonators coupled to a
linear waveguide [27–30], from either a corner or the middle
of an edge. In such systems, in the absence of absorption,
no resonant features would be expected in the transmission
spectra if strong topological protection was realized: Any
deviation from a flat transmission band can in principle be
traced back to an edge-mode conversion somewhere along
the path of light. We show that, in triangular resonators with
different coupling conditions, transmission spectra present
minima and split resonances essentially due to the coupling
between counterpropagating waves within the cavity, as in
the case of other nontopological traveling-wave resonators
[31]. In order to elucidate and quantify the origin of the
phenomenon, we then introduce a phenomenological model
relying on the description of corners and splitters by scattering
matrices whose exact expressions are derived. The numeri-
cal evaluation of the eight real parameters describing those

matrices allows reproducing very precisely the simulations
and assessing the small frequency-dependent coupling coef-
ficients corresponding to helicity conversions at corners and
splitters. Our results evidence that, even in the case of prop-
agation of light in topological circuits free from geometrical
and structural imperfections, reflection at sharp corners dom-
inates the overall shape of transmission spectra, whose finer
details are attributed to weaker conversion processes at the
splitter. We conclude our study by demonstrating that our
phenomenological model allows predictive and faster numer-
ical simulations of complex circuits, giving the example of
fractal-inspired resonators based on a Sierpiński triangle con-
struction.

II. NUMERICAL APPROACH

Our topological photonic crystal (TPC) [see Fig. 1(a)] is
based on the well-known hexagonal-lattice geometry made
of circular holes with radii r1 and r2, investigated for exam-
ple by He et al. [8] and in other works [28,29]. The study
is restricted to TE (in-plane) polarization. For our bidimen-
sional system, we choose a lattice constant b0 = 385 nm,
an average hole radius r0 = 130 nm, and a refractive in-
dex n = 2.7. Those values allow matching the band gap of
the silicon membrane described in Ref. [8]. Unless specified
otherwise, all numerical simulations have been performed
using the finite-element-method (FEM) software COMSOL

MULTIPHYSICS. When r1 = r2 = r0, the band diagram of the
resulting honeycomb lattice presents Dirac cones at the six
K points at the edge of the first Brillouin zone (FBZ),
close to f0 = 216 THz [Fig. 1(b), black dashed line]. A
band gap is then opened around f0 for r1 �= r2 [Fig. 1(b),
blue solid line], where the sixfold rotational symmetry of
the lattice point group is lowered to threefold due to the
breaking of inversion symmetry. For r1 = 180 nm and r2 =
80 nm, the band gap corresponds to the frequency window
[205.7 THz, 220.7 THz], indicated by the gray area.

The bands surrounding this band gap present a nontrivial
local topology, as expected from the valley Hall effect. This
can be readily seen by computing the Berry curvature of
those bands using a plane-wave expansion method [21] (see
details in Appendix A). Figure 1(c) shows the calculated Berry
curvature for the first band (top diagram) and for the ensemble
of bands 2 and 3 (bottom diagram), which are touching. In
both cases, the Berry curvature is concentrated at the K and
K ′ points. For a given band, it has opposite sign at K and
K ′, as expected for a time-reversal symmetric system, and
at a given K or K ′ point, each set of bands presents Berry
curvatures of opposite sign. This configuration of opposite
signs at opposite K and K ′ points and different bands is
at the origin of the interface topological modes when two
mirror-symmetric photonic crystals are pasted together. This
is confirmed by the nonzero values of valley Chern numbers,
calculated by integrating the Berry curvature around the K and
K ′ points: We obtain ∓0.090 for the first band and ±0.076
for the second and third bands. The computed Chern numbers
are low compared to the usually expected values of ±1/2.
Actually, as mentioned by several authors [8,32], the Chern
number is a half-integer in the limit of weak perturbations,
which corresponds here to small asymmetries of the holes’
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FIG. 1. (a) Geometry of the TPC and representation of the reciprocal space and associated high-symmetry points. (b) Dispersion diagram
of the TPC for equal (black dashed line) or different (blue solid line) radii r1 and r2 of the two holes inside each primitive cell. (c) Berry
curvature (BC) and valley Chern numbers simulated for the disymmetric TPC (r1 = 180 nm and r2 = 80 nm), where the top and bottom
diagrams correspond to the first band and to the degenerated second and third bands, respectively. The sign of the Berry curvature is indicated
next to each corresponding K and K ′ point. (d) Dispersion curves (black solid lines) of the edge modes propagating along the bearded interface
in between two semi-infinite mirror-symmetric TPCs, parallel to the �K direction (the gray hatched background indicates the projected bulk
modes). The inset compares the FBZ of the interface (blue solid line with length 2π/b0) and the FBZ of the infinite TPC. (e) Shown on the
left is a typical unit cell used in the simulation, limited by periodic boundary conditions (PBC) [a perfect conductor (PC)] along the vertical
(horizontal) boundaries of the blue rectangle. Shown on the right is the distribution of the magnetic-field amplitude of the edge mode for a
frequency of 215.6 THz, indicated by the red circles on the dispersion curve.

radii. In order to open an appreciable band gap, r1 must be
significantly different from r2, which leads to an overlap of
the Berry curvatures with opposite signs in each half of the.
FBZ, finally resulting in lower Chern numbers [8].

We show in Fig. 1(d) the dispersion relation of the topo-
logical edge mode propagating along a bearded �K edge, in
between two semi-infinite TPCs with glide mirror symmetry
[in orange (top TPC) and blue (bottom TPC) in Fig. 1(e)]. The
system being now uni-dimensional with period b0, its FBZ is a
segment with length 2π/b0 in the �K direction (see the inset),
fully included inside the FBZ of the TPC. The breakdown of
periodicity in the direction perpendicular to the edge direction
induces a projection of the bulk modes of the infinite TPC onto
the linear FBZ, which correspond to the hatched gray back-
ground, and of K and K ′ points onto the points indicated by
the blue dashed lines. The dispersion curve has been simulated
using a supercell approach, for which a typical rectangular
shape is plotted in Fig. 1(e) on the left. Periodic boundary
conditions have been applied along the vertical edges of the
supercell, while perfect conductors have been used for the two
edges parallel to the interface. The length of the rectangle has

been taken long enough to ensure that the edge mode has a
negligible amplitude along the top and bottom boundaries.
The distribution of the magnetic-field amplitude of the edge
mode for a frequency of 215.6 THz is plotted in Fig. 1(e) on
the right: The field is concentrated at the interface between the
two crystals with a penetration length of about 1.5 unit cells
into the bulk. The dispersion curve of the topological mode
reaches a local minimum at the � point, with a frequency of
about 217.1 THz, lower than the bottom of the bulk band gap.
For that reason, the effective band gap for the topological edge
mode is [205.7 THz, 217.1 THz], underlined in dark gray in
Fig. 1(d). From this simulation, we can extract the evolution
of the wave vector or, equivalently, the effective index of the
topological edge mode with frequency.

III. TRIANGULAR RESONATORS

To investigate the robustness of the topological protec-
tion, we now characterize the properties of triangular edge
mode resonators coupled to waveguides built on �K bearded
edges. Such cavities can be coupled to a waveguide in two
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different ways, either from the edge [Fig. 2(a)] or from the
corner [Fig. 2(b)]. In both situations, the injection of the
topological mode inside the resonator is realized through a
splitter with four branches and labeled by S, while the corners
of a triangular cavity will be denoted by C. As shown in
Figs. 2(a) and 2(b), if no helicity conversion occurs in the
system (which means at S and C points), all topological modes
propagate along each edge with the same helicity and then
in the same direction. As a consequence, the system cannot
reflect waves in the excitation guide, which means that the
reflection coefficient R in power is zero, and through energy
conservation the transmission coefficient T in power is unity.
Even if resonances in amplitude can occur inside the triangu-
lar cavity, they cannot have a signature in the transmission or
the reflection spectra.

The numerical simulations (see Appendix B) of trian-
gular cavities with edge length L ≈ 28b0 are presented in
Figs. 2(c)–2(f). The TPC containing the resonators and the
coupling guide is surrounded by perfectly matched layers
(PMLs), whose role is to absorb the field along the outer
edge of the simulation domain to simulate an infinite system.
The transmission is computed by integrating the Poynting
vector’s flux across a line perpendicular to the output waveg-
uide, whose length is long enough to capture all the power
carried by the transmitted edge mode (see Fig. 10 in Ap-
pendix B). The normalized transmission T is then obtained
after normalization of the transmission by the power flowing
along a straight waveguide without a resonator, computed in
a similar way. Additionally, 1 − R, where R is the normal-
ized reflection, is computed with the same method but by
integration along a line perpendicular to the input waveguide
(see Fig. 10 in Appendix B). The spectra show, in contrast
to the previous analysis, narrow transmission dips regularly
separated in frequency, for both edge- and corner-addressed
resonators, however with different profiles and frequencies.
The simulation domain is taken large enough to minimize
the coupling of evanescent fields emanating from the struc-
tures (for example, corners) with PMLs: We can then verify
numerically that T ≈ 1 − R, as black solid (T ) and green
dashed (1 − R) curves overlap in the band gap. In order to
fully explain the transmission and reflection spectra, we need
to suppose the existence of processes of helicity conversion
in the system. For that reason, the topological edge mode can
travel in the directions corresponding to the same helicity as
for the excitation mode [blue arrows in Figs. 2(d) and 2(f)] or
the opposite helicity indicated by the red arrows. Conversions
can originate from the splitter or the triangle corners.

Both spectra present split resonances with low transmis-
sion (T ≈ 0, two and four for the edge- and corner-addressed
resonators inside the effective gap, respectively) and profiles
characterized by a quasiunity transmission (T ≈ 1, three and
one, respectively) in between two transmission minima above
0.5 in power, called antiresonances below. Split resonances
can be related to mode splitting arising from backscatter-
ing in standard ring resonators [31,33]. Typical distributions
of the magnetic-field amplitude are presented in Figs. 2(d)
and 2(f) for split resonances and antiresonances. For both
transmission minima of the split resonance at F ≈ 209 THz
(edge-addressed cavity), a clear interference pattern is ob-
tained inside the cavity and in the excitation guide. The

FIG. 2. Representations of (a) an edge-addressed and (b) a
corner-addressed topological triangular cavity. Blue (dark gray) ar-
rows indicate the helicity of the input edge mode. (c) Comparison
between T (normalized transmission, black solid line) and 1 − R
[green (gray) dashed line, where R is the normalized reflection]
spectra obtained from numerical simulations for the edge-addressed
cavity. (d) Shown on the left is a schematic indicating with red
(lighter gray) arrows the edge modes with helicity opposite to
the input edge mode. Shown on the right are distributions of the
magnetic-field amplitude for frequencies indicated by a colored ar-
row [and labeled (i)–(iii)] in (c). For F = 211.42 THz, the maximum
value is three times larger than for the two first frequencies. (e) and
(f) Same as in (c) and (d) but for the corner-addressed cavity.
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difference between both distributions is visible along the bi-
sector plane crossing each corner: Along those planes, the
magnetic field is maximum or minimum for the lowest and
highest frequencies, respectively. The frequency difference is
about 160 GHz and the full width at half maximum (FWHM)
is 100 and 50 GHz, corresponding to quality factors of
Q = 2090 and 4180, respectively. At the antiresonance (F ≈
211 THz, blue arrow), the transmission is close to unity and
no interference pattern is observed accordingly in the coupling
waveguide, but a small intensity modulation is visible along
the triangular cavity. Notice that the color scale is the same
for all distributions, except for the antiresonances where the
maximum value of the magnetic-field amplitude is three times
higher. Similar observations can be made on the field distribu-
tions of the corner-addressed cavity [see Fig. 2(f)]: The shape
of the input waveguide does not modify the field distribution at
the split resonances or antiresonances, despite their frequency
shift compared to the corner-addressed cavity.

If the occurrence of transmission split resonances and
antiresonances is a signature of a conversion between edge
modes with opposite helicities, it is difficult from the numeri-
cal simulation to quantify this phenomenon and find its origin.
To this purpose, we propose in the next section a phenomeno-
logical approach where both the splitter and triangle corners
are described by a scattering matrix, allowing a simplified
description of the systems.

IV. PHENOMENOLOGICAL MODEL

Our phenomenological model of the triangular resonators
relies on the description of the splitter S and corners C by a
scattering matrix, which expresses a linear relation between
outgoing waves with amplitudes A−, B−,C−, . . . and incom-
ing waves with amplitudes A+, B+,C+, . . . (see Fig. 3). The
matrix elements can be partly extracted from numerical sim-
ulations. The topological nature of those modes implies that
several of those elements are expected to be zero or much
smaller than unity. The details of the calculations are given
in Appendix C, but we outline the main results below.

A simple corner, in the most general situation, behaves like
a coupler between the two incident edge modes described by
the complex vector X+ = [A+, B+]T with the corresponding
transmitted and backscattered modes X− = [A−, B−]T [see
Fig. 3(a)]. The shape of the scattering matrix, defined by the
relation X− = MCX+, is constrained by energy conservation,
which implies that MC is unitary, and time-reversal symmetry,
which, combined with unitarity, implies that t1 = t2. Finally,
MC has the following general form:

MC =
[

t1 r1

r2 t2

]
= eiτ

[
cos σ i sin σ

i sin σ cos σ

]
.

The phase τ and angle σ can take arbitrary values. For con-
venience, we note in the following that a = t1 = t2 and b =
r1 = r2.

FIG. 3. Definition of the coupling coefficients and edge-mode
amplitudes as employed in the scattering-matrix phenomenologi-
cal model. (a) For the corner, input (A+, B+) and output (A−, B−)
amplitudes are defined in the left panel. Scattering coefficients r1,2

and t1,2 are defined in the middle and right panels, respectively for
excitation in the A+ direction (B+ = 0) and in the B+ direction
(A+ = 0). (b) For the splitter, the input amplitudes are labeled A+,
B+, C+, and D+ while the output amplitudes are labeled A−, B−, C−,
and D− (left panel). Similarly to the corner, the four other panels
allow defining the four scattering coefficients r1,2,3,4, t1,2,3,4, ε1,2,3,4,
and ε ′

1,2,3,4 related to each direction of the input wave. The blue
(light gray) lines indicate the directions conserving the helicity of the
excitation, while the red (dark gray) lines correspond to the helicity
conversion.

Concerning the splitter, four outputs X+ =
[A+, B+,C+, D+]T are now connected via the scattering
matrix MS to four inputs X− = [A−, B−,C−, D−]T [see
Fig. 3(b)], with a priori 16 complex coefficients defined in
the figures. However, the symmetry of the system implies
that α1 = α2 and α3 = α4, where α = r, t, ε, ε′, and we
will note that t1 = t2 = t , t3 = t4 = t ′, ε′

1 = ε′
2 = ε′, and

ε′
3 = ε′

4 = ε′′. Energy conservation implies the unitarity of
MS , and time-reversal symmetry allows showing that all the
ri and εi coefficients are equal. Finally, additional symmetry
considerations on the geometry of the splitter lead to the

043505-5



GAËTAN LÉVÊQUE et al. PHYSICAL REVIEW A 108, 043505 (2023)

parametrization of MS ,

MS =

⎡
⎢⎢⎢⎢⎣

r ε ε′′ t ′

ε r t ′ ε′′

ε′ t r ε

t ε′ ε r

⎤
⎥⎥⎥⎥⎦

= eiα

2

⎡
⎢⎢⎢⎢⎣

cφeiρ + cφ′e−iρ cφeiρ − cφ′e−iρ i(sφe−iδ − sφ′eiδ )e−iβ i(sφe−iδ + sφ′eiδ )e−iβ

cφeiρ − cφ′e−iρ cφeiρ + cφ′e−iρ i(sφe−iδ + sφ′eiδ )e−iβ i(sφe−iδ − sφ′eiδ )e−iβ

i(sφe−iγ − sφ′eiγ )eiβ i(sφe−iγ + sφ′eiγ )eiβ cφeiρ + cφ′e−iρ cφeiρ − cφ′e−iρ

i(sφe−iγ + sφ′eiγ )eiβ i(sφe−iγ − sφ′eiγ )eiβ cφeiρ − cφ′e−iρ cφeiρ + cφ′e−iρ

⎤
⎥⎥⎥⎥⎦, (1)

with the additional constraint γ + δ + 2ρ = 0 and the def-
initions cx = cos x and sx = sin x. The MS matrix is then
parameterized by six free parameters: The two angles φ and
φ′ and the four phases α, β, γ , and δ.

We now need to numerically evaluate eight real parame-
ters: Two for MC and six for MS . To that purpose, reference
points have to be defined in order to evaluate the phases of
the matrices coefficients. Concerning the corner, the refer-
ence is taken as the intersection of the average lines of the
bearded edges, as shown in Fig. 4(a). The transmission, a =
exp(iτ ) cos σ , and reflection, b = i exp(iτ ) sin σ , coefficients
have been numerically evaluated simulating the propagation
of the edge mode along a single corner, whose magnetic-field
amplitude distribution is shown in Fig. 4(b). The phase φa = τ

of the transmission coefficient a is obtained by comparing the
phase of the transmitted mode to the phase of a mode prop-
agating along a straight waveguide (see Appendix D). The
numerical phase and a second-order polynomial fit are plotted
in Fig. 4(c). The amplitude |b| of the reflection coefficient is
directly given by the contrast of the interference pattern in the
injection guide, which is observable, despite being weak, on

FIG. 4. (a) Transmission (a) and reflection (b) coefficients on a
corner. (b) Distribution of the magnetic-field amplitude at F = 212
THz. (c) Transmission phase φa normalized to π computed from
numerical simulations. (d) Contrast of the interference pattern along
the vertical input edge in (a) (black solid line) and average contrast
[olive (gray) line].

the magnetic-field distribution of Fig. 4(b). Figure 4(d) shows
the contrast as a function of the frequency, which presents a
noticeable oscillation due to the interference with the wave
which is slightly backscattered on the PML. However, we
can obtain a correct approximation of |b| by evaluating the
average contrast, on the order of 8–9 % in amplitude. As
φb = φa + π/2 and |a| =

√
1 − |b|2, the matrix MC is fully

determined, within the simulation uncertainties.
For the splitter, we have evaluated both the amplitudes and

phases of the reflection (r) and transmission (t and t ′) coef-
ficients defined in the phenomenological model [see Eq. (1)].
As indicated in Fig. 5(a), the four-branch splitter can be ad-
dressed either from one of the oblique branches (left panel)
or from one of the vertical (right panel) branches. Following
the definition of the coupling coefficients and taking the ex-
ample of the oblique excitation, the wave can be transmitted
with a coefficient t ′ to the second oblique branch (called
the transmission branch), reflected with a coefficient r into
a topological mode with the same helicity propagating along
the downward vertical branch (reflection branch), coupled to
a mode with opposite helicity with a coefficient ε propagat-
ing along the upward vertical branch (forbidden branch), or
backscattered into the mode with opposite helicity into the
excitation branch with coefficient ε′′. Similarly in the second
case and with equivalent denomination, the wave coming from
a vertical branch can be coupled to the transmission branch
t , the reflection branch (downward oblique branch r), the
forbidden branch (upward branch ε), or backscattered (ε′). As
shown above, the coefficients r and ε must be the same in
both cases (excitation from a vertical or an oblique branch),
but the transmission and backscattering coefficients can be
different. The evolutions with frequency of the squared modu-
lus of the transmission, reflection, and forbidden transmission
coefficients are plotted in Fig. 5(b), with solid lines for the
vertical excitation and with colored pluses for the oblique
excitation. First, we can verify that the transmission and the
reflection coefficients have nearly equal values in both con-
figurations. Second, it appears clearly that the coefficient ε

is weak (see the green solid line). For this reason, it cannot
be evaluated by this method because the average value, be-
low 1% in intensity, could be related to the reflection of the
transmitted and reflected waves on the PMLs surrounding the
simulation domain. As a consequence, |ε|2 can have any value
between 0% and about 1%. As numerically |t |2 + |r|2 ≈ 1,
ε′ and ε′′ are confirmed to be, as ε, much smaller than 1.
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FIG. 5. (a) Geometry of the splitter and coupling coefficients
when addressed from an oblique (left) or a vertical (right) branch.
(b) Evolution of the intensity of the waves propagating along each
branch of the splitter. Solid lines (pluses) correspond to the illumi-
nation along the vertical (oblique) branch. The distribution of the
magnetic-field amplitude is plotted for (c) oblique and (d) vertical
incidence. (e) Transmission and reflection coefficients across the
splitter for vertical (t, r) and oblique (t ′, r′) incidence. (f) Phases of
the different coefficients across the splitter.

In that case, as the coefficient r is supposed to be the same
in oblique or vertical excitation, energy conservation implies
that |t | ≈ |t ′|, which is correctly reproduced by the numerical
simulation. This tends to show that topological protection is

quite robust at the splitter. The dashed line is a second-order
fit of |r|2, which varies between 84% and 76%. The distribu-
tion of the magnetic-field amplitude is plotted in Figs. 5(c)
and 5(d) for oblique and vertical excitation, respectively, at
a frequency of 212 THz. We can visually verify the equality
of the transmission and reflection coefficients. A very faint
field can be distinguished along the forbidden channel, which
may be again attributed to weak reflection of the transmitted
and reflected fields on PMLs. As a conclusion, it is reasonable
to consider as a first approximation that the routing of edge
modes through the splitter preserves helicity: An incident
topological mode can be coupled to either the transmission
channel (with coefficients t of t ′) or the reflection channel
(with coefficient r) but not to the forbidden channel (ε = 0);
nor can it be backreflected (ε′ = ε′′ = 0). Those results agree
well with those obtained by Ma et al. [17] for a similar splitter
but with triangular holes. In Eq. (1) it appears that conserva-
tion of helicity corresponds to φ = φ′ and γ = δ = 0, which
we suppose in the next paragraph.

In order to evaluate the phases of t , t ′, and r, reference
points have been defined as indicated in Fig. 5(e): The phase
will be for each coefficient the phase difference of the topo-
logical mode between two points linked by the corresponding
arrow. Figure 5(f) shows the frequency evolution of the four
phases φt , φt ′ , φr , and φr′ , normalized to π , corresponding
to coefficients t , t ′, r, and r′. We can first verify numerically
that, as predicted by energy conservation and time-inversion
symmetry, φr = φr′ and finally r = r′. The second point is
that the phase φt for the transmission coefficient along the
straight edge of the connection is equal, within the numerical
uncertainties, to the propagation phase of the wave along the
distance 3b0/2 between the two reference points of t . No
additional phase is introduced by the presence of the nearby
oblique edges. Next the three phases φt , φt ′ , and φr are related
to α and β (γ = ρ = 0) through

α + β + π/2 = φt ,

α − β + π/2 = φt ′ ,

α = φr,

which leads to π [2π ] = 2φr − φt − φt ′ . We can see in
Fig. 4(f) that this relation is very well verified numerically.
As we suppose for now that the splitter preserves helicity, the
three remaining coefficients ε, ε′, and ε′′ are zero.

V. COMPARISON WITH FEM SIMULATIONS

The semianalytical modelization of the triangular res-
onators is realized using a coupled-wave approach, whose
details are given in Appendix E. The principle is summarized
in Fig. 14, which shows how C and S points are connected
through segments of different lengths. Due to the choice of
reference points for the splitter, the lengths of the different
triangle edges are slightly different (L0 = 28.5b0, L1 = 27b0,
and L2 = 13.5b0). The method relies on the evaluation of a
coupling matrix C, which describes how the output fields rely
on the input fields through the scattering matrices MC and MS ,
and the phase matrix P, which gathers the phase accumulation
of the topological mode along each edge of the resonators.
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FIG. 6. Comparison between the transmission spectra obtained
from finite-element simulations and the phenomenological model
for (a), (c), and (e), corner-addressed and (b), (d), and (f), edge-
addressed cavities. The splitter is supposed to either (c) and
(d) perfectly conserve or (e) and (f) not conserve edge-mode helicity.

After numerical resolution of Eq. (E1) in Appendix E, the am-
plitudes of the reflected and transmitted fields are retrieved.

The transmission spectra can be computed for triangular
resonators addressed from either the corner or the edge. For
the resonators of Fig. 2, the spectra obtained by FEM sim-
ulations [Figs. 6(a) and 6(b)] compare very well with the
phenomenological model (bottom red lines) even if the splitter
is supposed to perfectly preserve helicity [Figs. 6(c) and 6(d)].
Note that a slight adjustment of the edge mode wave vector
(by 0.06%) has been realized to have slightly better agreement
of the resonance frequencies. The frequencies and alternation
of the split resonances (T = 0) and antiresonances (T = 1)
are well reproduced for both corner- or edge-addressed res-
onators, and the FWHM are comparable. The main difference
is the profiles close to the antiresonances, which are barely
visible in Figs. 6(c) and 6(d) but are much more pronounced
in the numerical simulation, with a strong asymmetry. This
fact then has to be related to helicity conversion at the splitter.
Despite the fact that the parameter space of the system is large,
with eight free real parameters, it is possible to adjust the
remaining small coefficients (ε, ε′, and ε′′) by fitting each res-
onance profile in a narrow frequency region around them. This
method allows reaching much better agreement, as shown in
Figs. 6(e) and 6(f). Indeed, all the missing features are now
recovered, concerning asymmetry of the split resonances and

FIG. 7. Frequency evolution of the coefficient amplitudes asso-
ciated with MC and MS after optimization.

the exact profile of the antiresonances. Figure 7 shows the
estimated frequency evolution of the squared amplitude of
the eight coefficients corresponding to the corner and splitter
scattering matrices. As supposed, the largest coefficient at the
origin of the helicity conversion is b, the reflection on a corner,
but the coefficients ε, ε′, and ε′′ are finally comparable. For ex-
ample, at F = 212 GHz, we have |a|2 = 0.99 and |b|2 = 0.01
for the corner and |t |2 = 0.784, |t ′|2 = 0.783, |r|2 = 0.209,
|ε|2 = 5. 10−3, |ε′|2 = 1.3 10−3, and |ε′′|2 = 2.2 10−3 for the
splitter. Hence, the helicity conversion is evaluated to be more
than two times higher in power at the sharp corners of the
triangular resonator (backscattering) than through the splitter
(backscattering and forbidden transmission).

As a last study we propose to assess the robustness of
the phenomenological approach by comparisons with full nu-
merical simulations of larger and more complex resonators.
They consist in three fractal-inspired structures based on
the Sierpiński triangle construction, presented in Fig. 8. The
first structure [Fig. 8(a)] is simply a corner-addressed trian-
gle whose edges have a length of 51 periods. The second
[Fig. 8(b)] is the first iteration of the Sierpiński construc-
tion and is composed of four triangles with an edge length
of 26 periods. The last resonator [Fig. 8(c)] is the second
iteration and is an assembly of one triangle with 26-period-
long edges and 12 triangles with 13-period-long edges. The
semianalytical simulation is performed in a similar way as
explained at the beginning of this section and following the
methodology detailed in Appendix E. The size of the prob-
lem is however larger, and the dimension of the coupling C
and phase P matrices reaches 20 × 20 for the first iteration
and 56 × 56 for the second. The transmission spectrum of
the simple triangle has the same general shape as for the
resonator previously discussed and shows a similar regular
alternation of split resonances and antiresonances, however
separated by a smaller frequency interval as the cavity is
larger. The comparison between the finite-element simulation
[Fig. 8(d)] and the phenomenological model [Fig. 8(g)] again
shows very good agreement. For the second structure, more
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FIG. 8. (a)–(c) Comparison between the full numerical simulation and the phenomenological model for the first three iterations of the
Sierpiński triangle construction. (d)–(f) Corresponding transmission spectra computed with the finite-element method. (g)–(i) Transmission
spectra calculated with the phenomenological model.

interference paths are possible in the resonator: The simulated
transmission spectrum is richer and does not present the same
regular pattern obtained for the simple triangle [Fig. 8(e)].
However, the agreement with the phenomenological model
is still good [Fig. 8(h)]: Single and split resonances are re-
covered at the same frequencies, but small differences in
amplitude are observed for shallower resonances, close to
209, 210, 213, and 217 THz. The phenomenological model
starts to differ more significantly from the numerical simu-
lations for the second iteration. The numerical transmission
[Fig. 8(f)] presents consistently more resonances, single or
split in two or more peaks. It appears that the number, po-
sitions, and amplitudes of those resonances do not coincide
as correctly with the phenomenological model, even if some
similarities are observed, for example, in term of the density
of resonances as a function of the frequency [Fig. 8(i)]. Two
main explanations can be proposed. First, as the interference
paths are more complex, small errors in the estimations of
the matrix coefficients have more significant impact on the
transmission. Second, as the edges are shorter, we can expect
that the model becomes less valid, as the edge mode, which
has a lateral extent, can directly tunnel laterally to adjacent
edges across the lattice. An example of the field distribution
is shown in Fig. 9 for the resonance at F = 214.61 GHz.
Despite those limits, our results are encouraging and show
that such a phenomenological approach can be employed to

predict, with low computer resources, the propagation of the
electromagnetic signal along a complex and extended topo-
logical circuit.

FIG. 9. Distribution of the amplitude of the magnetic field at a
resonance of the resonator corresponding to the second iteration of
the Sierpiński triangle construction.
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VI. CONCLUSION

In this work we have investigated, using a full numerical
approach based on the finite-element method and a phe-
nomenological model relying on an exact parametrization
of scattering matrices at splitters and corners, the processes
of helicity conversion evidenced by the resonance proper-
ties of valley topological triangular resonators. In resonators,
ideal perfectly robust topological protection would imply a
flat transmission band; then any resonance feature must re-
sult from a backscattering or forbidden transmission between
waves with opposite helicity occurring at particular points
of the system (corners, splitters, etc.). In our system, we
have demonstrated that the split resonances, together with
antiresonances, must be mainly attributed to backscattering at
corners of the triangular cavity with a lower but comparable
contribution of the splitter. Quantitatively, for the valley topo-
logical crystal considered, the amount of power backscattered
at corners is about 1% of the incident edge mode, while the
backscattering and forbidden transmission at the splitter is
lower than 0.5%. We have demonstrated, by simulations of
fractal-inspired larger resonators, that our phenomenological
approach can be employed for fast and reliable predictive
simulations of larger and more complex topological systems,
if however the lengths of the edges composing the circuit are
not too short (larger than 13 periods in our study) in order
to avoid unwanted tunneling between close edges through the
photonic lattice. We believe that the proposed methodology
can be applied to different geometries of topological photonic
devices in order to evaluate the robustness of the topological
protection depending on the shape (triangular vs circular) of
air holes, edges (bearded or zigzag holes), or configuration of
splitters (four or six branches) and corners, which is a crucial
point in order to design photonic devices which gather com-
pactness and low losses made possible through topological
conduction of electromagnetic waves.
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APPENDIX A: BERRY CURVATURE SIMULATIONS

In order to evaluate the Berry phase, the first Brillouin zone
is discretized into a 70 × 70 grid matching the FBZ geometry
(not shown here). With MATLAB, due to the plane-wave ex-
pansion method, the periodic part of the Hz field component is
evaluated over each vertex of the grid. The Berry curvature is
reconstructed by computing the accumulated phase around the
closed loop made of consecutive points of the discretized grid
(see Ref. [21] for more details). Since the first band is isolated
from all other bands, its Berry curvature can be computed
on its own [Fig. 1(c), top]. Next, by integrating the Berry
curvature inside the triangle delimited by points �, �′, and
�′′, on the one hand, and points �, �′′, and �′′′, on the other
hand, one can recover the valley Chern numbers associated

FIG. 10. COMSOL configuration.

with the first band, i.e., −0.090 and +0.090. However, bands
2 and 3 are degenerated, i.e., they share identical frequencies
at the same location [Fig. 1(c), bottom]. They are however iso-
lated from all other bands. The Berry curvature must then be
computed as a whole for those two bands. This is performed
following the non-Abelian Berry connection generalization
[21,34], resulting in valley Chern numbers of +0.076 and
−0.076.

APPENDIX B: COMSOL SIMULATIONS

Numerical simulations were realized using the finite-
element software COMSOL MULTIPHYSICS. A typical setup is
presented in Fig. 10. The simulation domain, in light gray,
comprises the resonator together with the input and output
waveguides, emphasized with red lines. Note that the topolog-
ical photonic crystal extends within the PMLs surrounding the
physical domain; this configuration has been tested and cho-
sen because it leads to weak backreflection. Perfectly matched
layers have been set to Cartesian, except for the two tilted ones
where the direction of attenuation has to be set by hand. The
source is a rotating dipole localized at the center of one of the
large holes of the topological waveguide. The transmission
is evaluated by integrating the Poynting vector flow across
the red line perpendicular to the output waveguide, whose
length is long enough to capture all the power carried by
the transmitted edge mode. The normalized transmission T
is then obtained after normalization of the transmission by the
power flowing along a straight waveguide without a resonator,
computed in a similar way. Additionally, 1 − R, where R is the
normalized reflection, is computed with the same method but
by integration along the red line perpendicular to the input
waveguide.
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FIG. 11. Definition of the wave amplitudes and coupling coeffi-
cients for a corner.

APPENDIX C: SEMIANALYTICAL MODEL
OF COUPLING MATRICES

We derive in this Appendix the analytical expressions of
the scattering matrices between incoming and outgoing topo-
logical edge modes at either the corner of the linear waveguide
(two inputs and two outputs) or a splitter (four inputs and four
outputs). The calculation is based on energy conservation,
time-reversal invariance, and mirror symmetry of the configu-
ration.

1. Scattering matrix of a corner

A simple corner, in the most general situation, behaves like
a coupler between one of the two incident edge modes A+ and
B+ with the corresponding transmitted and reflected modes
A− and B− (see Fig. 11). The process is linear and obeys the
following relation:[

A−

B−

]
= MC

[
A+

B+

]
=

[
t1 r2

r1 t2

][
A+

B+

]
.

Energy conservation implies that

|A−|2 + |B−|2 = |A+|2 + |B+|2, ∀ A+, B+.

The matrix MC is then unitary:

M†
CMC = 1.

Additionally, time-reversal symmetry implies that

[
B+
A+

]∗
= MC

[
B−

A−

]∗
⇔ SC

[
A+

B+

]∗

= MCSC

[
A−

B−

]∗
with SC =

[
0 1

1 0

]
,

which, combined with unitarity, implies MC = SCMT
C SC , and

t1 = t2:

MC =
[

t r1

r2 t

]
.

The unitarity condition imposes

|r1|2 + |t |2 = 1, (C1a)

|r2|2 + |t |2 = 1, (C1b)

r1t∗ + tr∗
2 = 0. (C1c)

Equations (C1a) and (C1b) impose |r1| = |r2| = R. Let us
write t = T exp(iτ ), r1 = R exp(iρ1), and r2 = R exp(iρ2).

We have R2 + T 2 = 1 and

RT (ei(ρ1−τ ) + ei(τ−ρ2 ) ) = 0 
⇒ ρ1 − τ

= τ − ρ2 + π + m2π, m ∈ Z

or

ρ1 − τ − π/2 + ρ2 − τ − π/2 + m2π = 0.

Writing

r1 = R exp[i(ρ1 − τ − π/2 + τ + π/2)],

r2 = R exp[i(ρ2 − τ − π/2 + τ + π/2)]

= R exp{i[−(ρ1 − τ − π/2) + τ + π/2]},
we pose ρ = ρ1 − τ − π/2 and we obtain r1 = iR exp[i(ρ +
τ )] and r2 = iR exp[i(−ρ + τ )]. Finally, the MC matrix reads

MC = eiτ

[
cos σ i sin σeiρ

i sin σe−iρ cos σ

]
, (C2)

where we have introduced the angle σ such that T = cos σ

and R = sin σ . We end up with three degrees of freedom. Note
that the eigenvalues of MC are λ± = exp[i(τ ± σ )].

Assuming symmetry of the junction, we can as well impose
r1 = r2 ⇒ ρ = 0, and, with σ ∈ [0, π ] such as R = sin σ and
T = cos σ ,

MC = eiτ

[
cos σ i sin σ

i sin σ cos σ

]
.

For perfect topological protection, σ = 0 and MC is diagonal.

2. Scattering matrix of a splitter

Let us consider now the splitter. Following Fig. 12, four
outputs X+ = [A+, B+,C+, D+]T are now connected to four
inputs X− = [A−, B−,C−, D−]T . We must then extend the
2 × 2 to a 4 × 4 matrix with the following shape:

X− = MSX+ ⇔

⎡
⎢⎢⎢⎢⎣

A−

B−

C−

D−

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

r1 ε2 ε′
3 t4

ε1 r2 t3 ε′
4

ε′
1 t2 r3 ε4

t1 ε′
2 ε3 r4

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

A+

B+

C+

D+

⎤
⎥⎥⎥⎥⎦.

The mirror-symmetry of the corner, with respect to the
dashed line in Fig. 12, leads to α1 = α2 and α3 = α4, where
α = r, t, ε, ε′. Additionally, time-reversal symmetry imposes⎡

⎢⎢⎢⎢⎣
C+

D+

A+

B+

⎤
⎥⎥⎥⎥⎦

∗

= MS

⎡
⎢⎢⎢⎢⎣

C−

D−

A−

B−

⎤
⎥⎥⎥⎥⎦

∗

⇔ SS (X+)∗ = MSSS (X−)∗,

SS =

⎡
⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎤
⎥⎥⎥⎥⎦.

Combined with the unitarity of MS , the last relation leads to

MS = SSMT
S SS.
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FIG. 12. Definition of the wave amplitudes and coupling coefficients for a splitter.

By comparison of both members of that equation, we finally
see that r1 = r2 = r3 = r4 and ε1 = ε2 = ε3 = ε4. The matrix
MS can then be expressed in the following form:

MS =

⎡
⎢⎢⎢⎢⎣

r ε ε′′ t ′

ε r t ′ ε′′

ε′ t r ε

t ε′ ε r

⎤
⎥⎥⎥⎥⎦.

As MS is unitary, it has four eigenvalues with unit mod-
ulus. We can exploit this property in order to find the full
parametrization of the matrix. For that, we notice that the
eigenvectors must be either symmetric or antisymmetric with
respect to the line of symmetry of the splitter (dotted line in
Fig. 12).

A set of symmetric vectors is A1 = [1, 1, 0, 0]T and A2 =
[0, 0, 1, 1]T , in which basis the matrix MS reduces to

MA
S =

[
r + ε t ′ + ε′′

t + ε′ r + ε

]
.

As this matrix is unitary, it has the form given by Eq. (C2) and

r + ε = cos φeiα, t ′ + ε′′ = i sin φei(α+β ),

t + ε′ = i sin φei(α−β ).

Similarly, a set of antisymmetric vectors is B1 =
[1,−1, 0, 0]T and B2 = [0, 0,−1, 1]T , in which basis the
matrix MS reduces to

MB
S =

[
r − ε t ′ − ε′′

t − ε′ r − ε

]
,

which leads to

r − ε = cos φ′eiα′
, t ′ − ε′′ = i sin φ′ei(α′+β ′ ),

t − ε′ = i sin φ′ei(α′−β ′ ).

Finally, we obtain

r = 1

2
(cφeiα + cφ′eiα′

), ε = 1

2
(cφeiα − cφ′eiα′

),

t ′ = i

2
(sφei(α+β ) + sφ′ei(α′+β ′ ) ),

ε′′ = i

2
(sφei(α+β ) − sφ′ei(α′+β ′ ) ),

t = i

2
(sφei(α−β ) + sφ′ei(α′−β ′ ) ),

ε′ = i

2
(sφei(α−β ) − sφ′ei(α′−β ′ ) ),

with cφ = cos φ, cφ′ = cos φ′, sφ = sin φ, and sφ′ = sin φ′.
After some change of notation, we obtain

MS = eiα

2

⎡
⎢⎢⎢⎢⎣

cφeiρ + cφ′e−iρ cφeiρ − cφ′e−iρ i(sφe−iδ − sφ′eiδ )e−iβ i(sφe−iδ + sφ′eiδ )e−iβ

cφeiρ − cφ′e−iρ cφeiρ + cφ′e−iρ i(sφe−iδ + sφ′eiδ )e−iβ i(sφe−iδ − sφ′eiδ )e−iβ

i(sφe−iγ − sφ′eiγ )eiβ i(sφe−iγ + sφ′eiγ )eiβ cφeiρ + cφ′e−iρ cφeiρ − cφ′e−iρ

i(sφe−iγ + sφ′eiγ )eiβ i(sφe−iγ − sφ′eiγ )eiβ cφeiρ − cφ′e−iρ cφeiρ + cφ′e−iρ

⎤
⎥⎥⎥⎥⎦, (C3)

with ρ = −(γ + δ)/2. There are then six degrees of freedom.
If the topological protection is perfect (ε = ε′ = ε′′ = 0),

we have φ′ = φ and γ = δ = ρ = 0, which gives

M0
S = eiα

⎡
⎢⎢⎢⎢⎣

cos φ 0 0 i sin φe−iβ

0 cos φ i sin φe−iβ 0

0 i sin φeiβ cos φ 0

i sin φeiβ 0 0 cos φ

⎤
⎥⎥⎥⎥⎦.

Finally, starting from the expressions of MA
S and

MB
S , we show easily that the four eigenvalues of MS

are

λ±
A = ei(α+ρ±φ),

λ±
B = ei(α+ρ±φ′ ).

APPENDIX D: ESTIMATION OF THE CORNER
a AND b COEFFICIENTS

The transmission (b) and reflection (a) coefficients of a
single corner have been estimated by comparing the com-
ponent Hz of the magnetic field computed along either a
straight [solid line in Fig. 13(a), left] or a curved [solid line
in Fig. 13(a), right] topological edge, both lines starting just
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FIG. 13. (a) Straight (left) and curved (right) edges along which the z component of the magnetic field has been computed. (b) Real part of
Hz along the straight (black solid line) or curved (red dashed line) path, as a function of the curvilinear position s measured from the position
of the source (red dot). (c) Same as in (b) but for the amplitude of Hz.

beside the source (red dot). The real part and the amplitude
of Hz are plotted in Figs. 13(b) and 13(c), respectively, for
F = 212.3 THz.

The phase of the field after the corner in the curved
waveguide differs by the transmission phase φa from the
field propagating along the straight edge, as can be seen in
Fig. 13(b). The phase φa can then simply be extracted from
the complex value of Hz along the curved edge by comparison
with the straight edge.

Concerning the amplitude of b, we can see in Fig. 13(c)
that the reflection on the corner induces a noticeable ampli-
tude modulation of the field before the corner (s < 15 µm).
A smaller modulation is seen on the field propagating along
the straight edge and the field transmitted though the corner,
which is related to a small reflection on the PMLs. The super-
position Hc of the incident and reflected fields with amplitude
H0 reads

Hc(y) = H0{exp[ik(y − y0)] + b exp[−ik(y − y0)]}
⇒ |Hc|(y) = |H0|

√
1 + |b|2 + 2|b| cos[2k(y − y0) − φb],

where y0 is the position of the corner and k the wave vector
of the edge mode. We can verify that the contrast in ampli-
tude is |b|. Numerically, the simulation data corresponding to
Fig. 13(c) have been fitted using a function f (y, r, s, t, u) =
(r + s sin ty + u)1/2, leading to

|b| =
√

r + s − √
r − s√

r + s + √
r − s

.

As explained in the main text, the extracted coefficient con-
tains the contribution from PMLs, which is the reason why
the average value of |b| on the frequency window has been
retained. As φa and |b| are known, the reflection and transmis-
sion coefficients are given, respectively, by

a =
√

1 − |b|2 exp(iφa),

b = i|b| exp(iφa).

APPENDIX E: SEMIANALYTICAL MODEL OF CAVITIES

We establish in this Appendix the matrix formalism used
to model analytically the transmission across two types of
triangular cavities. Both are excited by a waveguide linked
to the cavity by a splitter, either directly at the tip [Fig. 14(a)]
or at the edge [Fig. 14(b)]. Notice that the different segments
between corners C and splitter S can have different lengths,
even in the case of the tip-coupled cavity, due to the exact
position of air holes forming the splitter. For those reasons,
C-C and S-C lengths are written as L0 and L1, respectively,
while in the edge-coupled cavity we need to introduce a third
length L2 (close to L0/2) for the S-C segments.

In both cases, the incoupling field has the form

X+ =

⎡
⎢⎢⎣

A+

B+

Y+

⎤
⎥⎥⎦, A+ = 1, B+ = 0,

where Y+ contains the components of the input field inside
the triangular cavity. We introduce as well a matrix S which

FIG. 14. Simplified description of (a) tip-coupled and (b) edge-
coupled cavities in the semianalytical model. The waves crossing the
splitters and corners are connected by scattering matrices at nodes
and propagation phases along the segments.
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selects the cavity components Y+,⎡
⎢⎢⎣

0

0

Y+

⎤
⎥⎥⎦ = SX+ ⇒ Si j = δi j (1 − δ11)(1 − δ22),

where δi j is the Kronecker symbol. We can then express

X+ = SX+ + X0, X0 = [1, 0, . . . , 0]T .

The two relations between X+ and X− are

X− = CX+, X+ = PX−.

The coupling matrix C is

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

MS

0
MC

. . .

0
MC

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where there are as many MC in the matrix as there are corners
in the triangular cavity, not counting the splitter. Note that in
the edge-connected cavity, the (t, ε′) and (t ′, ε′′) coefficients
must be exchanged as compared to the tip-connected cavity.
The matrix P describes the phase relations between the field
components inside the cavity.

Finally, we end up solving the linear system of equations

X− = [1 − CSP]−1CX0, (E1)

from which we extract the transmission and reflection coeffi-
cients T = |D−|2 and R = |C−|2. For the tip-coupled cavity,
we have the definitions [see Fig. 14(a)]

X± = [A± B± C± D± E± F± G± H±]T ,

C =
⎡
⎣MS 0

MC

0 MC

⎤
⎦,

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 eiφ1 0
0 0 0 0 0 eiφ1 0 0
0 eiφ1 0 0 0 0 0 0
0 0 0 0 0 0 0 eiφ0

0 0 0 0 eiφ0 0 0 0
eiφ1 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with φi = nk0Li, where n is the effective index of the edge
mode and k0 = 2πF/c, with F the frequency of the wave and
c the speed of light in vacuum. For the edge-coupled cavity
[see Fig. 14(b)]

X± = [A± B± C± D± E± F± G± H± I± J±]T ,

C =

⎡
⎢⎢⎣

M′
S 0

MC 0
0 MC

0 MC

⎤
⎥⎥⎦,

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 eiφ2 0
0 0 0 0 0 eiφ2 0 0 0 0
0 eiφ2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 eiφ0 0 0
0 0 0 0 eiφ0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 eiφ0

0 0 0 0 0 0 eiφ0 0 0 0
eiφ2 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where M′
S has the same expression as MS but γ and δ have been exchanged and β has been changed into −β.
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