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TOPOLOGY OF THE DIMERIZED DIAMOND LATTICE

In the following, we explain the topology of the dimerized diamond lattice and how it is related to the Su-Schrieffer-
Heeger (SSH) model. As written in Eq. (1) of the main text, the dynamics equation of the diamond lattice is

−i∂zAn = t1Bn + t2Bn+1 ,

−i∂zBn = t1(An + Cn) + t2(An−1 + Cn−1) , (1)

−i∂zCn = t1Bn + t2Bn+1 .

One can notice that these equations are invariant under the exchange of An and Cn. Physically this symmetry
corresponds to the inversion symmetry around the horizontal axis going through B sites. Moving to a basis where
this inversion symmetry is diagonalized, the topology of the system becomes clearer. We can achieve this change of
basis by defining

un ≡
(
An + Cn√

2

)
and

vn ≡
(
An − Cn√

2

)
.

Then, it is possible to obtain the following set of equations which are equivalent to the original ones:

−i∂zun =
√

2t1Bn +
√

2t2Bn+1 ,

−i∂zBn =
√

2t1un +
√

2t2un−1 , (2)

−i∂zvn = 0 .

We see that the equation for vn is completely decoupled from the equations for un and Bn. From this expression we
notice that un = Bn = 0 for any n, namely (An, Bn, Cn) = (1, 0,−1)/

√
2, is a zero energy solution of Eq. (2), which is

exactly the flat band eigenstate of the system. Furthermore, if we consider Bn and un to be two “sites” in a unit cell
at position n, then the first two equations of Eq. (2) are of the form of the Su-Schrieffer-Heeger model with intra-cell
coupling of

√
2t1 and the inter-cell coupling of

√
2t2. Therefore, the band structure becomes topological and there

exist zero energy edge modes when δ = t1/t2 < 1.
Finally, we note that for the topology to be well defined and nontrivial, the system needs the inversion and chiral

symmetries. In our case, the inversion symmetry is obtained under the exchange of An and Cn sites and chiral
symmetry is present due to no coupling between Bn or un themselves.
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ORIGIN AND REGION OF EXISTENCE OF THE EDGE STATES

Figure S1. Edge states and exponencial decay. (a)-(d) Show the intensity profile of the edge states using the numerical
calculation (dots) and the theoretical curve (continuos line), using 9 unit cells and for the cases δ = 0.3, 0.7, 0.9, 1.0 respectively.
(e) The coefficient R2 vs δ for the case of 5 unit cells (black line), 9 unit cells (gray line), 13 unit cells (red line), 17 unit cells
(black dashed line) and 21 unit cells (gray dashed line).

To understand the appearance of the edge states and verify in which condition these edge states exist, we use a
plane wave approximation (An(z), Bn(z), Cn(z)) = (an, bn, cn)eiβzz in Eq. (1), obtaining the following set of equations

βzb1 = t1(a1 + c1) , (3)

βza1 = t1b1 + t2b2 ,

βzc1 = t1b1 + t2b2 , (4)

βzb2 = t2(a1 + c1) + t1(a2 + c2) , (5)

βza2 = t1b2 + t2b3 ,

βzc2 = t1b2 + t2b3 , (6)

... =
... ,

βzbn = t2(an−1 + cn−1) + t1(an + cn) ,

βzan = t1bn + t2bn+1 ,

βzcn = t1bn + t2bn+1 ,

... =
... ,

βzbN = t2(aN−1 + cN−1) + t1(aN + cN ) , (7)

βzaN = t1bN ,

βzcN = t1bN . (8)

Then, as an ansatz we use the energy of the eigenstate is βz = 0, finding from Eq. (4) that b2/b1 = −t1/t2 = −δ.
Similarly, from Eq. (6) we find that b3/b2 = −δ, and we can iterate this to obtain that bn/bn−1 = −δ. In this way,
we find that the amplitude of the n-th b site of the edge state is given by

bn = b1(−δ)n−1 , (9)

and b1 is a normalization constant. From the previous result we notice that as n increases bn → 0 when δ < 1. But if
δ > 1 then bn →∞, thus the solution (9) is only valid when δ < 1. From Eq. (3) we find that a1 + c1 = 0 and from
Eq. (5) we find that a2 + c2 = 0, and we can iterate this to obtain an + cn = 0. This condition have two solutions:
the flat band solution an = −cn or the amplitudes an and cn are equal to zero. In both cases, the state exists.
On the other edge, we use the condition in Eq. (8) and we obtain that bN = 0 and from the Eq. (8) we find that
t2(aN−1 + cN−1) + t1(aN + cN ) = 0, and this equation has two solutions: the flat band condition in which an = −cn
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and the dispersive band condition which is an = cn. The solution of the flat band is trivial. On the other hand, the
calculation of the dispersive condition leads to the following expression for the amplitudes of the a and c sites of the
edge state:

an = aN (−δ)N−n , cn = cN (−δ)N−n , (10)

with aN = cN constants of normalization. There is a topological transition in δ = 1 so the previous theoretical
expressions are only valid for δ < 1. In the cases that δ is approaching to 1, the edge states evolve into bulk states.
Therefore edge states should fit the theoretical expressions found in Eqs. (9) and (10) for small δ but not when δ
approaches to 1.

In order to corroborate this result, we simulate numerically a lattice with 9 unit cells, and we calculate the eigenvalues
and eigenstates of the system, and we plot the intensity in each site in because it is clearer to see the exponential
decay of edge states and how they are related to experimental data. Figures S1.(a)-(d) show the intensity in sites
an (in red), sites bn (in black) and sites cn i(n gray) for different values of δ. The continuous line is used for the
theoretical expression shown in Eqs. (9) and (10), and dots are used for computed edge states. We observe that the
theoretical curve fits the edge eigenstate pretty well for δ < 0.7, however the fit fails at δ > 0.9. In order to study
this fit error we calculate the coefficient R2 for different amount of unit cells and we plot the results in Fig.S1(e). We
observe that for any number of unit cells the R2 decreases as δ approaches to 1. However, the R2 decrement is faster
for smaller lattices. Negative values of R2 indicate that there is no correlation between the theoretical expression
and the computed eigenstate, for example Fig. S1(d). Using 9 unit cells we find that the R2(δ = 0.7) = 0.99995 and
R2(δ = 0.76) = 0.99926. Therefore around δ = 0.7 the approach decrease in quality.

SPECTRA FOR DIFFERENT SYSTEM SIZES

As mentioned in the main text, the lattice size affects the existence region of the edge states and the degeneracy of
their eigenfrequencies. To better clarify this fact, Figure S2(a)-(c) show the spectra of the dimerized diamond lattices
composed of (a) 5 unit cells, (b) 9 unit cells, and (c) 13 unit cells. We observe the eigenfrequencies of the edge states
decrease to zero as δ → 0, being faster for bigger lattices. Figure S2(d) and (e) show clearly that the degeneracy of
the edge states takes place at larger δ for a lattice with 13 unit cells (e) compared to a lattice with 5 unit cells (d).

Figure S2. Spectrum of the dimerized diamond lattice. (a) The spectra with 5 unit cells, (b) 9 unit cells and (c) 13 unit cells.
(d) The eigenvalues of the edge states for 5 unit cells, and (e) for 13 unit cells. t2 = 1.

STATE TRANSFER FROM ONE EDGE TO THE OPPOSITE EDGE

Once the lattice gets finite, the eigenfrequencies of the edge states split apart and their amplitude profiles hybridize.
Therefore, each eigenfrequency exhibits an edge state with amplitude on both boundaries. For example, Figure S3(a)-
(d) show the amplitude of the eigenstate associated with negative [(a) and (c)] and positive [(b) and (d)] eigenvalues
for a lattice with 9 unit cells and the indicated δ. We see that negative eigenvalues show an antibonding-like edge
states, whereas positive values display a bonding-like edge states. Notice that all the profiles decay exponentially into
the lattice bulk and this decay is longer as δ approaches to 1. Adding these eigenstates, we obtain an edge state
completely localized in the left edge with amplitude only on B sites. If a given initial condition excites only one edge,
an oscillatory pattern will appear due to the excitation of a sum of non-degenerate solutions.
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To see this oscillation and topological transfer, we simulate a lattice with an initial condition given by the theoretical
expression for the edge state Bn = B1(−δ)n−1, and we expect that this initial condition should oscillate from one edge
to the other. Figure S4(a) shows the simulation of the oscillation of the center of mass using 9 unit cells and δ = 0.7. In
Fig. S4(b)-(d) we plot the normalized intensity versus projected site at three different propagation distances, marked
as a red circle, star and pentagon in Fig. S4(a). From these figures we notice clearly how the initial condition with
light only in B sites (black dots) moves to a scenario where the light is only present in A and C (red and gray dots)
sites.

We also notice that the difference between the eigenvalues of the edge states defined as ∆βez = |βz,Edge State 1 −
βz,Edge State 2| and the frequency of oscillation of the center of mass ω are related by the expression ∆βez = 2π/ω.
This result is shown in Fig. S4(e) for different values of δ and taking in consideration three different cases: 5 unit cells
(in black), 9 unit cell (in red) and 13 unit cells (in gray). The dots correspond to the calculation of ∆βez using the
oscillation of the center of mass and the lines to the use of the difference of eigenvalues. We observe a good agreement
between both results. We also observe ∆βez increases as δ increases and for a value of δ = 0.7 (which is the one used
in the main text) we have a value of ∆βez close to 0.06.

Figure S3. (a) The amplitude of the edge eigenstate for δ = 0.3 with positive eigenvalue βe+
z /t2 = 2.5×10−5. (b) The eigenstate

associated with the negative eigenvalue βe−
z /t2 = −2.5× 10−5 with δ = 0.3. The images (c) and (d) are the amplitude of the

edge eigenstates positive and negative, respectively, with eigenvalue |βz/t2| = 0.0293. In black the b sites, in red the a sites
and in gray the c sites.

Figure S4. State transfer and center of mass. (a)-(c) Normalized intensity vs. site of unit cell for z = 0, z = 270 and z = 460,
respectively. Black dots are used for B sites, red dots for A sites and gray dots for C sites. (d) Calculated center of mass using
9 unit cells and δ = 0.7. The red marks represent different propagation distances used in (a)-(c). (e) Calculated ∆βe

z using the
oscillation frequency of the center of mass (dots) and the difference of eigenvalues of the edge states (continuos line), for the
case of 5 unit cells (in black), 9 unit cells (in red) and 13 unit cells (in gray). t2 = 1.
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DIMERIZED DIAMOND LATTICE WITH NEXT-NEAREST-NEIGHBOR COUPLING

In this section we study the main impact of adding next-nearest-neighbor (NNN) couplings in the dimerized diamond
lattice, which corresponds to the vertical coupling between A and C sites [see Fig. 1(a) main text]. Figure S5(b) shows
the spectrum and Density of States (DOS) when this vertical coupling is taken into account (Vv = 0.5t2). Comparing
to the spectrum of the regular dimerized lattice (without NNN coupling) shown in Fig. S5(a), the flat band undergoes a
frequency shift from βz/t2 = 0 to βz/t2 = −Vv, and the frequencies of the edge states are not degenerate. Specifically,
the edge state with amplitudes on B sublattice remains at zero frequency, whereas the edge state with amplitudes
on A and C sublattices shifts its frequency to βz/t2 = Vv. As a consequence, hybridization among the edge states
does not occur in small-size lattices and the demonstrated transfer of the main text is not expected. Moreover, we
also computed numerically the average beam displacement (md) [1] in this case, as shown in Fig. S5(c). Although
chiral symmetry is broken when adding NNN couplings, the computed md exhibits a transition as δ = t1/t2 is swept
within the range [0, 2]. These numerical facts show that average beam displacement is still roughly quantized even in
the presence of A-C coupling. More generally, following the recipe of Mong and Shivamoggi [2] one can define a bulk
invariant relevant for the bulk-edge correspondence when A-C coupling is present, and this bulk invariant coincides
with the winding number in the absence of A-C coupling, showing that bulk-boundary correspondence remains to
hold in the presence A-C coupling.

Figure S5. Dimerized diamond lattice with next-nearest-neighbor couplings. (a) and (b) Spectrum of a dimerized diamond
lattice composed of nine unit cells without and with NNN couplings (Vv = 0.5t2), respectively. Density of States for each case
is plotted besides. (c) Average beam displacement computed numerically when considering vertical coupling between A and C
sites, Vv = 0; 0.25t2; 0.5t2; 0.75t2; 1t2.

FABRICATION TECHNIQUE, COUPLING AND LATTICE CHARACTERIZATION

We fabricate several dimerized diamond photonic lattices, of 9 unit cells each, by using a femtosecond (fs) laser
writing technique [3, 4], as it is sketched in Fig.1(c) of main text. Ultrashort pulses from a ATSEVA ANTAUS Yb-
doped 1030 nm fiber laser, at a repetition rate of 500 kHz, are tightly focused on a L0 = 7 cm long borosilicate glass
wafer (with refractive index n0 = 1.48). The laser pulses weakly modify the material properties at the illuminated
region, inducing a permanent refractive index contrast of ∆n ≈ 10−3 [5]. Straight waveguides are created by slowly
translating the glass along the z coordinate by means of a motorized XYZ stage at a velocity of 0.4 mm/s. At a
writing power of ∼ 110 mW, each fabricated waveguide holds a single mode at 640 nm [5].

The fabrication of a diamond lattice demands a precise optimization of distances, in order to avoid second-order
effects which could affect the observation of the tight-binding phenomenology, as described by model (1). For example,
a non-negligible horizontal coupling in between A or C sites would simply destroys the FB as well as the chiral
symmetry of edge localized states. Therefore, as we are using a long glass wafer, the distances in between lattice sites
must be, in general, large enough to avoid next-nearest neighbor interactions.

In Fig. S6 we show a complete characterization of the 17 fabricated lattices, where vertical asymmetries have been
corrected in the fabrication process. In this first experiment, the horizontal total distance was set to d1 + d2 = 60 µm
to avoid next-nearest neighbor coupling. At the first column we observe the lattice distances and microscope images
of two unit cells. Then, we show output intensity images, taken at 640 nm, for different input conditions: B-left edge
site (C1M), 5-th unit cell B-site (C5M), C-right edge site (C9B), A-right edge site (C9T), A and C right edge equal
phase sites (In-phase), and A and C right edge out of phase sites (Out-phase).
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Figure S6. Experimental output images for different excitations, as indicated in the figure by yellow ellipses and upper text.

Topological edge states can be efficiently excited by injecting light directly into the waveguides located at the lattice
boundaries, what naturally depends on the value of δ [6]. We perform the experiment on 17 lattices to unveil the edge
state at the left boundary, which have amplitudes at B sites only. Figures S7(a)-left and (b)-red show the output
intensity profiles of five dimerized lattices as examples. For δ & 1, we observe that the light spreads into the bulk
with non negligible amplitudes at sites A and C, what confirms the absence of topological edge localization in trivial
dimerized lattices. On the other hand, for lattices having a smaller value of δ, a single-waveguide excitation gives
output profiles exhibiting a clear decaying tendency from the edge into the bulk, with intensities at B waveguides
mostly and only negligible intensities at sites A and C. As this input condition excites simultaneously edge and
dispersive states, clear edge localization is observed only when the edge mode is very well localized for smaller values
of δ [see the cases δ = 0.37 and δ = 0.25 in Figs. S7(a)-left and (b)-red].

The excitation of the edge states at the right boundary requires a more complex input condition with two beams
having equal amplitude and equal phase, such that we can match this profile closely. Figure S7(a)-right presents a set
of output intensity profiles for different dimerized lattices. For δ & 1, the light stays mainly at the right edge, with a
weak propagation towards the center of the lattice, but with clear nonzero intensities at B sites as an indication of
the trivial topology. Remarkably, for smaller values of δ, the light intensity at B waveguides becomes negligible and
the intensity profile is formed by A and C sites mainly. This profile decays exponentially into the bulk as shown in
Figs. S7(a)-right and (b)-black.
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Figure S7. (a) Left and right intensity output profiles for a site B and in-phase A and C sites (see yellow ellipses), respectively,
for five δ values. (b) Projected normalized intensity profiles: red for (a)-left and black for (a)-right images.

EXCITED SPECTRUM OF DIFFERENT INPUT CONDITIONS

To obtain numerically the excited spectrum of the dimerized diamond lattice, Eq. (1) of the main text is firstly
solved, up to a given distance zmax, when considering a desired input condition. Thus, the light amplitude of every
waveguide ψn(z) is acquired in the interval {0, zmax}. Then, a discrete Fourier transform of the amplitudes along
z is performed for every waveguide, giving the dynamically excited frequencies βz for a given dimerizing parameter
δ = t1/t2. Figure S8 displays the excited spectra of several input conditions when sweeping δ in the interval {0, 2}.
Panel (a) and (b) show that a single B and an in-phase AC input at the edges, respectively, excite the two topological
edge states, together with extended states of dispersive bands. In contrast, an out-of-phase AC input at the right
edge excites only the flat band, as shown by the straight black line at βz = 0 in panel (c). The transport of the
diamond lattice can be probed via the excitation of a B site in the bulk [see panel (d)], which excite only the two
dispersive bands and allowed us to measure experimentally the averaged beam displacement shown in Fig. 2(c) of the
main text.

Figure S8. Numerical frequency spectra for different excitations. (a) Single B-edge, (b) in-phase AC -edge, (c) out-of-phase
AC -edge and (d) single B-bulk input condition. Sketches on top depict the excitation in every case where red and blue colors
denote the excited waveguides. In (c) blue waveguide represents an excitation with a phase difference of π respect to the red
waveguide. Simulations were performed considering a dimerized diamond lattice composed by 9 unit cells and a propagation
length of zmax = 1000. δ = t1/t2 and t2 = 1.
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WAVELENGTH-SCAN METHOD AND COMPUTATION OF THE AVERAGED MEAN
DISPLACEMENT

Figure S9 shows the output profiles after exciting the central B site in seven selected dimerized lattices with different
values of δ (we run this experiment for the whole 17 lattices). The geometries selected are indicated at the top of this
figure. The wavelength-scan method shows quite clearly the dynamical propagation at every lattice, this allows us to
measure the averaged beam displacement for each case and extract the topological phase, as it is shown in Fig. 2(c)
of the main text.

24,36 26,34 28,32 30,30 32,28 34,26 36,24
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600 nm
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660 nm

680 nm
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720 nm
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d1,d2

Figure S9. Output intensity profiles for a B central (5-th unit cell) excitation of dimerized diamond lattices with the geometry
indicated at the upper text. Every row corresponds to a different input wavelength from 580 to 820 nm, in steps of 10 nm.

It has been reported that the averaged beam displacement can detect a quantized Zak phase of a lattice [1]. We
define the averaged beam displacement as:

md(zmax) ≡ 1

zmax

∫ zmax

0

nc(z)dz , (11)

with nc(z) the center of mass, defined in the main text as

nc(z) ≡
∑
n

nPn ≡
∑
n

n(|An(z)|2 + |Bn(z)|2 + |Cn(z)|2) . (12)



9

Figure S10. The computed averaged beam displacement for different δ. the black (red) line corresponds to simulations with 21
unit cells (9 unit cells) and zmax = 10 cm (zmax = 5 cm).

Let Q be the Zak phase, for large enough value of zmax, the averaged beam displacement approaches to md =
Q/2π [1] giving the information of the Zak phase of the lattice. Therefore, we perform numerical simulations to
observe this. Fig. S10 shows with a black line the averaged beam displacement for different δ using zmax = 10 cm
and 21 unit cells, and with a red line for zmax = 5 cm and 9 unit cells. For the simulation we use a Kronecker delta
type initial condition in the B site of the unit cell in the middle of the lattice. In the topological regime (δ < 1) we
observe that the averaged beam displacement is around md = 0.5 and the Zak phase in this region is Q = π. This
fulfills the condition 2π|md| = Q. On the other hand, in the trivial regime (δ > 1) the averaged beam displacement
is around zero as the Zak phase is also zero.

In order to observe experimentally the averaged beam displacement we use a supercontinuum laser source to excite
the lattice. Generally, a change in the excitation wavelength λ changes the coupling between waveguides, for instance,
as the wavelength increases, the couplings increase as well. Therefore, using the same lattice with different wavelengths
we explore a larger region of couplings parameters. The increment in couplings is equivalent to a larger effective
propagation length, thus we propose to measure the averaged beam displacement with respect the wavelengths.

Experimentally the camera takes a picture measuring the intensity in each pixel, the Figs. S11.(a)-(b) show the
experimental output profiles of two lattices with different excitation wavelengths λ. As said before, the experiments
were performed for 17 lattices but for this example we only use two cases, one for δ < 1 and one for δ > 1. The white
lines in the middle of the pictures show the middle unit cell. We use the picture in black and white and the pixels
value are a measure of the intensity, therefore we calculate the intensity in the n-th unit cell Pn = |an|2 + |bn|2 + |cn|2
by adding the values of the pixels inside the n-th unit cell. Now, we calculate the center of mass nc =

∑
n nPn from

Eq. (12), and we want to compare it with respect the center unit cell. Fig. S11.(c) shows that the center of mass
is around zero and this means that the excitation moves equally to the left than to the right. On the other hand,
Fig. S11.(d) shows that the excitation moves to the left because the values are around nc = −0.5. We use the images
from λmin ≈ 640 nm to λmax ≈ 750 nm. λmax is chosen for each lattice by observing that the excitation doesn’t reach
the edge and reflects, for instance in Fig. S11.(a) the excitation is just reaching the edge at λ = 740 nm. On the
other hand, the λmin is chosen by neglecting the images with low dispersion, for instance the first three pictures of
the Fig. (S11).(a) shows very low dispersion. Finally, we calculate the averaged beam displacement md from Eq. 11
by calculating the average of the centers of mass nc obtained from λmin to λmax.
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Figure S11. (a-b) Experimental Wavelength-scan images of the output face of samples with (a) δ > 1 and (b) δ < 1. The
vertical white lines shows the middle unit cell. (c-d) Center of mass nc calculated from the images in (a) and (b) respectively.

STATE TRANSFER BY EXCITING BOTH EDGES

In the main text, we demonstrated a spectral state transfer mechanism by exciting a B edge site. This is due
to the similarity of the edge state at that border and the single B site excitation. However, the state transfer may
occur at both borders as we show in Fig. S12 by exciting the B-edge site (upper images) and the C-edge site (bottom
images). Naturally, a B excitation is cleaner in terms of exciting less the dispersive modes, while a C excitation is
more uncoherent, because it excites FB and dispersive states too. Nevertheless, we clearly observe the state transfer
mechanism in both cases, showing the applied possibilities of this effect.

Figure S12. Wavelength-scan for a topologically nontrivial lattice (δ < 1). Output intensity profiles for a B-edge (upper row)
and a C-edge (bottom row) excitation of dimerized diamond lattice with {d1, d2, dy} = {21, 11, 16} µm. The wavelength is
swept in the interval 600 to 800 nm, in steps of 10 nm.
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EFFECT OF IMPURITIES ON THE STATE TRANSFER

In this section, we show the results of the state transfer in different situations. We start by showing the state
transfer for a topological lattice in the first column of Fig. S13. As said in the main text, these results differs from a
common discrete diffraction in a trivial lattice (second column in Fig. S13), because the last one is a wave package
that explores the hole lattice to travel to the other edge. The advantage of the topological edge to edge transfer is
it’s resilience to certain types of disorder. To check this, we fabricate four more lattices (two topological and two
trivial) with a coupling defect. This defect consist in a larger separation between the central B site and his nearest
neighbors, setting the horizontal distance to 23 µm. Also, in two of these lattices (one topological and one trivial) we
change the writing power of the central B site, creating an impurity (site defect). We test these four lattices exciting
the B edge site with different wavelengths, we show the results on Fig. S13. From these images we can claim that
for trivial lattices, the ballistic transport explores the lattice completely and part of the energy is reflected back when
interacting with this site defect. On the other hand, for topologically nontrivial lattices, the excitation is able to jump
from one edge into the other, interacting weakly with these defects. This translates into more power on the other
edge, which is an advantage for applications.

Figure S13. Wavelength-scan for topological (d1 > d2) and trivial lattice (d1 < d2) with different defects. Output intensity
profiles for B-edge site excitation for different dimerized diamond lattices with distances d1, d2 and dy as indicated in each
column. The wavelength was varied in the interval 610 to 800 nm, in steps of 10 nm.



12

[1] S. Longhi, Probing one-dimensional topological phases in waveguide lattices with broken chiral symmetry, Opt. Lett. 43,
4639 (2018).

[2] R. S. Mong and V. Shivamoggi, Edge states and the bulk-boundary correspondence in Dirac Hamiltonians, Phys. Rev. B
83, 125109 (2011).

[3] K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Writing waveguides in glass with a femtosecond laser, Opt. Lett. 21,
1729 (1996).

[4] A. Szameit, D. Blömer, J. Burghoff, T. Schreiber, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, Discrete nonlinear
localization in femtosecond laser written waveguides in fused silica, Opt. Express 13, 10552 (2005).
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