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ABSTRACT
The transfer of information between topological edge states is a robust way of spatially manipulating spatial states in lattice environments.
This method is particularly efficient when the edge modes are kept within the topological gap of the lattice during the transfer. In this work, we
show experimentally the transfer of photonic modes between topological edge states located at opposite ends of a dimerized one-dimensional
photonic lattice. We use a diamond lattice of coupled waveguides and show that the topological transfer is insensitive to the presence of a
high density of states in the form of a flat band at an energy close to that of the edge states and prevails in the presence of a hopping impurity.
We explore the dynamics in the waveguide lattice using a wavelength-scan method, where different input wavelengths translate into different
effective lattice lengths. Our results offer an alternative way to the implementation of efficient transfer protocols based on active driving
mechanisms.
© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0153770

I. INTRODUCTION

Topological edge states are a remarkable resource for engi-
neering photonic systems with isolated modes protected from the
presence of disorder. In two-dimensional lattices, they can be used
to fabricate topological edge mode lasers with distributed gain and
quantized orbital momentum,1,2 to transfer single photons around
corners in elaborated photonic circuits,3,4 and to design topologi-
cal frequency combs with enhanced efficiency.5,6 One-dimensional
systems such as the Su-Schrieffer-Heeger (SSH) lattice are particu-
larly interesting because topological edges and interface modes are
hosted deep into the topological gap of the lattice. This gap pro-
tection has been shown to be beneficial in preserving the quantum
state of photons in boundary modes.7,8 Interestingly, the presence
of topological edge modes on both sides of one-dimensional lattices
can be used to transfer a state from one edge of the lattice to the
other with high fidelity with the advantage of being protected from
certain types of disorder due to the topological nature of the system.
Such edge state transfer is a promising route to store and manipulate
photonic quantum states in on-chip lattice environments.

Most topological edge transfer protocols rely on the adiabatic
evolution of the lattice such that an edge mode is driven into quasi-
bulk modes and again into an edge state at the other side.9–17 While
these protocols present an optimized transfer rate and fidelity, they
are limited by the adiabaticity condition, which requires the adia-
batic passage to be slow enough to avoid the Zenner coupling of
the edge state information into the bulk modes.18,19 Furthermore,
the presence of disorder in the lattice would enhance this coupling.
A variation of these protocols includes counter-adiabatic driving
methods.20 Recently, a rather different route has been proposed
based on the coherent coupling of edge modes within the gap.19,21,22

The great advantage of this approach is that edge modes are kept
well into the topological gap throughout the protocol, ensuring high
fidelity in reduced time. The simplest version of the coherent state
transfer of topological edge states is via passive evanescent coupling
of the exponential tails of edge modes at opposite sides of the finite
size lattice. In this case, periodic oscillations between edge modes
take place at a frequency determined by the tail overlap,23 which can
be controlled by the size of the gap. Observation of such coherent
oscillations was reported in a short SSH lattice for Rydberg atoms.24
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In this work, we demonstrate coherent edge-to-edge transfer of
light in dimerized diamond lattices of coupled optical waveguides by
employing a spectral tomographic technique. First, we show that the
orthogonality of eigenmodes in our undriven protocol preserves the
transfer even in the presence of a high density of states in the form of
a flat band (FB) at energies close to those of the edge states. Second,
we demonstrate that the transfer mechanism persists in the presence
of lattice defects thanks to the underlying chiral symmetry of the sys-
tem. Our results offer a purely linear transfer of light via distant edge
states, in strong contrast to, for example, the nonlinear switching in
between two nearby topological interface states.25 Additionally, the
experimental proof of principle we report in this work can be sig-
nificantly speeded up, for example, by applying a number of driven
techniques based on the modulating of the hoppings in time and the
use of concatenated topological lattices.19,22,26

II. THEORETICAL MODEL
To demonstrate the topological edge transfer, we use a dia-

mond lattice27–29 of coupled waveguides with different intracell (t1)
and intercell (t2) hoppings, as sketched in Fig. 1(a). The lattice has

FIG. 1. (a) Sketch of a dimerized diamond lattice, with A, B, and C as the sites
of the unit cell. A thick (thin) line denotes strong (weak) hopping, and t1 (t2) indi-
cates the intra(inter)-cell coupling constant. The top (bottom) panel schematizes
the trivial (topological) case t1 > t2 (t1 < t2). (b) Spectrum as a function of δ for a
finite (lines) and an infinite (shaded area) lattice. The vertical dashed line denotes
δ = 1. The color indicates the IPR for all the states. Inset: amplitude profiles of
edge states at δ = 0.4. (c) Sketch of the fs laser writing technique. (d) Micro-
scope image of a diamond lattice with {d1, d2} = {35, 25} μm (δ = 0.37) and
dv = 32 μm. Output intensity profiles, after a propagation length of 7 cm, for (e1)
a B left edge and (e2) an in-phase A–C right edge site excitations. Yellow ellipses
indicate the excited sites.

three sites per unit cell, denoted as A, B, and C sites. Considering a
tight-binding coupled-mode approach, the evolution of the optical
field at every site of the n-th unit cell is written as

−i∂zAn = t1Bn + t2Bn+1,

−i∂zBn = t1(An + Cn) + t2(An−1 + Cn−1),
−i∂zCn = t1Bn + t2Bn+1.

(1)

Here, An, Bn, and Cn are the amplitudes of the optical field at the
n-th unit cell. z describes the coordinate along the waveguides and
the dynamical variable. Moreover, the hopping strengths among
nearest-neighbor (NN) sites can be varied experimentally by adjust-
ing the lattice distances.30 We then define the control parameter
δ ≡ t1/t2 to characterize the different regimes. We assume an infi-
nite system and impose a Bloch-like ansatz in Eq. (1), obtaining the
following bands:

βz(kx) = 0,±t2

√
2[δ2 + 2δ cos (kxa) + 1], (2)

where βz is the propagation constant (energy), a is the lattice
constant, and kx is the quasimomentum. The spectrum is com-
posed of two dispersive and one flat band (FB) [see shaded areas
and the horizontal light-blue line at βz = 0 in Fig. 1(b), respec-
tively]. The gap in between both dispersive bands has a size
equal to 2

√
2t2∣δ − 1∣. For δ = 1, this gap closes, and the three

bands touch each other at the edges of the Brillouin zone.31 The
diamond lattice possesses the smallest experimentally reported
FB states,31–33 with an inverse participation ratio (IPR)34 of 1/2
[represented as a light-blue color in Fig. 1(b)]. Specifically, in the
bases of Wannier functions in the A, B, and C sites, the FB eigenvec-
tor is given by: ∣vFB⟩ = {1, 0,−1}/

√
2, and the ones corresponding

to the dispersive bands are ∣v±⟩ = {eiϕ(kx),±
√

2, eiϕ(kx)}/
√

2, where
ϕ(kx) = arctan(−sin(kxa)/[δ + cos(kxa)]).

Even though this lattice has three sites per unit cell, it exhibits
similar topological features to the SSH model35 when varying the
parameter δ.36 Indeed, a quantized Zak phase of value 0 or π can
be found when δ > 1 (t1 > t2) or δ < 1 (t1 < t2), respectively. In
this case, the nontrivial phase is protected by inversion symme-
try between An and Cn, and by chiral symmetry.36,37 Therefore, we
expect the appearance of two edge states at a zero propagation con-
stant on a lattice with open boundaries when δ < 1. These two states
are chiral partners and, therefore, one must have amplitude only
at A sites, while the other must possess amplitude only at B and C
sites. To corroborate this, we compute the spectrum as a function
of δ for dimerized diamond lattices of 9 unit cells [see full lines in
Fig. 1(b)]. It can be clearly seen that two states at zero frequency
(lighter blue) transform into two dispersive states (darker blue)
around δ = 1. When increasing δ, the degeneracy between them is
removed at around δ = 0.7 [splitting Δβe

z ∼ 0.06, see Fig. S4(e) in
the supplementary material] due to the finite size of the lattice. The
flat band remains unchanged at βz = 0, for any value of δ. The IPR
(denoted by color) shows very clearly the transition from localized
edge states (IPR = 1 or 1/2, light blue) into extended propagating
modes (IPR ∼ 1/N, black).

Figure 1(b) insets show the two edge states for δ = 0.4. They
exhibit exponentially localized amplitudes at both edges. On the left
edge, these states present a null amplitude at A and C sites, whereas
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the states have a null amplitude at B sites on the right edge. More-
over, one edge state is antisymmetric (bottom inset) and the other is
symmetric (top inset) with respect to the opposite edge. They decay
exponentially into the bulk as (−δ)∣n−ne ∣ for a semi-infinite system,
exhibiting a phase shift of π at consecutive B or A, C sites, depending
on the specific edge (ne). For δ ≳ 0.7, the frequency of the edge states
deviates from 0 to ±βe

z . Therefore, the excitation of sites at the edges
is expected to induce an oscillatory pattern in between both surfaces
with a frequency βe

z ,23 with a long-distance state transfer occur-
ring on a large dynamical scale ztransfer = π/βe

z (see supplementary
material.

Experimentally, the diamond lattice exhibits an important
advantage compared to the SSH lattice because the bandgap is

√
2

wider for the diamond lattice, considering equal hopping strengths
t1,2; therefore, it reduces the possible coupling between edge and
bulk modes in the presence of disorder in the couplings.

III. EXPERIMENTS AND ANALYSIS
We fabricate several dimerized diamond photonic lattices

of 9 unit cells each by using a femtosecond (fs) laser writing
technique,30,38 as sketched in Fig. 1(c). For the first set of experi-
ments, the diamond geometry is defined by distances d1, d2, and
dv = 32 μm, as described in Fig. 1(d). For these values, the diag-
onal (NN) distance was swept in the interval {25.6, 43.1} μm, as
d1 and d2 were varied in the interval {20, 40} μm in steps of 1 μm.
The hopping coefficients (which decay exponentially on waveguide
separation30) range in the interval ∼{0.03, 0.21} cm−1 at a wave-
length of 640 nm. Figure 1(d) shows an output facet of a lattice
with d1 = 35 and d2 = 25 μm, with t1 = 0.05 and t2 = 0.14 cm−1

(δ = 0.37). We first test the quality of the lattices by exciting
them at different input positions using a 640 nm laser beam (see
supplementary material for a complete characterization). For exam-
ple, topological edge states can be efficiently excited by injecting light
directly at the lattice boundaries.34,39,40 Figure 1(e1) shows the out-
put profile after a B-edge site excitation, with a clear exponential
decaying profile from the edge into the bulk. The excitation at the
right boundary requires a more complicated input condition with
two in-phase beams. The result of this is shown in Fig. 1(e2), with an
output profile formed mostly by A and C sites.

We characterize the lattice dynamics by implementing a wave-
length-scan method: The dynamics of a wavepacket injected into
the input facet of a lattice are revealed when varying the input
wavelength coming from a Supercontinuum (SC) laser source.41–43

Therefore, instead of measuring the output profiles at different z val-
ues, which implies the fabrication of a larger number of lattices, we
manipulate the input beam wavelength. The lattice dynamics depend
on the excitation wavelength λ: the longer the wavelength, the wider
the mode profile, and the larger the coupling constants42 (see also the
supplementary material). In this way, we can study the same lattice
at different effective lengths by tuning the input wavelength.

We first consider a diamond lattice with d1 = d2 = 30 μm. We
excite a B site at the central fifth unit cell and scan the input
wavelength in the interval 600–760 nm, with a step of 10 nm.
Figure 2(a) shows the output intensity for three selected λ’s (a com-
plete sweep is shown in supplementary material). Figure 2(b) shows
the second moment (width), defined as m2 ≡ ∑n (n − nc)2Pn, vs the
input wavelength (Pn ≡ ∣An∣2 + ∣Bn∣2 + ∣Cn∣2, the unit cell power, and

FIG. 2. (a) Output intensity profiles for a B-site central excitation for a lattice with
d1 = d2 = 30 μm at the indicated wavelength. (b) m2 vs λ. (c) md vs δ (bottom)
and d1 in μm (top). Insets in (c) show the profiles at 700 nm for the indicated
cases. The bars show the standard deviation, and the orange curve shows the
results obtained after numerically simulating model (1) for 9 unit cells. In (a) and
(c), yellow ellipses indicate the excited sites.

nc ≡ ∑n nPn, the center of mass). We observe a growing diffrac-
tion pattern33 with a width that increases almost linearly with the
input wavelength [a linear fit is included in Fig. 2(b)]. m2 ∼ z cor-
responds to a ballistic regime,44 as expected for discrete diffraction
dynamics; therefore, a λ increment produces an effectively larger
lattice propagation distance z or, equivalently, a larger coupling
constant t1,2.

A dimerized diamond lattice has two hoppings that simul-
taneously change while λ is modified. Since we observe a linear
dependence of coupling constants on wavelength, we can assume
δ as a constant as a first approximation. We use the wavelength-scan
method to experimentally determine nc for all the output profiles
after exciting a B site at the central (fifth) unit cell of 17 dimer-
ized lattices with different values of δ. For each lattice, we average
nc over λ and obtain the averaged beam displacement md, from
which the topological invariant can be inferred.45,46 A topologically
trivial lattice has an md ∼ 0, as an indication of a zero Zak phase.
A topological system will shift this value to md ∼ 0.5, correspond-
ing to a non-trivial π Zak phase.45 Our collected results are shown
in Fig. 2(c). We observe that for δ > 1 (d1 < 30 μm), the lattice is
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topologically trivial, and the propagation shows a md around zero.
For δ ∼ 1 (d1 ∼ 30 μm), a transition region without a well-defined
topological phase is observed. For δ < 1.0 (d1 > 30 μm), the lattices
express an averaged beam displacement around 0.5, implying a clear
nontrivial Zak phase (see also the supplementary material). This is in
very good agreement with the direct numerical simulations shown in
Fig. 2(c) by an orange curve. Therefore, the wavelength-scan method
gives us valuable information about the dynamics on a specific lattice
and, in addition, it becomes a key and simple method to determine
its topological phase experimentally.

The number of unit cells in the lattice affects the edge state
properties: the fewer unit cells, the shorter the range of δ in which
the edge states keep degenerate in βz (see supplementary material).
When the degeneracy is lifted, the two edge modes hybridize. There-
fore, an input on one edge will coherently excite both modes and
will result in periodic oscillations of the amplitude at the two edges
on a very long dynamical scale. Then, an effective transfer of light
from one edge to the other becomes possible.23,24 To experimen-
tally demonstrate this, we fabricate a topological lattice with 9 unit
cells and distances d1 = 18, d2 = 14, and dv = 14 μm (t1 = 0.30 and
t2 = 0.42 cm−1 at 640 nm, and δ = 0.71). The trivial lattice (δ = 1.40)
is obtained by inverting these distances to d1 = 14 and d2 = 18 μm.
In this experiment, we decreased the distances to increase the cou-
pling coefficients and favor faster transport in between the edges
while staying in the non-degenerate situation. The inclusion of verti-
cal next-nearest-neighbor (NNN) couplings would shift the energies
for FB modes and, also, for the edge states, and the topological trans-
fer would not be observable. The NNN hopping indeed does not
destroy the edge states, but the definition of the winding number
is not the same anymore47(see also supplementary material). Again,
we use an SC laser source in the range of 610–740 nm and sweep
the input wavelength in steps of 10 nm. We excite the system by
injecting light at the B left edge waveguide, as shown in Fig. 3(a). For
λ ≲ 670 nm, the intensity profiles are well localized at the left edge,
with most of the light intensity at the B sublattices, with a pro-
file resembling the edge state [Fig. 1(e1)]. The edge state splitting
manifests around λ ≈ 680 nm, where we start observing a smooth
population of the opposite edge with a very weak excitation of the
lattice center (a weak background radiation is always observed due
to the excitation of dispersive modes; see supplementary material).
The connection in between both edge patterns [see Fig. 1(b) insets
and (e)], with a B-site exponential decaying profile at the left surface
and an A, C exponential profile at the right edge, becomes evident for
∼710 nm. The spectral state transfer phenomenon starts occurring at
λ ≳ 720 nm: the light injected at one edge is mostly transferred to
the opposite edge. This shows a very interesting transport mecha-
nism that does not require the light to explore the bulk modes of
the lattice. In this case, the light transfers suddenly from one edge
mode to the other without interacting with the lattice bulk modes.
Due to the topological properties of this dimerized lattice, the edge-
to-edge transfer dynamics are mainly governed by the topological
edge states, with only a weak leak to dispersive modes.

To quantify the transfer, starting from a left edge B-site input
excitation into the opposite right edge, we define the fidelity F for an
edge-to-edge light transfer by measuring the normalized transferred
intensity at the opposite lattice edge: F ≡ (∣Aedge∣2 + ∣Cedge∣2)/∑n Pn.
If all the light reaches the two rightmost sites, F = 1, and F = 0 in the
fully opposite case. We show our results in Fig. 3(b), where we plot

FIG. 3. (a) Output profiles of a non-trivial diamond photonic lattice at different λ’s
after a B-edge excitation (see yellow ellipse). (b) Fidelity vs wavelength for topo-
logical (black), trivial (gray), topological + defect (red), and trivial+ defect (orange)
lattices. (c) Microscope image of a topological lattice plus two coupling defects (see
dashed rectangle). (d) Same as (a) for a topological lattice with a coupling defect.

the fidelity F vs λ for topological and trivial lattices. We observe how
the topological (black) and trivial (gray) cases have a similar dynam-
ical scale, i.e., both processes occur approximately at the same speed.
However, the fidelity at the A, C surface is larger for the topolog-
ical lattice (∼61%). The trivial lattice presents a standard discrete
diffraction pattern,33 with the energy exploring the whole lattice
while it moves from one edge into the other as the wavelength
increases [similar to Fig. 2(a); see also the supplementary material].
Therefore, once the light arrives at the A, C right edge, it is reflected
back due to the absence of the edge states. The fidelity in this case
decreases to ∼40%.

A remarkable feature of the state transfer between topological
edge states is the resilience to disorder in the coupling constants.
Although the fabrication process can produce random on-site or
inter-site defects, we fabricate a couple of lattices with a symmet-
ric coupling defect, as shown in Fig. 3(c). We design a different
distance in between the fourth and fifth cells, and inside the fifth
cell [see dashed rectangle in Fig. 3(c)]. Specifically, we set this dis-
tance to 23 μm, implying a coupling constant of 0.18 cm−1. This
corresponds to a strong impurity, considering the t1 and t2 values.
Figure 3(d) shows a set of output images at the indicated values of
λ for the topological lattice with a defect. We notice that this defect
produces some reflection and trapping of energy at shorter wave-
lengths for 7 cm of propagation; consequently, not all the energy is
edge-to-edge transferred. Despite this, a significant amount of light
excites the topological right-edge state composed of A and C sites.
The fidelity takes into account the effect of the defect on the transfer,
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which is reduced to ∼26% for the topological case, whereas it drops
to ∼15% for the trivial lattice (in this case, for λ = 740 nm).

These numbers show that a trivial lattice undergoes a stronger
back reflection caused by the defect because the light explores the
whole lattice and interacts strongly with it. On the other hand, in
the topological case, the light does not need to interact with the
bulk modes across the lattice, and it excites efficiently the edge state
without the need to arrive at the boundary by standard transporta-
tion mechanisms. The fidelity is not perfect in any of the topological
cases because a single B-site input always excites part of the disper-
sive spectrum, in which the modes extend over the entire lattice.
Nonetheless, the important difference between the topological and
trivial cases is the key to success for a topological state transfer pro-
cess, which occurs due to the excitation of exponentially localized
topological edge states, which exist at both edges simultaneously and
deep into the gap of the lattice spectrum.

In comparison with the photonic realization of a Heisenberg
spin chain of qubits, in which a state is transferred from one edge to
the other with high fidelity,48 our transfer protocol provides a more
versatile tool when considering deliberate disorder in the coupling
constants and a wide range of wavelengths for the incident beam.
This could be a proof of concept for a long-distance photonic sensor
that detects away from the interaction/excitation region and can be
more robust against bulk imperfections.

IV. CONCLUSIONS
In this work, we used the wavelength-scan method as an impor-

tant tool for investigating the dynamics of photonic waveguide
lattices. We evidenced the nontrivial topology of dimerized diamond
lattices by experimentally measuring the averaged beam displace-
ment. In addition, we demonstrated an edge-to-edge transfer of light
via a strong excitation of the lattice topological edge states. This
transfer is based on an undriven protocol, in contrast with the one
based on a driven 1D quasicrystal,9 and is partially robust to defects
across the lattice bulk. Furthermore, this lattice configuration could
be used as a precise wavelength filter or as an efficient information
transport mechanism. Considering very distant ports, a sequence of
concatenated topological lattices could transform into a key solu-
tion for long-distance quantum communication protocols.12,14 We
became aware of a recent work reporting related transport properties
in a SSH chain of split resonators.49

SUPPLEMENTARY MATERIAL

See supplementary material for both simulation at experimen-
tal details.
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