
Supplementary Information for:
Topological properties of Floquet winding bands in a photonic lattice

I. CALCULATION OF THE BAND STRUCTURE

By applying the Floquet-Bloch ansatz to Eq. (1) in the main text and solving the determinant problem we obtain
the solution for the energies of the bands E±:

E±(k, φ) = ± arccos[cos θ1 cos θ2 cos (k +Kφ)

− sin θ1 sin θ2 cos (∆φ)] +Kφ,

where φ1,2 = c1,2φ, K ≡ (c1 + c2)/2, ∆ ≡ (c1 − c2)/2. In this work we consider the case of integer K and ∆, which
makes the period along the φ direction equal to 2π. The last term Kφ emphasizes the fact that each band winds K
times along the quasienergy axis when φ is changed by 2π.

II. DERIVATION OF THE FLOQUET EVOLUTION OPERATOR

For the Floquet period of 2 steps the evolution of the system in real space can be written as

Ψ(m+ 2) = UΨ(m), (S1)

where

Ψ(m) =


· · ·
αm
n

βm
n

αm
n+2

βm
n+2

· · ·

 (S2)

is a vector representing the state of the system in real space at time step m, and

U =
∑
xi,yj

Uxi→yj
|yj⟩ ⟨xi| (S3)

is the real-space Floquet evolution operator. Here |xi⟩ and |yj⟩, where x, y ∈ {α, β} and i, j are the site number,
represent a vector Ψ with xi = 1 (or yj = 1) and all the other components equal to zero. Non-zero matrix elements
of U can be found from the evolution equation (Eq. (1) of the main text):

Uαn→βn = is1Rei∆φ Uβn→αn = is1Re−i∆φ

Uβn→αn+2 = is2ReiKφ Uαn→βn−2 = is2Re−iKφ

Uαn→αn+2
= s3ReiKφ Uβn→βn−2

= s3Re−iKφ

Uβn→βn
= −s4Rei∆φ Uαn→αn

= −s4Re−i∆φ

where s1 = cos θ1 sin θ2, s2 = sin θ1 cos θ2, s3 = cos θ1 cos θ2, s4 = sin θ1 sin θ2, and R = eiKφ.

To obtain the Floquet evolution operator in reciprocal space, we can use the Floquet-Bloch ansatz and substitute
it into the evolution equation. This gives

UF (k, φ) =

(
ei(φ1+φ2)e−ik cos θ1 cos θ2 − eiφ2 sin θ1 sin θ2 iei(φ1+φ2)e−ik sin θ1 cos θ2 + ieiφ2 cos θ1 sin θ2

ieik sin θ1 cos θ2 + ieiφ1 cos θ1 sin θ2 eik cos θ1 cos θ2 − eiφ1 sin θ1 sin θ2

)
. (S4)

It can be seen that the Floquet evolution operator can be factorized in a sequential manner

UF (k, φ) = D2B2(k)S2D1B1(k)S1 (S5)
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where S1,2 = S(θ1,2) are scattering matrices representing the action of the beamsplitter,

S(θ) =

(
cos θ i sin θ
i sin θ cos θ

)
, (S6)

B1,2(k) are translation operators

B1(k) =

(
1 0
0 eik

)
, B2(k) =

(
e−ik 0
0 1

)
, (S7)

and D1,2 correspond to the phase shift on odd and even steps:

D1,2 =

(
eiφ1,2 0
0 1

)
. (S8)

To study the symmetry properties of the unitary evolution operator we symmetrize the matrices B1,2(k) and D1,2:

B(k) ≡
(
e−ik/2 0

0 eik/2

)
, D(φ) ≡

(
eiφ/2 0
0 e−iφ/2

)
(S9)

and write

UF (k, φ) = ei(φ1+φ2)/2D(φ2)B(k)S2D(φ1)B(k)S1

= ei(φ1+φ2)/2T2S2T1S1, (S10)

where T1,2 = D(φ1,2)B(k). We notice that both B(k) and D(φ) possess inversion symmetry: σxB(k)σx = B(−k),
σxD(φ)σx = D(−φ), where σx is the Pauli matrix. Consequently, for φ1 + φ2 = 0 the Floquet evolution operator
also has the inversion symmetry σxUF (k, φ)σx = UF (−k,−φ). However, introducing a net phase φ1 + φ2 ̸= 0 over
one Floquet period breaks this symmetry and leads to winding of the bands.

III. CALCULATION OF THE TOPOLOGICAL INVARIANT

Given the factorized version of the Floquet evolution operator (S5), we can calculate the topological invariant

ν =
1

2πi

∫ 2π

0

dφTr

[
U−1
F

∂UF

∂φ

]
=

1

2πi

∫ 2π

0

dφTr

[
S†
1B

†
1D

†
1S

†
2B

†
2D

†
2

∂

∂φ
[D2B2S2D1B1S1]

]
=

1

2πi

∫ 2π

0

dφTr

[
D†

1

∂D1

∂φ
+D†

2

∂D2

∂φ

]
. (S11)

By substituting (S8) we get

ν =
1

2πi

∫ 2π

0

dφ [ic1 + ic2] = 2K. (S12)

IV. HAMILTONIAN FORMALISM

The coherent split step model discussed above in terms of evolution operators can also be described using a time
dependent Hamiltonian, as originally discussed in Ref. [S1]. To describe the two step process, we divide each period
of the Hamiltonian evolution into four steps:
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H(t, kx) =



H1(kx) =

(
0 0
0 −V1

)
, 0 < t ≤ t1

H2(kx) =

(
0 −J1e

−ikx/2

−J1e
ikx/2 0

)
t1 < t ≤ t2

H3(kx) =

(
0 0
0 −V2

)
t2 < t ≤ t3

H4(kx) =

(
0 −J2e

ikx/2

−J2e
−ikx/2 0

)
t3 < t ≤ T

(S13)

The parameters V1, V2, J1 and J2 are related to the phases gained in the left ring and the coupler strengths via:

ϕ1 ≡ V1τ1/ℏ θ1 ≡ J1τ2/ℏ ϕ2 ≡ V2τ3/ℏ θ2 ≡ J2τ4/ℏ. (S14)

The action of the phase modulator in the first and third steps directly maps into a modification of the onsite
energy, while the couplers act as hopping amplitudes. In this way it can be readily seen that the presence of the phase
modulation breaks inversion symmetry.

Note that the each time step can be associated to an evolution operator Uj during the duration τj = tj − tj−1:

Uj(kx) ≡ e−iHj(kx)τj/ℏ, (S15)

so that the evolution (Floquet) operator after one full period is defined as UF (kx) = U4U3U2U1, with stepwise evolution
operators:

U1 =

(
1 0
0 eiϕ1

)
U2 =

(
cos θ1 ie−ikx/2 sin θ1

ieikx/2 sin θ1 cos θ1

)
(S16)

U3 =

(
1 0
0 eiϕ2

)
U4 =

(
cos θ2 ie−ikx/2 sin θ2

ieikx/2 sin θ2 cos θ2,

)
(S17)

leading to the expression of the Floquet operator described in Sec. II.

V. TOPOLOGICALLY PROTECTED BLOCH SUB-OSCILLATIONS

The group velocity in the real space dimension can be found as

v±g (k, φ) =
∂E±(k, φ)

∂k
=

± cos θ1 cos θ2 sin (k +Kφ)√
1− [cos θ1 cos θ2 cos (k +Kφ)− sin θ1 sin θ2 cos (∆φ)]

2

Due to the term sin (k +Kφ) in the numerator, the sign of vg changes 2K times when φ is changed by 2π, forcing
a wavepacket to experience K sub-oscillations during one driving period. Since sin (k +Kφ) becomes zero with
periodicity of π/K in φ, we can claim that the winding number topologically protects the frequency of Bloch sub-
oscillations. At the same time if K ̸= ∆, then the term cos (k +Kφ) in the denominator precesses at a different
rate than cos (∆φ). Consequently, the translational symmetry vg(k, φ) = vg(k, φ + 2π/K) gets broken, leading to
sub-oscillations of different amplitudes.

Finally, the center-of-mass motion of the wavepacket can be found by integrating the group velocity:

X(k, t) =

∫ t

0

vg(k, φ(τ)) dτ (S18)
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VI. EXPERIMENTAL PLATFORM

The photonic network is made of two fiber rings coupled by an electronically-controlled high-bandwidth variable
beamsplitter (EOSpace AX-2x2-0MSS-20). Each of the rings contains an erbium-doped fiber amplifier (Keopsys
CEFA-C-HG) followed by a narrow-band optical filter (EXFO XTM-50), an isolator, a polarizer, a variable attenu-
ator, and an optical switch (Photonwares NSSW). One of the rings contains a phase electro-optic modulator (EOM,
iXblue MPZ-LN-10), which imposes the phases φ1,2. All the fiber components use polarization-maintaining fibers.
Each ring has a length of 40 m, and the length difference between the rings is 0.55 m. The mean length of the two
rings sets the round trip period, of 205 ns, between the different time steps m. The length difference sets the temporal
size of the lattice sites n in the synthetic spatial dimension, of 2.7 ns.

For the injection of light, emission of a narrow single-frequency laser (IPG Photonics ELR-5-LP) at a wavelength of
1550 nm is chopped into 1.4 ns-long pulses by an amplitude EOM (iXblue MXER-LN-10). Before entering the fiber
rings the light passes through an optical switch, which is closed after the injection. This ensures that no spurious
signal from the laser enters the fibers during the experiment. The prepared injection signal is coupled into one of the
rings through a 70/30 beamsplitter.

VII. MEASUREMENT PROCEDURE

The light field in the system is probed via an 80/20 beamsplitter in each of the rings. To get access to both the
amplitude and the phase of each light pulse we use optical heterodyning. For this, a fraction of the laser light is
modulated by a phase EOM at a frequency of Ω = 3 GHz, thus creating sidebands shifted by ±Ω from the laser
frequency. Next, the +Ω sideband is filtered out by a home-built fiber ring cavity actively locked to this sideband.
The filtered out light field is used as a local oscillator, and its beating with the signal from each ring is measured by
a fast photodiode (Thorlabs DET08CFC, 5 GHz). Recording the response of the photodiode with a fast oscilloscope
(Tektronix MSO64, bandwidth 4 GHz) allows to see the beating, the amplitude and the phase of which directly
correspond to the amplitude and the phase of the light field under study. By reshaping the measured signal in a
two-dimensional matrix, we can observe the coherent walk in the real space (Fig. 2(a) of the main text). Performing a
two-dimensional Fourier transform of the coherent walk gives access to the band structure centered at the frequency
Ω of the local oscillator (Fig. 2(b) of the main text).

VIII. RECONSTRUCTION OF THE BAND STRUCTURE

Due to the periodicity of the system in both synthetic dimension and time, its band structure can be obtained
simply by calculating the two-dimensional Fourier transform (2DFT) of a split-step coherent walk. An important
prerequisite for this is that each site of the walk (αm

n and βm
n ) is a complex number, which accounts for both the

amplitude and the phase of the light field. In our experiment the measured quantity is the beating of the signal with
the local oscillator at a constant frequency Ω. This allows us to reconstruct the band structure by performing the
2DFT of the measured signal and offsetting it by the frequency Ω.

The length of an optical fiber is sensitive to the environmental temperature and pressure and can fluctuate over
time. For our experiment, this can be thought of as an extra optical phase that the light acquires during its prop-
agation in each fiber ring, which results in a shift of the band structure in both horizontal (δk) and vertical (δE)
directions. Over a long time, the length of a fiber ring can change by a few wavelengths. This implies that both δk
and δE (which are defined modulo 2π) can change in any possible value, and the observed band structure is shifted
by an random amount from the expected position.

However, on a short timescale (tens of milliseconds) the length of each ring changes by less than a few percent of a
wavelength. This allows us to calibrate the band structure by performing two consecutive experimental shots within
a short time (100 µs), during which δk and δE stay the same. The first shot implements a simple model without
extra phase modulation (i.e. φ = 0), which has a well-known band structure for given θ1 and θ2:

Eref
± (k) = ± arccos (cos θ1 cos θ2 cos k) (S19)
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FIG. S1. Calibration of the band structure.

The second shot realizes the experimental system of interest (Fig. S1). By comparing the band structure of the first
shot with its theoretical model we can measure the shifts δk and δE and therefore calibrate the axes, which will stay
the same during the subsequent shot.

IX. EXCITATION OF A SINGLE BAND

We start with a theoretical description for the case of θ1 = θ2 = π/4, which has simple and intuitive analytical
expressions for the eigenstates. At time step m = 0 we inject a train of pulses with Gaussian envelope into one ring,
i.e.

α0
n = e−

n2

σ2 , β0
n = 0. (S20)

Such excitation populates the eigenstates with narrow quasimomentum spread around k ≈ 0 in both bands. This can
be understood knowing that the eigenvectors of the model corresponding to the eigenvalues E± are [S2]:

Ψ± =

(
A
B

)
±
=

1√
1 + e±2 sin k/2

(
1

∓e± sin k/2e−ik/2

)
(S21)

For k = 0

Ψ±(k = 0) =
1√
2

(
1
∓1

)
, (S22)

and for broad Gaussian wavepackets with σ ≫ 1 the excitation (S20) excites equal fraction of both bands at k = 0:(
α0
n

β0
n

)
≈

(
1
0

)
=

1√
2
(Ψ+ +Ψ−) (S23)

To excite a single band, we program the PM during the turn m = 1 to apply a phase φ1 = π/2. After the first
step, the state of the systems becomes(

α1
n+1

β1
n+1

)
=

1√
2

(
α0
ne

iφ1

iα0
n+2

)
≈ i√

2

(
1
1

)
= iΨ−, (S24)
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and, up to the global phase factor, occupies only one single band Ψ−. Note that choosing φ1 = −π/2 would occupy
the Ψ+ band.

For the arbitrary choice of θ1 and θ2 one would need to adjust both the phase and the amplitude of signals in two
rings in order excite one single band. However, if chosen values of θ1 and θ2 do not alter significantly the shape of
the bands (which is the case of our work), one can still transfer the most part of the signal into one band. In our
experiment, we can reproducibly inject more than a 80% of the emission into one of the bands (Fig. S2).

FIG. S2. Excitation of one band

X. IDENTIFICATION OF TRIVIAL AND ANOMALOUS FLOQUET PHASES

To identify the trivial and anomalous Floquet phases we compute the quasienergy spectra E(k, φ) for a finite size
system containing 50 unit cells along the synthetic dimension with fully reflective boundary conditions. The calculated
spectra in the trivial and anomalous case are shown in Fig. S3 A and B respectively. The anomalous phase clearly
shows spectral features traversing the gaps, which correspond to the states localized at the edges of the lattice as in
Fig. S3C.

FIG. S3. Calculated bands for the (a) trivial winding metal with K = −1, θ1 = π/4 − 0.6, and θ2 = π/4, (b) anomalous
winding metal with K = −1, θ1 = π/4, and θ2 = π/4 − 0.6. Lines traversing the gap correspond to states localized at the
edges. Both models are comprised of 50 sites along the synthetic dimension. (c) Probability amplitude of the red edge state
marked by a black arrow in (b) at φ = 1.24π.
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