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The engineering of synthetic materials characterized by more than one class of topological invariants is
one of the current challenges of solid-state based and synthetic materials. Using a synthetic photonic lattice
implemented in a two-coupled ring system we engineer an anomalous Floquet metal that is gapless in the
bulk and shows simultaneously two different topological properties. On the one hand, this synthetic lattice
presents bands characterized by a winding number. The winding emerges from the breakup of inversion
symmetry, and it directly relates to the appearance of Bloch suboscillations within its bulk. On the other
hand, the Floquet nature of the lattice results in well-known anomalous insulating phases with topological
edge states. The combination of broken inversion symmetry and periodic time modulation studied here
enriches the variety of topological phases available in lattices subject to Floquet driving and suggests the
possible emergence of novel phases when periodic modulation is combined with the breakup of spatial
symmetries.
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One of the most striking properties of topological phases
of matter is the appearance of robust unidirectional inter-
face states between two gapped materials of different
topology. The existence and number of edge channels is
determined by a topological invariant, which is a property
of the Hamiltonian describing the bulk materials [1,2]. This
pivotal idea, known as the bulk-edge correspondence, has
successfully explained the topological edge transport in the
quantum Hall effect and in topological insulators [3], and
the existence of topological edge states in anomalous
Floquet systems [4] and in non-Hermitian lattices [2].
Even within the bulk, the nontrivial topology of a lattice
Hamiltonian gives rise to remarkable phenomena such
as the anomalous velocity due to nonzero Berry curva-
ture [5,6], the quantized transport in a Thouless pump [7,8],
and the braiding of bands in non-Hermitian systems [9].
Enlarging the palette of topological effects in lattices

beyond the bulk-edge correspondence is an important
resource that would allow combining different topological
properties in a single material. An example of band
topologies with properties beyond the bulk-edge corre-
spondence are periodically driven (Floquet) Hamiltonians
with nontrivial band holonomies. The eigenvalues of
Floquet Hamiltonians can form bands that are periodic
both in momentum and quasienergy. This double perio-
dicity enables the possibility of engineering bands with
nontrivial windings, that is, bands that traverse the
Brillouin zone in any possible direction, even across the
top and bottom of the quasienergy spectrum. Recently, it
has been shown that when inversion symmetry is broken in

a Floquet-Bloch lattice the bulk modes can also present
nontrivial holonomies and windings across the Brillouin
zone [10–12]. This situation is illustrated in Fig. 1(d): two
bands never touch each other, but still traverse the whole
quasienergy spectrum. Since the system is gapless in the
sense that bulk states exist at all energies, its spectrum can
be identified with that of a metal [13].
Here, we report the experimental implementation of such

a Floquet metal with anomalous edge states. The winding
of the bulk bands, induced by a suitable inversion sym-
metry breaking, can be directly measured via the number of
Bloch suboscillations in the dynamics of a wave packet
accelerated across the Brillouin zone. Furthermore, the
time-periodic nature of the system can be used to engineer
anomalous Floquet topological edge states. Therefore,
Floquet-Bloch bands with broken inversion symmetry
allow one to engineer two distinct topological properties
in the same synthetic material. Thanks to a heterodyne
measurement technique, we get a direct access to both the
spectral bulk winding bands and to the anomalous edge
states that we experimentally show to exist despite the
absence of a complete gap.
To engineer these topological properties, we use a two-

dimensional synthetic photonic lattice implemented in two
coupled fiber rings. Recently, photonic platforms based on
fiber rings have permitted the study of unconventional
topological effects hardly accessible in other systems
[6,14–18]. The propagation of light pulses in two rings
[Fig. 1(a)] can be mapped into a lattice of oriented
scatterers [Fig. 1(b)], whose couplings and on site energies

PHYSICAL REVIEW LETTERS 130, 056901 (2023)

0031-9007=23=130(5)=056901(6) 056901-1 © 2023 American Physical Society

https://orcid.org/0000-0002-1722-484X
https://orcid.org/0000-0002-2061-6684
https://orcid.org/0000-0002-8617-2326
https://orcid.org/0000-0001-9309-6539
https://orcid.org/0000-0002-2508-8315
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.130.056901&domain=pdf&date_stamp=2023-02-02
https://doi.org/10.1103/PhysRevLett.130.056901
https://doi.org/10.1103/PhysRevLett.130.056901
https://doi.org/10.1103/PhysRevLett.130.056901
https://doi.org/10.1103/PhysRevLett.130.056901


can be manipulated at will [14,19–21]. The dynamics of a
light pulse injected in the system follows a split-step
coherent walk described by the equations [14,22]

αmþ1
n ¼ ðcos θmαmn−1 þ i sin θmβmn−1Þeiφm

βmþ1
n ¼ i sin θmαmnþ1 þ cos θmβmnþ1; ð1Þ

where αmn and βmn denote the complex amplitudes of a light
pulse in the left and right fiber ring. The temporal position
of a pulse within a ring corresponds to a lattice site n while
the round trip number is the time step m. The splitting ratio
of the beam splitters at stepm is parametrized by θm so that
the reflection and transmission amplitudes are given by
cos θm and sin θm, respectively. Lastly, an electrooptical
phase modulator (PM) applies an extra phase φm to all light
pulses in one of the rings at a time step m.
We consider a time-periodic version of the model

described by Eq. (1) with two steps per period TF. The
coupling between rings alternates between θ1 and θ2 on odd
and even steps. In the experiments and simulations pre-
sented below, we use θ1 ¼ π=4 − 0.1 and θ2 ¼ π=4 − 0.4.
Similarly, φm takes the values φ1 ¼ c1φ and φ2 ¼ c2φ,
where φ ∈ ½−π; π�, and c1;2 are integer coefficients
[Fig. 1(b)]. The periodicity of the system in synthetic
space and time allows one to apply the Floquet-Bloch

ansatz to the eigenstates of Eq. (1): ðαmn ; βmn Þ† ¼
ðA;BÞ†e−iEm=2eikn=2, with E being the quasienergy,
and k the quasimomentum associated to the real-space
position in the lattice.
For a fixed value of φ ¼ 0, the system has one

dimension, and it presents anomalous edge modes for
specific values of the splitting ratios θ1 and θ2, as studied
in Ref. [22]. Interestingly, the phase φ can be seen as an
additional parametric dimension, with periodicity between
½−π; π�. In this way the model becomes two-dimensional
with two bands E�ðk;φÞ defined in the generalized
momenta space defined by k and the parametric dimension
φ [see Figs. 1(c) and 1(d)] [12,23]. The use of parametric
dimensions has been very successful in augmenting the
available dimensions in synthetic materials and in explor-
ing topological order in quasicrystals [24,25], Berry cur-
vature in photonic bands [6], the four-dimensional quantum
Hall effect [26,27], and nonlinear Thouless pumping [28].
The periodicity of the Brillouin zone in k, φ, and E

allows for the engineering of bands with nontrivial wind-
ings. An example of such peculiar band structure is shown
in Fig. 1(d). The bands are inclined in quasienergy: when φ
is changed, they experience a shift in quasienergy and a
lateral displacement along quasimomentum k [Fig. 1(e)],
the combined effect resulting in their winding.
Insights into the topological character of the winding

of the bands can be gained by looking at the evolution
operator after one Floquet period (two steps in our model):

UFðk;φÞ ¼ eiKφT2S2T1S1; ð2Þ

where the unitary operators S1;2 and T1;2 represent the
action of beam splitters and phase shifts along the lattice,
and K ≡ ðc1 þ c2Þ=2 [23]. From Eq. (2) one can see that
K ≠ 0 imprints an additional net phase to one of the rings
during one Floquet period and breaks the generalized
inversion symmetry UFðk;φÞ ↔ UFð−k;−φÞ, leading to
the winding of the bands along the quasienergy direction.
This net phase gained by light traveling in the left ring can
be seen as an on site potential (see the Supplemental
Material [23] for a Hamiltonian description of the model),
and it cannot be gauged away. The phase added periodi-
cally by the modulator is not a trivial shift of the model and,
as we will see in the following, has strong consequences in
the dynamics of wave packets.
The quasienergy winding is a topologically protected

property of the bulk of the system. The corresponding
invariant can be defined using a homotopic property
of UF [29]:

ν ¼
X

j¼�

1

2π

Z
2π

0

dφ
∂Ej

∂φ
¼ 1

2πi

Z
2π

0

dφTr

�
U−1

F
∂UF

∂φ

�
; ð3Þ

which gives ν ¼ 2K [23]. Since our model features two
bands, the number K has a simple meaning: it shows how

FIG. 1. Floquet winding metals. (a) The experimental platform
consists of two 40 m long fiber rings with a 0.55 m difference of
length coupled via a variable beamsplitter (VBS). One ring
contains a PM that controls the phase of light pulses. (b) The
dynamics in the rings can be mapped onto a lattice: propagation
in the left (right) fiber ring is represented with orange (blue) lines,
and lattice sites are shown with circles. TF represents one
Floquet driving period. (c)–(d) Calculated band structure of a
Floquet insulator (c) with K ¼ 0 (c1 ¼ 1, c2 ¼ −1) and a Floquet
winding metal (d) with K ¼ −1 (c1 ¼ −2, c2 ¼ 0). (e) Selected
band cuts for different values of φ corresponding to the red
band in (d).
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many times each band winds along the quasienergy axis for
one full turn of φ from −π to π. Note that Eq. (3) does not
depend on k: the winding is a property of the φ synthetic
dimension, and it takes the same value for any value of k.
We experimentally demonstrate the Floquet winding

metals by injecting a single ≈1 ns long laser pulse at a
position αm¼1

n¼0 and following the dynamics of the system at
each time step [Fig. 2(a)]. Such localized excitation
populates all the bands of the model. We get access to
both the amplitude and the phase of light αmn , βmn in each
ring at each lattice site n and time stepm by using an optical
heterodyning technique [21]. For this, we let the light pulse
at each position and time step interfere with a local
oscillator shifted by 3 GHz from the frequency of the
laser used to inject the initial pulse. By Fourier trans-
forming the beating of the signal and the local oscillator we
can directly reconstruct the bands as shown in Fig. 2(b). See
the Supplemental Material [23] for further details.
For φ ¼ 0 [Fig. 2(b)] the system features two symmetric

bands with respect to E ¼ 0. We repeat such measurement
for values of φ from −π to π, thus performing a full
tomography of the band structure Eðk;φÞ. The measured
tomographies integrated along the quasimomentum direc-
tion, for c1 and c2 corresponding to K ¼ 0, 1, and 2 are
presented in Fig. 2(c). All subplots feature two distinct

bands, each of which wraps K times along the quasienergy
axis. These results are in perfect agreement with numerical
simulations in Fig. 2(d).
The topological feature we have just described does not

present any particular effect on the real-space edges of the
lattice. However, it has direct consequences on the wave
packet dynamics of the system: it manifest itself in a new
kind of Bloch suboscillation [12]. If we adiabatically
propagate a wave packet with quasimomentum k along
the φ dimension as sketched in Fig. 3(e), the group velocity
vg ¼ ∂Eðk;φÞ=∂k periodically changes its sign, resulting in
suboscillations of the wave packet. Analytical inspection of
the expression for vg shows that within one Bloch period
the group velocity changes its sign 2K times, thus leading
to observation of K suboscillations. The number of sub-
oscillations is thus determined by the winding number. It is
independent of the coupling parameters θ1, θ2, and it is
preserved in the presence of a weak spatial disorder in
the couplings (see Ref. [12] and the Supplemental
Material [23] for further details). This feature is present
as long as the wave packet dynamics is adiabatic and out of
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FIG. 2. Tomography of the quasienergy bands. (a) Experi-
mentally observed split-step coherent walk for φ ¼ 0. (b) Re-
constructed band structure of the system. (c) Measured band
tomographies for K ¼ 0 (c1 ¼ 1, c2 ¼ −1), K ¼ 1 (c1 ¼ 2,
c2 ¼ 0), and K ¼ 2 (c1 ¼ 3, c2 ¼ 1) integrated over the quasi-
momentum k. (d) Band structure from simulations of Eq. (1) for
the same parameters as in (c).
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FIG. 3. Topological Bloch suboscillations. (a)–(c) Measured
real-space evolution of a wave packet injected close to k ¼ 0 into
one of the bands and evolved under an adiabatic increase of φ for
(a) K ¼ 1 (c1 ¼ 2, c2 ¼ 0), (b) K ¼ 2 (c1 ¼ 5, c2 ¼ −1), and
(c) K ¼ 3 (c1 ¼ 8, c2 ¼ −2). Note that in (a) and (b), the initial
wave packet has a momentum slightly smaller and larger,
respectively, than k ¼ 0 due to the experimental injection
technique. Dashed orange lines show analytical curves. The
increase rate dφ=dt is 2π · 0.008 rad=turn for (a) and (b), and
2π · 0.012 rad=turn for (c). (d) Dots, measured evolution of the
center-of-mass of the wave packet in (c); solid line, analytic
solution. Error bars represent 1σ confidence intervals and gen-
erally are smaller than the dot size. Gray areas emphasize the
difference between the maximal and the minimal achievable
amplitudes of suboscillations in the analytic curve. (e) Illustration
of the experimental procedure.
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the particular case when the bands are flat (i.e., θ1,
θ2 ¼ π=2), for which there are no Bloch oscillations at all.
To observe the topological suboscillations, we prepare a

wave packet at k ≈ 0 in one of the quasienergy bands [23]
and follow its evolution while φ, imprinted by the phase
modulator, is adiabatically increased at a constant rate
∂φ=∂t. The observed dynamics for winding metals with
K ¼ 1, 2, and 3 is shown in Figs. 3(a)–3(c) respectively.
The wave packet shows an oscillatory behavior toward
positive values of the lattice sites. The weak signal in the
other direction arises from residual initial excitation of the
other band. While the full period of oscillations is always
equal to Δφ ¼ 2π, there are exactly K suboscillations over
one full period. An analytical calculation of the wave
packet trajectory, shown in Figs. 3(a)–3(c) with dashed
lines, reproduces the observed behavior.
When K ¼ 1, the system shows a single oscillation over

a full period Δφ ¼ 2π. This matches the expected behavior
for the usual Bloch oscillations of a wave packet accel-
erated by an electric field over the Brillouin zone. Indeed,
in this case, there is a gauge transformation that links the
dynamics under an adiabatic increase of φ to the dynamics
of a wave packet in a lattice subject to a static potential
gradient (i.e., a constant electric field), as discussed in
Refs. [12,30]. For higher values of K, suboscillations
appear within a period of acceleration (φ → φþ 2π).
Interestingly, in general, the suboscillations do not have
a constant amplitude. Figure 3(d) shows evidence of the
variations of amplitude within a Bloch period (compare
green and red arrows) for a wave packet adiabatically
accelerated in a lattice with K ¼ 3 over two periods of Δφ.
These amplitude variations allow one to identify in an
unambigous manner the overall period of the Bloch
oscillations, and show that the appearance of suboscilla-
tions cannot be explained by a redefinition of the perio-
dicity of the dynamics. The observed behavior matches
well the analytical calculations [solid line in Fig. 3(d)].
Finally, we demonstrate that Floquet winding metals can

support a second topological property: the emergence of
anomalous chiral edge states. They arise neither from the
winding number ν nor from the Chern number that vanishes
due to the phase rotation symmetry [31]. They rather
emerge from the generalized Floquet topological invariant
related to the micromotion of the system during one driving
period [4]. Such anomalous Floquet phases have been
reported in 1D photonic lattices [22,32–34] and in 2D
systems [35–38]. Here we show spectral evidence of the
anomalous topological edge states and that they can also
exist in a Floquet winding metal.
The phase diagram for the anomalous Floquet phases in

the topological system is determined by the values of θ1
and θ2 for which the gap between the two bands closes
[Fig. 4(a)], and it does not depend on the winding K.
Following Ref. [31], a bulk topological invariant can be
constructed to account for the number of edge states in the

anomalous regime for K ¼ 0 (orange areas in the figure).
These anomalous phases are preserved for any value of K
as confirmed by simulations via the presence of edge states
at the edge of a single semi-infinite lattice [23].
In our experiment we take profit of the full control over

the couplings between the lattice sites to engineer interfaces
between different anomalous topological phases. To dem-
onstrate this, we consider a winding metal with K ¼ −1
and prepare two topologically different phases with an
interface at position n ¼ 0. For lattice sites n < 0 we set
θ1 ¼ π=4, θ2 ¼ π=4 − 0.4, forming an anomalous phase.
For n > 0 we create a trivial phase with θ1 ¼ π=4 − 0.4,
θ2 ¼ π=4 [triangles in Fig. 4(a)]. When exciting the inter-
face with a single pulse, the system shows a localized edge
state at n ¼ 0 [see Fig. 4(b) for φ ¼ π=2]. Simultaneously,
the band structure reveals a flat band in one of the gaps
[Fig. 4(c)], which can be associated to the localized
interface state. To probe the full dispersion of the edge
states in k and φ we perform the full band tomography
[Fig. 4(d)]. The characteristic spectral flow of edge states
between two bands is evident in both gaps, in good
agreement with simulations [Fig. 4(e)]. Remarkably, edge
states are present even in the absence of a complete gap.
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FIG. 4. Topological edge states. (a) Phase diagram of anoma-
lous Floquet phases as a function of the coupling amplitudes in
the first θ1 and second step θ2. (b) Measured dynamics when
exciting the lattice at a single site located at the interface between
two lattices belonging to two different phases [triangles in (a)],
showing a localized interface state. Both lattices are prepared
withK ¼ −1 (c1 ¼ 1, c2 ¼ −3) and φ ¼ π=2 but different values
of θ1 and θ2. (c) Measured dispersion showing a flat band in one
gap (shown with the arrow), corresponding to the interface state.
(d) Experimental and (e) theoretical band tomography of the
winding metal for all values of φ confirming the presence of edge
state bands in each of the gaps.
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While the topological origin of the edge states is confirmed
by the fact that it requires the presence of an interface
between two different phases, the access to the topological
invariant associated to this two-dimensional split-step
Floquet operator and the robustness against scattering to
bulk modes in the gapless phases is an interesting question
to be addressed in subsequent works.
We have shown the experimental realization of an

anomalous Floquet metal, which simultaneously hosts
two different topological properties. Whereas the first
one appears as a consequence of the breakup of inversion
symmetry and manifests in Bloch suboscillations, the
second one leads to the formation of edge states. Both
of these topological properties arise from the Floquet nature
of the system and therefore do not have static counterparts.
The flexibility of our platform paves the road to studies of
Floquet winding bands with unconventional dispersion in
higher dimensions, and opens unprecedented perspectives
in the search for novel Floquet topological phases when
combined with selected spatial symmetries or when includ-
ing, for instance, non-Hermitian hoppings [9,14,15].
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