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9.4 Microcavity luminescence at k = 0 at 5 K after pulsed non-resonant excitation
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9.10 (a) Time- and energy- integrated degree of circular polarization (open trian-
gles) and total PL intensity (red dots) as a function of the photoexcitation
power of σ+ pulses. (b) Same as (a) for the degree of linear polarization un-
der TM-polarized excitation. The dotted line depicts the onset of non-linear
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9.11 (a) Angle dependence of the energy- and time-integrated linear polarization
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10.1 (a) Far �eld PL emission from the investigated microcavity under non-resonant
excitation at δ = 0. In the LPB, a sketch of the TOPO con�guration is pre-
sented. The CW pump and pulsed idler arrive at the sample with angles of
10◦ and 16◦ respectively, giving rise to a signal state expected at 4◦ from the
growth direction (normal to the surface). (b) Far �eld PL emission under
resonant pump and idler excitation in the OPA con�guration (same con�gu-
ration as the TOPO with both pump and idler beams being CW). The laser
scattered-light from the CW pump and idler (indicated by the yellow dots)
has been blocked in order to avoid the bleaching of the detection CCD. The
signal state is visible at kx−0.5 µm−1. (c) Sketch of the pump and idler laser
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10.2 Time evolution of the TOPO signal at k = 0 after the arrival of the pulsed
idler for pump and idler energies and momenta such that the phase matching
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10.4 (a) PL intensity as a function of energy and momentum of the emission for
ky = 0, at short time (12 ps) after the arrival of the pulsed laser in the TOPO
con�guration. Note that the image is obtained by recording the emission
of the TOPO (CW-pump plus pulsed-idler) and subtracting the emission
caused by the CW pump only. In this way only the polaritons populated by
parametric processes triggered by the pulsed idler are recorded. The white
lines are a linear and parabolic �t as in (b). (b) Black dots: PL-peak positions
extracted from (a). Open points: dispersion under just CW-pump excitation
(no idler pulse). Red dots: LPB dispersion obtained under low-power, non-
resonant excitation in the same spot as that depicted by the black dots. The
orange arrow indicates the energy of the CW-pump, while the green arrow
depicts the position of the signal state. The blue line is a linear �t to the
black dots with kx < −0.45 µm−1, while the grey line is a parabolic �t to the
emission at kx > −0.45 µm−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

10.5 Solid dots: Gaussian width of the polariton packet in the y-direction ex-
tracted from the real space images of Fig. 10.3(a). Solid red line: calculated
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10.6 Real-space (a) and momentum-space (b) images, of an incoherent polariton
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Chapter 1

Introduction

Semiconductor materials o�er a privileged workbench for the study of many fun-

damental aspects of the light-matter interaction and the collective excitations in solids. Due

to the vast richness of their physical properties, they have been the subject of intense study

in the past �ve decades. Still, the advent of new semiconductor species, the never-ending

improvement of the growth techniques, and the continuous development of the experimental

methods make this �eld more active than ever.

One of the fundamental factors in the development of the �eld of optical properties

of semiconductors has been the appearance of epitaxial growth techniques. They have

enabled the fabrication of high quality arti�cial semiconductor heterostructures in which the

excitations can be con�ned from three to two dimensions (quantum wells), one dimension

(quantum wires) and zero dimensions (quantum dots).

Regardless the dimensionality, electrons, holes and excitons are the fundamental

excitations of direct gap semiconductors, and dominate their optical properties. These quasi-

particles can be both created and probed through the absorption and emission of photons

in these materials. When a small number N of excitations are created in a semiconductor,

the behavior and properties of the system can be considered the same as those for just one

excitation. At most, the amplitude of the considered e�ect (for instance, the number of

emitted photons) must be scaled with N . When many of such excitations are created, the

physics of the system changes signi�cantly, giving rise to very rich phenomena.

The aim of this work is to provide a wide picture, using di�erent con�nement condi-

tions (from bulk to two-dimensional) of the many-body properties of the optical excitations

in direct gap semiconductors. In particular, the dynamics of such excitations will be studied
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by means of time-resolved photoluminescence. In this technique, the system is excited with

an optical pulse with energy above the band gap and the emitted light dynamics is recorded

and analyzed.

Chapter 2 presents a brief introduction to the energy levels (bands), symmetries

and optical properties of the excitations of bulk zinc-blende type semiconductors. GaAs and

its ternary relatives InGaAs and AlGaAs are semiconductors of this type, and they will be

the constituent materials of the heterostructures investigated here. Particular attention will

be paid to the description of the excitonic resonances, as excitons dominate many of the

optical properties and will be the subject of intense experimental study in later chapters.

In Chapter 3 we describe the e�ect of reducing the material dimensionality on the

optical excitations. Namely, we will address the properties of quantum wells. In the �nal

part of this chapter we will introduce a novel heterostructure with very exotic and rich

properties: the semiconductor microcavity. In this heterostructure not only the material

excitations (quantum well excitons) but also the interacting light-�eld modes are con�ned

to two dimensions. This is achieved by the epitaxial growth of one or several quantum

wells inside a planar cavity sandwiched between two high-re�ectivity dielectric mirrors. The

cavity and the mirrors conform a micro-Fabry-Perot resonator, in which the electromagnetic

�eld is con�ned. The continuum of available electromagnetic modes in vacuum is reduced

to a discrete number of modes inside the cavity, with increased energy density. Light-matter

interactions in such an environment are expected to be strongly modi�ed. Indeed, under

particular circumstances that are detailed in Chapter 3, the excitations in this system are

no longer cavity photons or excitons, but a quantum mixture called polariton.

In those two chapters (2 and 3), the fundamentals of the optical excitations subject

of study in this work are introduced. The next chapter (4) describes the samples and em-

ployed experimental techniques. The remaining of this work is then devoted to experimental

results and their analysis.

Chapters 5 and 6 discuss experimental results in bulk GaAs. In Chapter 5 the mi-

croscopic origin of the emission at the exciton resonance is investigated. Koch and coworkers

recently proposed that the emission at the 1s exciton energy might not exclusively arise from

the radiative recombination of excitons: unbound Coulomb correlated electron-hole pairs can

also participate in the emission at that energy.[145, 44] This proposal is very di�erent to

the traditional conception of the optical properties of direct-gap semiconductors, and has

opened a very active debate.[270, 44, 150, 18] In this framework, in this chapter we show
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that attending to the photoluminescence dynamics in bulk GaAs, a precise phase diagram

of the microscopic origin of the luminescence can be obtained. Depending on the sample

temperature and excitation density conditions, the emission arises from the radiative recom-

bination of excitons or from unbound electron-hole pairs. The many-body interactions in

the system rule which type of excitation is responsible for the luminescence characteristics.

In the next chapter (6) we explore the spin dynamics of photoexcited electrons

in GaAs. The study of the electron spin in semiconductors has been very active since the

early seventies, with the pioneering works of the soviet community.[187] However, not much

attention has been paid to the many-body e�ects on the electron spin dynamics, which will

be the subject of this chapter.

In the roadmap we are following in the study of the many-body physics of pho-

toexcited semiconductors under di�erent light/matter con�nements, the next step is the

investigation of quantum well (2D) excitations. In Chapter 7 we report an experimental

con�guration that allows for the tailoring of the electron and hole distributions in the quan-

tum well bands by means of laser pulses.

The last three Chapters (8, 9 and 10) are devoted to the physics of microcavities, in

which light and matter excitations are simultaneously con�ned in an environment of strong

interaction, giving rise to polaritons. The �rst one of them (Chapter 8) o�ers a detailed

introduction to the many-body e�ects in these systems. Chapter 9 presents a detailed

experimental map of the microcavity light-emission dynamics under non-resonant excitation,

paying special attention to the conditions that lead to the destruction of polaritons, driving

the microcavity system into VCSEL operation.1

The most important many-body e�ects in microcavities are related to the bosonic

nature of polaritons. Polaritons are composite bosons with a very small mass (10−5 times

the electron mass) due to their partially photonic nature, and the quantum phenomena

associated to their bosonic character can be observed in optical experiments. Recently,

Bose-Einstein condensation of polaritons has been observed,[133] revealing properties such

as the spontaneous appearance of long-range order.[161] Other important bosonic e�ects, like

the observation of super�uidity of polaritons, are expected in these systems. In Chapter 10

we present experimental results on the interaction of polariton �uids with native defects on

1VCSEL is the acronym for a Vertical Cavity Surface Emitting Laser, a device with a material structure
very similar to that of a microcavity. However, in this system, the conditions of strong light matter coupling
leading to the observation of polaritons are not ful�lled. In a VCSEL the quantum well is the active medium
and the cavity conforms the optical resonator.
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the samples. In order to create and observe the polariton �uids, a novel experimental space-

and time-resolved imaging system is presented. The �uids interact in very particular ways

with the defects showing, for the �rst time in a polariton system, behavior compatible with

manifestations of super�uidity.



CHAPTER 1. INTRODUCTION 17

Introducción

Los semiconductores ofrecen un privilegiado banco de pruebas para el estudio de

muchos de los aspectos fundamentales de la interacción luz-materia y las excitaciones colec-

tivas en los sólidos. Debido a la gran riqueza de sus propiedades físicas, los semiconductores

han sido objeto de intenso estudio en las pasadas cinco décadas. Aun así, la síntesis de

nuevos materiales semiconductores, la interminable mejora de las técnicas de crecimiento

y el constante desarrollo de las técnicas experimentales hacen que este campo se encuentre

más activo que nunca.

Uno de los factores fundamentales en el desarrollo del campo de las propiedades

ópticas de semiconductores ha sido la aparición de las técnicas de crecimiento epitaxial.

Éstas han posibilitado la fabricación de heterostructuras arti�ciales de alta calidad, en las

que las excitaciones propias del material pueden ser con�nadas desde tres a dos dimensiones

(pozos cuánticos), una dimensión (hilos cuánticos) y cero dimensiones (puntos cuánticos).

Cualquiera que sea la dimensionalidad, las excitaciones fundamentales de los semi-

conductores de gap directo son los electrones, huecos y excitones, y determinan sus propiedades

ópticas. Estas cuasipartículas pueden ser tanto creadas como estudiadas a través de la ab-

sorción y emisión de fotones. Cuando un número pequeño N de excitaciones es creado en

un semiconductor, su comportamiento y propiedades pueden ser consideradas equivalentes

a las obtenidas para una única excitación. Como mucho, la amplitud del efecto considerado

(por ejemplo, el número de fotones emitidos) debe escalar con N . Cuando son muchas las

excitaciones creadas, la física del sistema cambia de forma importante, dando lugar a nuevos

y ricos fenómenos.

El objetvo �nal de este trabajo es mostrar una imagen transversal, a través de

diferentes condiciones de con�namiento (desde tres a dos dimensiones), de las propiedades de

muchos cuerpos de las excitaciones ópticas en semicconductores de gap directo. En concreto,

la dinámica de tales excitaciones es estudiada a través de técnicas de fotoluminiscencia

resuelta en tiempo. En esta técnica, el sistema es excitado con un pulso óptico de energía

superior a la de la banda prohibida, y la dinámica de emisión es medida y analizada.

El capítulo 2 presenta una pequeña introducción a los niveles de energía (bandas),

simetrías, propiedades ópticas de smiconductores volúmicos de tipo zinc-blenda. GaAs y los

compuestos ternarios relacionados InGaAs y AlGaAs son semiconductores de este tipo, y
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serán los materiales constituyentes de las heteroestructuras investigadas aquí. Se prestará

especial atención a la descripción de las resonancias excitónicas, dado que los excitones

dominan la mayoría de las propiedades ópticas de estos sistemas y serán objeto de intenso

estudio en capítulos posteriores.

En el capítulo 3 se describe el efecto de la reducción de la dimensionalidad del

material en las exictaciones ópticas. En concreto nos centraremos en las propiedades de los

pozos cuánticos. En la parte �nal de este capítulo introduciremos una heteroestructura con

novedosas y exóticas propiedades: la micocavidad semiconductora. En esta heteroestructura

no sólo las excitaciones materiales (excitones de pozo cuántico), sino también los modos del

campo de luz interactuante, están con�nadas a dos dimensiones. Esto se consigue medi-

ante el crecimiento epitaxial de uno o varios pozos cuánticos dentro de una cavidad plana

emparedada entre dos espejos dieléctricos de alta re�ectividad. La cavidad y los espejos

conforman un micro-resonador de Fabry-Perot, en el que el campo electromagnético se en-

cuentra con�nado. El continuo de modos electromagnéticos disponibles en el vacío se reduce

a un número discreto de modos dentro de la cavidad. La interacción luz-materia en un en-

torno como éste se ve fuertemente modi�cada. De hecho, bajo determinadas circunstancias

detalladas en el capítulo 3, las excitaciones en este sistema dejan de estar bien descritas por

fotones o excitones y pasan a componerse de una mezcla cuántica de ambos, los polaritones.

En esos dos capítulos (2 y 3) se hará una introducción a los fundamentos básicos de

las excitaciones ópticas objeto de estudion en este trabajo. El siguiente capítulo (4) describe

la muestras y técnicas experimentales empleadas. El resto de este trabajo está dedicado a

la descripción de resultados experimentales y a su análisis.

Los capítulos 5 y 6 muestran resultados experimentales en GaAs volúmico. En el

capítulo 5 se investiga el origen microscópico de la emisión a la energía de la resonancia

excitónica. Koch y sus colaboradores han propuesto recientemente que la emisión a la

energía del exciton 1s puede no ser debida exclusivamente a la recombinación radiativa de

excitones: pares de electrones y huecos correlacionados por interacción Coulombiana también

pueden participar en la emisión a esa energía.[145, 44] Esta propuesta es muy diferente de

la concepción tradicional de las propiedades ópticas de los semiconductores de gap directo,

y ha provocado un debate muy activo.[270, 44, 150, 18] En este contexto, en este capítulo

se demuestra que, atendiendo a la dinámica de fotoluminiscencia en GaAs volúmico, se

puede obtener un diagrama de fases detallado del origen microscópico de la luminiscencia

(con origen en excitones o en pares electrón-hueco). Dependiendo de la temperatura de la
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muestra y de las condiciones de excitación, la emisión procede de la recombinación radiativa

de excitones o de pares no ligados de electrones y huecos. Las interacciónes de muchos

cuerpos en este sistema determinan qué tipo de excitación es responsable de las propiedades

de la luminiscencia.

En el siguiente capítulo (6) se exploran la dinámica de espín de electrones fotoex-

citados en GaAs. El estudio del espín de los electrones ha sido un campo muy activo desde

principios de los años setenta, con los trabajos pioneros de la comunidad soviética.[187] Sin

embargo, no se ha prestado mucha atención a los efectos de muchos cuerpos en la dinámica

de espín. Éste será el tema de estudio de este capítulo.

En esta ruta que estamos siguiendo en el estudio de la física de muchos cuerpos en

semiconductores fotoexcitados bajo distintos con�namientos de luz y materia, el siguiente

paso es la investigación de las excitaciones de los pozos cuánticos (2D). En el capítulo 7 se

muestra una con�guración experimental que permite la manipulación de las distribuciones

de electrones y huecos en las bandas del pozo cuántico por medio de pulsos láser.

Los tres últimos capítulos (8, 9 and 10) se dedican a la física de microcavidades, en

las que las excitaciones de luz y materia están simultáneamente con�nadas, en un entorno de

fuerte interacción, dando lugar a los polaritones. El primero de ellos (capítulo 8) ofrece una

introducción a los efectos de muchos cuerpos en estos sistemas. El capítulo 9, muestra un

detallado mapa experimental de la dinámica de emisión de luz bajo excitación no-resonante,

prestando especial atención a las condiciones que conducen a la destrucción de polaritones,

llevando el sistema al régimen de operación VCSEL.2

Los efectos de muchos cuerpos más importante en microcavidades están relaciona-

dos con la naturaleza bosónica de los polaritones. Los polaritones son bosones compuestos

con una masa muy pequeña (10−5 veces la masa del electrón), debido a su naturaleza par-

cialmente fotónica, y los fenómenos cuánticos asociados a su carácter bosónico pueden ser

observados en experimentos ópticos. Recientemente, la condensación de Bose-Einstein de

polaritones ha sido observada,[133] revelando propiedades tales como la aparición espontánea

de orden de largo alcance.[161] Otros importantes efectos bosónicos, como la super�uidez,

deberían ser, en principio, observables. En el capítulo 10 se presentan resultados experi-

2VCSEL son las sigla en inglés de láser de emisión super�cial de cavidad vertical (Vertical Cavity Surface
Emitting Laser). Se trata de un dispositivo con una estructura material muy similar al de una microcavidad.
Sin embargo en este sistema no se dan las condiciones de acoplamiento fuerte luz-materia que conducen a
la aparición de polaritones. En un VCSELs los pozos cuánticos actuán como medio activo y la cavidad
conforma el resonador óptico.
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mentales sobre la interacción de �uidos de polaritones con defectos nativos en las muestras.

Para crear y observar los �uidos de polaritones, hemos diseñado un experimento novedoso de

formación de imágenes espaciales con resolución temporal. Los �uidos interaccionan de un

modo muy especial con los defectos mostrando, por primera vez en un sistema polaritónico,

comportamientos compatibles con manifestaciones de super�uidez.
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Chapter 2

Introduction to zinc-blende type bulk

semiconductors

2.1 Electronic structure in III-V bulk semiconductors: the

bands

In this thesis we will deal with crystalline semiconductors, which are ordered struc-

tures with a high atom density (on the order of 1023 per cm3).The formal way of �nding the

eigenstates of such systems consist on solving the Schrödinger equation with the Hamiltonian

that describes all the interactions and particles in the system. However, the large number

of particles demands the use of several approximations to make the problem tractable. One

usually starts by taking the Born-Oppenheimer approximation that assumes that electrons

respond almost instantaneously to the movement of the nucleii, due to the very large dif-

ference in the mass of the two types of particles [m0/mnuc ∼ 10−4, where m0(nuc)is the

free electron (nuclear) mass]. Accordingly, one can separate the Hamiltonian into three

contributions:

H = Hions +He−ions +He. (2.1)

Hions is the Hamiltonian that describes the interaction between the atomic nucleii and the

core electrons, i.e., those electrons lying in the �lled atomic orbitals, with high binding

energies. The eigenstate of Hions, accounts for the crystalline structure of the material,

characterized by the di�erent spatial positions of the ions. He−ions describes the interaction
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between the valence electrons and the ions when they su�er small displacements from their

equilibrium positions. The valence electrons are those occupying the outer incomplete shells

of the atoms conforming the crystal. They are loosely bound to the nucleus and propitious to

interact with charges of surrounding nucleii. For example, in the case of Ga the incomplete

shell is 4s2 4p1 and in As 4s2 4p3 and so the valence electrons in GaAs will have p-character

in their ground state. He−ions is also known as the electron-phonon interaction Hamiltonian

and is responsible for some of the energy relaxation mechanisms of excited electrons. In

this section we will neglect this term as its contribution to H is much smaller than the

others. Finally, He is Hamiltonian describing the valence electrons with the ions �xed in

their equilibrium positions, and can be written in the following way (cgs units):

He =
∑
i

p2
i

2 ·m0
+

1
2

∑
i 6=j

e2

4πε0 |ri − rj |2
−
∑
i,j

Qj · e2

4πε0 |ri −Rj |2
, (2.2)

where pi is the electron momentum, e is the electron charge, ε0 is the vacuum permittivity,

m0 the free electron mass, Qj is the absolute ion valence, and ri(Rj) is the electron (ion)

position.

2.1.1 Crystalline structure

As we introduced earlier, the eigenstate of Hions de�nes the crystalline structure
of the considered material. Many III-V (GaAs, AlP, AlAs, GaP, GaSb, InP, InAs, InSb, as

well as their ternary compounds) and II-VI (ZnS, ZnSe, ZnTe, CdTe) semiconductors present

the well known zinc-blende structure. This structure, which is also present in diamond, is

characterized by two face center cubic (fcc) lattices shifted one from the other by a distance

a/4 along the main diagonal of the unit cell depicted in Fig. 2.1, where a is the length of

the sides of the cell. In diamond (or elemental semiconductors such as Si, Ge, α-Sn), all the

atomic sites are occupied by C atoms, in a tetrahedral covalent bonding con�guration in

which the outer shell orbitals present sp3 hybridization. In the case of the binary compounds,

each type of atom (A and B) occupies one of the fcc lattices. In this con�guration each A

atom is bound to four B atoms. Due to the slightly di�erent electronic a�nities of A and

B, the chemical bond is partly ionic.

The highly symmetrical structure of the crystal reduces the number of possible

solutions of Eq. 2.2. In order to �nd them it is convenient to de�ne the crystallographic

unit cell of the binary zinc-blende structure, indicated by the primitive lattice vectors a1,
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Figure 2.1: (a) Unit cell of a binary zinc-blende semiconductor. (b) Primitive lattice vectors
conforming the Bravais lattice. (c) Reciprocal lattice. In grey are shown the �rst Brillouin
zones of two neighboring unit cells. The high symmetry directions and points are indicated.
From Ref. [301].

a2 and a3, as shown in Fig. 2.1(b). By translating this unit cell by integer multiples of the

primitive lattice vectors, the whole crystal structure can be composed, in what is called a

Bravais lattice. It is also useful to de�ne a reciprocal lattice, whose primitive vectors bi are

given by the expression:

ai · bj = 2π · δij (2.3)

or, equivalently, by:

bi = 2π
(aj × ak)

(a1 × a2) · a3
, (2.4)

where i, j, k are permutations of the indexes 1, 2, 3. The reciprocal primitive cell for the case

of zinc-blende crystal is shown in Fig. 2.1(c), and conforms a body centered cubic lattice.

A �rst Brillouin zone can be de�ned in the reciprocal space as the volume determined by

the bisectrix of the reciprocal primitive vectors. Two �rst Brillouin zones are indicated in

shades in Fig. 2.1(c). The center of each one of them is labeled Γ, from which three high

symmetry directions can identi�ed [labeled Λ (Γ→L), ∆ (Γ→X) and Σ (Γ→K).

The symmetry properties of the direct lattice will simplify the solution of the real-

space valence-electron Hamiltonian denoted by Eq. 2.2. The reciprocal space, characterized

by the reciprocal lattice, represents the space of the momentum of the electrons in the crys-
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tal as it is de�ned following the same commutation relations as those of the position and

momentum operators. The high symmetry of the reciprocal space, will determine many

properties of the eigenstates (wavefunctions) and band structure (eigenvalues) of the va-

lence electrons in the semiconductor. For instance, if two wavevectors in reciprocal space

can be transformed one into each other by a unitary transformation (symmetry operation),

the energies of the corresponding states should be the same. On the same ground, the wave-

functions describing those states should re�ect the same symmetry operation properties.

The symmetry of the wave functions can help to determine if any matrix element associated

to a given operator is zero. In this way, selection rules for di�erent processes (light absorp-

tion/emission, Raman scattering, spin properties) can be established without the need to

know the exact form of the wavefunctions.

The zinc-blende crystalline structure presents 24 symmetry transformations, be-

longing to the point group Td, in group theory terminology. Considering the unit cell

vectors described in Fig. 2.1 the 24 transformations are six re�ections (σd), six 90º rotations

plus re�ection (S4), three 180º rotations (C2), eight 120 rotations (C3), and the identity

transformation (E). In reciprocal space the 24 symmetry transformations can only be per-

formed for momentum states at the Γ point. Once we consider states with other momenta

the symmetry of the wavefunctions is reduced and its calculations hardened, while along

the directions of high symmetry and at the L, X and K points the wavefunctions retain

invariance under many of those transformations. Let us also point out that the zinc-blende

crystal does not possess inversion symmetry. This gives rise to the so called bulk inversion

asymmetry e�ects.

2.1.2 Band structure

Once we have seen the symmetry properties of the direct and reciprocal lattice in

zinc-blende type semiconductors, we can come back to the problem of �nding the eigenstates

of the Hamiltonian given by Eq. 2.2. In order to further simplify that Hamiltonian, we

will consider a mean-�eld approximation, in which each valence electron feels an averaged

interaction coming from the ions and the rest of the electrons. Therefore, all valence electrons

can be described by the same Schrödinger equation, given by:
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Hsingle−e·ψnk (r) =
[

p2

2 ·m0
+ V (r) +

~
4 ·m2

e · c2
(σ ×∇ · V ) · p

]
·ψnk (r) = En (k)·ψnk (r) ,

(2.5)

where ~ is Plank's constant over 2π, c is the speed of light, σ sigma are the spin Pauli

matrices, ψnk (r) are the eigenfunctions with a given momentum k and band index n state,

and En (k) the energy of the eigenstates. The �rst term corresponds to the kinetic energy

of the considered electron, and V (r) is the screened crystalline potential. The third term,

Hso depicts the spin-orbit coupling, which is a relativistic e�ect resultant from the coupling

between the electron spin and its orbital angular momentum. This term scales with the

atomic number of the atom, and can be signi�cant in semiconductors with heavy atoms, like

InSb or CdTe. We have just seen that the crystal potential V (r) presents many symmetry

properties. For instance, due to this characteristic, Hsingle−e commutes with integer trans-

lations along the primitive unit cell vectors. We can then use the Bloch theorem and expand

the eigenfunctions ψn into free electron plane waves enveloped by a periodic function:

ψnk (r) = unk (r) · eik·r (2.6)

where unk (r) is a function with the same periodicity as the crystal potential, and k are the

momenta of the free electron plane waves. IfR is a vector obtained from a linear combination

of the primitive vectors (R = n1a1 + n2a2 + n3a3, where ni are integer numbers) then as

ψnk (r +R) = ψnk (r) and unk (r +R) = unk (r):

eik·(r+R) = eik·r (2.7)

If the crystal has a characteristic lateral size L, and a lattice parameter d (i.e., L = Nd,

where N is the total number of atoms along the lateral direction of the crystal), then Eq. 2.7

imposes conditions on the allowed values of k:

ki =
2π · ni
L

=
2π · ni
Nd

(2.8)

where and ki are the electronic wavevectors along the three spatial directions (x, y, z).

Condition 2.8 quantizes the allowed eigenstates in the system, as ni can only take the

values −N/2,− (N − 1) /2, . . . ,+N/2. The momentum space states just enumerated are

restricted to the �rst Brilluoin zone in which k spans from −π/a to π/a. However, due to



26 2.1. ELECTRONIC STRUCTURE: THE BANDS

the periodicity of the reciprocal lattice there is also an expression of the Bloch theorem in k

space analogous to Eq. 2.7: the wavefunctions ψnk (r) are invariant under transformations

of the form k→ k+Q, where Q ≡ n1b1 +n2b2 +n3b3 [see Fig. 2.2(b)]. Usually all allowed

wavevectors are represented in a reduced zone scheme which covers just the �rst Brilluoin

zone, with wavevectors represented as "folded" states [see Fig. 2.2(f)].[301, 11]

The k -states are discretized with a separation given by ∆k = 2π/L, which in a

crystal of macroscopic size amounts to about 1 cm−1, so small that states can be assumed to

conform a continuum in most experiments and theoretical treatments. Such quasi-continuum

of states gives rise to the characteristic bands of crystalline solids. The number of allowed

states in a volume Ω in k space is given by Ω
(2π/L)3

, or equivalently, the density of states

(DOS; the number of states per unit volume) in k space is given by:

g (k) =
L3

8π3
(2.9)

One of the most important consequences of the periodicity of the reciprocal lattice

is the appearance of energy gaps for wavevector states close to the edges and center of the

Brilluoin zone. Even if the periodic potential V (r) is very week and it can be considered as

a perturbation, the electron states with wavevectors close to Q are subject to the so-called

Bragg re�ections, as the momentum of these states cannot be unambiguously de�ned.[11]

The direct consequence of this situation is the appearance of energy gaps in the quasi-free

electron dispersion for such states, as depicted in Fig. 2.2(c)-(f). The magnitude of the gap

in this approximation is given by the actual strength of the perturbation V (r).

The simple arguments we have just described to �nd a �rst approximation to the

solution of the electronic valence states in a crystal were just relying on the translation

invariance of the system. Analogously to the use of these translational invariance, a careful

account of the other above mentioned symmetry properties will constrain the actual shape

of the possible wavefunctions and eigenenergies. However, the resolution of Eq. 2.5, even

when considering these symmetry properties, requires a more profound approach and to

take into account the precise shape of the periodic potential V (r), which will eventually

determine the band gaps and u (r) in Eq. 2.6. For the case of zinc-blende type semicon-

ductors, several theoretical approaches have been followed on this issue.[301] One of them is

the pseudopotential method, that substitutes the real shape of V (r), by a pseudopotential

Vps (r) for each atom in the primitive cell. These pseudopotentials have strong oscillations
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Figure 2.2: (a) Free electron dispersion in one dimension. (b) Dispersion relations separated
by a reciprocal lattice wavevector (K), the �rst step in the construction of the band diagram
of electrons in a weak periodic potential. (c) Same as (b) including the re�ection e�ects at the
edge of the Bragg plane. (d) Portions of (c) that belong to the original parabola centered at
k = 0. (e) E�ect of all Bragg planes at integer multiples of the reciprocal lattice wavevectors.
(f) Levels of (e) in a reduced-zone scheme. (g) Levels of (e) in a repeated-zone scheme. From
Ref. [11].
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(a) (b)

GaAs

Figure 2.3: Energy bands of Si (a) and GaAs (b) calculated with the pseudopotential method.
The red lines depict the highest occupied bands at zero temperature. From Ref. [301].

near the ion cores and smooth variations in the outer shells, where the valence electrons

lye, highly screened from the actual shape of the potential close to the cores. The pseu-

dopotentials and the wavefunctions solution to Eq. 2.5 are expanded in series characterized

by the so called pseudopotential form factors, which are determined in an iterative process

by making use of empirical information or from �rst principles calculations accounting for

many body e�ects.[301] Figure 2.3 shows the energy bands of Si and GaAs in the single

electron approximation, which de�ne the allowed energy states that are solution to Eq. 2.5

calculated by the pseudopotential method. Only the dispersions along the high symmetry

directions Λ, ∆ and Σ are shown. The actual shape of the bands calculated by the this

method is qualitatively not far from the quasi-free electron situation depicted in Fig. 2.2.

This is caused by the strong screening of the sea of valence electrons around the ions in the

mean �eld approximation, which smooths and weakens the actual potential V (r) felt by

these electrons.

The valence electrons in semiconductors �ll complete bands, thus conferring the

insulating character to these materials at zero temperature. In Fig. 2.3 the highest occupied

valence bands in Si and GaAs have been marked in red. The major di�erence between the

two is that in the case of GaAs the momentum of the highest energy valence band states
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coincides (in the so-called fundamental gap) with that of the bottom of the �rst excited

band, the so called conduction band, while in the case of Si these two points have di�erent

momenta. Attending to this property, GaAs is said to be a direct gap semiconductor, while

Si is of the indirect type. This di�erence will have major implications in the light-matter

coupling properties in these two materials, as exposed later.

Other methods to calculate the band structure in semiconductors are, for instance,

the k · p method or the tight binding approach.[301] The �rst one makes direct use of the

Bloch theorem (Eq. 2.6) and concentrates on �nding the electron wavefunctions around the

high symmetry points making use of perturbation theory. When Eq. 2.6 is substituted into

Eq 2.5 we obtain an equation for the unk of the form (here we will not consider the Hso
term):

[
p2

2 ·m0
+

~k · p
m0

+
~2k2

2 ·m0
+ V (r)

]
· unk (r) = Enk · unk (r) , (2.10)

which at k = 0 takes the form:

[
p2

2 ·m0
+ V (r)

]
· un0 (r) = En0 · un0 (r) . (2.11)

The solutions to this equation are much easier to obtain than those to Eq. 2.5. Once the

eigenenergies and eigenfunctions at k = 0 have been obtained, the solutions to other k-

states around the high symmetry points can be attained by standard perturbation theory.

Assuming that En0 lies at a band maximum or minimum, considering the k-terms in Eq. 2.10

as perturbations to the functions un0, a second order expansion in k gives:

unk = un0 +
~
m0

∑
n′ 6=n

〈un0 |k · p|un′0〉
En0 − En′0

un′0, (2.12)

Enk = En0 +
~2k2

2 ·m0
+

~2

m2
0

∑
n′ 6=n

|〈un0 |k · p|un′0〉|2
En0 − En′0

. (2.13)

From Eq. 2.13 it is straightforward to de�ne an e�ective mass m∗n of the band n just by

considering small values of k around k = 0:

Enk = En0 +
~2k2

2 ·m∗n
, (2.14)

where
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1
m∗n

=
1
m0

+
2

m2
0k

2

∑
n′ 6=n

|〈un0 |k · p|un′0〉|2
En0 − En′0

. (2.15)

The e�ective mass de�nition can be generalized, no matter the method for the band calcu-

lation, as:

1
m∗n

=
1
~2

(
∂2E

∂k2

)−1

. (2.16)

As the actual wavefunctions are obtained, the k · p method provides information

on the matrix elements determining, for instance, optical phenomena. Thus, attending

to the experimentally measured gaps and oscillator strengths of optical transitions, the

wavefunctions around the high symmetry points can be accurately calculated and extended

to the computation of the wavefunctions from over the entire Brillouin zone. An interesting

characteristic of the k · p method is that it allows to follow how the momentum coupling

between the states of di�erent bands a�ects the curvature of those bands and the gaps

between them, as can be directly observed in Eqs. 2.12 and 2.13.

The second mentioned method, the tight binding approach, is conceptually opposite

to the k · p. It starts by considering the atoms conforming the crystal as isolated (i.e.,

in�nitely far apart). When the atoms are brought together the atomic orbitals start to

overlap and extended states are formed. In this approach the electronic states are described

as linear combinations of the atomic orbitals, which have then to be diagonalized accounting

for the interaction energy of the overlapping orbitals with neighboring atoms. In this way,

the valence orbitals develop into bands, and the interactions open up energy gaps. Again,

the coupling between di�erent shells and orbitals in�uences the curvature of the bands.

From the band calculations, using the above mentioned methods, we can learn some

qualitative features of the band structure. In particular, the k · p and tight binding methods

provide very valuable information on the origin of the symmetry and angular momentum of

the bands and their connection to the atomic valence orbitals. From now on we will restrict

our analysis to the case of direct gap zinc-blender type semiconductors, like GaAs. In this

case, the highest energy �lled band [marked in red in Fig. 2.3(b)] originates from p-type

atomic valence orbitals. This band, which we will refer to as the valence band, posses a

bonding character, with orbital angular momentum 1, inherited from its p-type origin. On

the same grounds, the lowest energy empty band, which we will refer to as the conduction

band, originates from s-type valence orbitals and has an antibonding character, with zero
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orbital angular momentum. The capital Greek letters and subindexes in Fig. 2.3 depicts

the symmetry characteristics of the wavefunctions, which are directly related to the angular

momentum of the wavefunctions, with the notation of group theory.

So far we have not considered the spin of the electrons, except when we introduced

the spin-orbit coupling term in Eq. 2.5. The e�ect of the spin of the electrons must be

accounted in order to obtain the proper degeneracy of the bands as well as their total angular

momentum, which will be of great importance when determining the selection rules for

optical transitions. The conduction band near the fundamental gap (Γ point) has an orbital

angular momentum of zero, with a wavefunction analogous to the |s〉 atomic wavefunction.

Thus the composition of the zero orbital momentum with a spin S = 1/2 results in a band

with total angular momentum Jcond = 1/2.1 For the wavefunctions corresponding to these

states Hso is zero in �rst approximation and the only e�ect of the electron spin is to set the

degeneracy (Kramers) of the band to two-fold, with the third component of the total angular

momentum Jzcond = +1/2, −1/2. We can thus label the conduction band wavefunctions at

k = 0 as:

∣∣∣u↑c,0〉 ≡ ∣∣∣∣12 , 1
2

〉
= |s, ↑〉 , (2.17)

∣∣∣u↓c,0〉 ≡ ∣∣∣∣12 , −1
2

〉
= |s, ↓〉 (2.18)

where ↑ (↓) indicates the magnitude of the third component of the spin Sz (which in this

case coincides with Jzcond).

The situation for the valence band in terms of the total angular momentum is

much more complicated. Let us again initially restrict ourselves to the case of the zero

linear-momentum states (k = 0) at the top of the valence band. Before introducing the

electronic spin in the picture, let us recall that these states have a p-type origin with angular

momentum L = 1. Thus, attending to orbital angular momentum this states are three-fold

degenerate (Lz = +1, 0, −1) and their wavefunctions, by analogy with the p-shell atomic

wavefunctions, can be labeled as |x〉, |y〉, |z〉.[52] With this nomenclature, the eigenstates of

the orbital angular momentum L are (|L, Lz〉):

1When we speak of total angular momentum we are referring to the operator Ĵ2, with eigenvalues
~J(J + 1). From now on we will refer to the angular momentum operators by the value of J .
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|1, 1〉 = − 1√
2

(|x〉+ i |y〉) , (2.19)

|1, 0〉 = |z〉 , (2.20)

|1,−1〉 =
1√
2

(|x〉 − i |y〉) . (2.21)

We now introduce the spin of the electrons. The composition of the L = 1 orbital

angular momentum with S = 1/2 results in states with total angular momenta J = 3/2 and

J = 1/2. From the Clebsch-Gordan coe�cients for the composition of angular momenta,

the eigenstates of the total angular momentum Ĵ can be written as (|J, Jz〉):[76]

∣∣∣u↑hh,0〉 ≡ ∣∣∣∣32 , 3
2

〉
= − 1√

2
(|x, ↑〉+ i |y, ↑〉) (2.22)

∣∣∣u↑lh,0〉 ≡ ∣∣∣∣32 , 1
2

〉
= − 1√

6
(|x, ↓〉+ i |y, ↓〉) +

√
2
3
|z, ↑〉 (2.23)

∣∣∣u↓lh,0〉 ≡ ∣∣∣∣32 ,−1
2

〉
=

1√
6

(|x, ↑〉 − i |y, ↑〉) +

√
2
3
|z, ↓〉 (2.24)

∣∣∣u↓hh,0〉 ≡ ∣∣∣∣32 ,−3
2

〉
=

1√
2

(|x, ↓〉 − i |y, ↓〉) (2.25)

∣∣∣u↑so,0〉 ≡ ∣∣∣∣12 , 1
2

〉
=

1√
3
|z, ↑〉+

1√
3

(|x, ↓〉+ i |y, ↓〉) (2.26)

∣∣∣u↓so,0〉 ≡ ∣∣∣∣12 ,−1
2

〉
=

1√
3
|z, ↓〉 − 1√

3
(|x, ↑〉 − i |y, ↑〉) , (2.27)

We have labeled the states according to the name of the valence bands to which they give rise

when we consider the dispersions outside k = 0 (hh: heavy-hole band, lh: light-hole band, so:

split-o� band). We can extract two very important consequences from the description of the

wavefunctions attending to the total angular momentum: (i) the total angular momentum

of these states is a well de�ned quantity (i.e., a good quantum number),2 and (ii) the

2In order to arrive to this conclusion, several approximations were made. If the full Hamiltonian is
considered, it can be shown that even restricting our analysis to k = 0 the valence band states are not
eigenstates of Ĵz. The reason for this is that the zinc-blende crystal lacks inversion symmetry, as will be
discussed in Sec. 2.1.3.
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J = 3/2 are four-fold degenerate and the J = 1/2 are two-fold. Note that Hso in Eq. 2.5

splits the J = 3/2 from the J = 1/2 states by the so called spin-orbit splitting (δEso). In

Fig. 2.3(b), for GaAs the J = 3/2 valence band states are denoted by Γ8 at the Γ point and

the J = 1/2 by Γ7, and a splitting can be appreciated. In GaAs δEso amounts to 0.34 eV at

room temperature. As we mentioned earlier, this relativistic e�ect is stronger as the atomic

number of the constituents atoms increases, values of δEso for increasingly heavier binary

compounds[301] are 0.75 eV for GaSb, 0.81 eV for InSb, and 0.93 eV for ZnTe. Lighter

binary compounds like GaN or diamond show δEso of 0.017 eV and 0.044 eV, respectively.

2.1.3 Valence band mixing

In the previous discussion we have seen that the valence band states with zero

momentum at the Γ point present a well de�ned angular momentum (see footnote 2). When

we consider states with k 6= 0, the Jz = ±3/2 states at k = 0 [Eqs. 2.22-2.25] give rise to

the so called heavy-hole band, while the Jz = ±1/2 states [Eqs. 2.23-2.24] give rise to the

so called light-hole bands (the origin of the names lies on the di�erent curvatures of each

band). However, as already mentioned, the k · p terms of the Hamiltonian 2.10 mix the

wavefunctions of the di�erent valence orbitals with well de�ned angular momentum when

giving rise to the band states with k 6= 0. This can be clearly seen in the sum terms of

Eqs. 2.12 and 2.13. While the total angular momentum of the band states at k = 0 can

be well de�ned, the k 6= 0 states do not present a well de�ned third component of the

angular momentum Jz. The mixing e�ect is more important as the the considered value

of k increases and the considered band is closer to another band [Eq. 2.12]. Therefore this

e�ect can be very important for the heavy- and light-hole bands, which actually lye very

close together (they are degenerate at k = 0). In this work, we will restrict the experiments

and analysis to states close enough to the k = 0, Γ point for the wavefunction valence-band

mixing to be important, and therefore they can be neglected.

Let us mention that in reduced dimensionality systems, such as QWs, con�nement

induces the splitting of the valence band states, and the mixing e�ects, though still present,

are greatly reduced at k = 0.

Another e�ect worth mentioning, which is not directly related to the valence-

band mixing but a�ects the angular momentum properties of the system, is the aforemen-

tioned bulk inversion asymmetry. This e�ect arises from the lack of inversion symmetry in
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zinc-blende crystals and results in the appearance of spin-dependent terms in the Hamilto-

nian 2.10. The most important consequence is the momentum splitting of the conduction

band,[40] i.e. electrons with the same wavevector but opposite spin have slightly di�erent

energies. However this e�ect is very small compared to the linewidths and scales considered

here and will be neglected, except in Chapter 6, where we will see that it is relevant when

considering the electron spin-�ip mechanisms.

2.1.4 Parabolic band approximation

Although the precise shapes of the conduction and valence bands may be very

complicated, in particular for large k values, many properties of semiconductors can be well

characterized, and understood, considering only small momenta states around the funda-

mental gap (Γ point in GaAs). As seen in Fig. 2.3 the curvature of the bands at this point

are pretty constant. Therefore it is convenient to approximate the band shapes as parabolic

bands around the fundamental gap, as it was already introduced in Eqs. 2.14, 2.15 and 2.16

in the framework of the k · p method. Inherent to this approximation is the de�nition of ef-

fective masses for the bands. We can generalize Eqs. 2.14 by considering di�erent curvatures

along di�erent momentum directions[11]:

Enk = En0 +
~2

2

∑
i,j

ki
1

µijn
kj (2.28)

where i, j denote the three spatial components of the considered k-vector and µijn is an

e�ective mass tensor. Fig. 2.4(a) shows the conduction band Γ6, the heavy-hole (hh) and

light-hole (lh) Γ8 bands as well as the Γ7 split-o� band in a given direction. We will restrict

our analysis to these three bands as all our studies will concentrate on excitations with

energy close to the fundamental gap. Despite the fact that the valence bands show negative

curvature, which according to Eq. 2.16 would result in negative e�ective masses, we will

always regard the valence band e�ective masses as positive, as we will consider the hole

picture of excitations in this band (see Sec. 2.2). Let us note that in this picture the angular

momentum (J) and spin of holes is also opposite to that in the electron picture.

Figure 2.4(b) depicts constant energy surfaces of the hh and lh bands in a zinc-

blende type semiconductor calculated by the k · p method.[301] Considering that these

isoenergy lines collapse into one point at the band maximum, it is easy to see that dif-

ferent band curvatures exist along di�erent directions. In particular, dispersions along the
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Figure 2.4: (a) Conduction and valence band dispersions of GaAs in the e�ective mass
spherical approximation. (b) Warping of the heavy- and light-hole bands shown on two
constant energy surfaces in the (010-100) plane; from Ref. [301].

(010) and (100) directions present a so-called warped structure, due to the cubic symmetry

of zinc-blende crystals.

An additional and convenient approximation is to consider the band structure as

having spherical symmetry. In this way the tensor µijn reduces to a mean e�ective energy

mass m∗n for each band n. This is the approximation we will consider from now on, unless

stated otherwise. Table 2.1 summarizes some e�ective masses of interest and band gaps of

some relevant semiconductors.

Even though the spherical band approximation is commonly accepted, let us point

out that around the Γ point the real curvatures of the heavy and light conduction bands

present strong anisotropies when considering di�erent momentum directions. In particular

along a given direction x [100] the heavy-hole band is certainly �heavy� (small curvature) and
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Fund. gap (eV) δEso (eV) m∗cond m∗hh m∗lh m∗so
Si 1.12 0.044 0.36 0.49 0.16 0.24

GaAs 1.519 0.34 0.063 0.51 0.082 0.15
CdTe 1.60 1.06∗ 0.096 1.38 - -

Table 2.1: Fundamental gap energies, δEso, and the e�ective masses (in units of the free
electron mass) for Si at 300 K and GaAs [Ref. [122]] and CdTe [Ref. [104]] at 4 K along the
∆ (Γ→ X, [100]) direction in reciprocal space. ∗Ref. [295].

the light-hole band is �light� (large curvature) while along the perpendicular direction (within

the yz plane) the heavy-hole band becomes �light� and the light-hole band becomes �heavy�.

This is e�ect is known as the mass reversal e�ect which is particularly well accounted when

calculating the bands within the Luttinger Hamiltonian, and has been profusely studied in

two dimensional systems.[24, 86, 129] In bulk systems, this e�ect indirectly appears in the

band calculations along di�erent high symmetry directions,[91, 102, 40] but it is rarely shown

explicitly when the valence band masses are calculated. In any case, when the bands are

averaged in three dimensions it is found that the mean e�ective mass of the heavy and light

bands is very similar.[8, 296] For this reason, we will consider just a mean hole e�ective mass

m∗h when treating excitons in bulk systems in Sec. 2.2.1, following the Baldereschi-Lipari

theory in spherical approximation.[19, 20]

2.1.5 Density of States

Equation 2.9 evaluates the density of states in momentum space. It is sometimes

convenient to express the density of states of a band in energy space (DOS), g (E) d (E),

de�ned as the number of one-electron levels in the energy range from E to E + d (E).[11]

If f (k) determines the occupation distribution of a band, the total number of electrons in

that band per unit volume would be:

N =
1
vol

ˆ
g (k) f (k) dk =

1
vol

ˆ ∞
0

4πk2g (k) f (k) dk, (2.29)

or:

N =
1
vol

ˆ ∞
0

g (E) f (k (E)) dE, (2.30)

where we have considered that the band presents no degeneracy, g (k) is isotropic in momen-

tum space and f (k) = f (k). Considering the DOS obtained in Eq. 2.9 and the e�ective
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mass approximation in spherical bands, by equating the right hand side of Eqs. 2.29 and

2.30 we obtain:

g (E) =
(m∗n)3/2

√
2~3π2

√
E (2.31)

A general expression for g (E) can be obtained attending to the number of allowed

states that �t within a given volume in k space. Attending to these basis, for a generic

energy dispersion function E (k), g (E) can be expressed as:

g (E) =
1

16π3

ˆ
dSk
∇E (k)

, (2.32)

where Sk is a constant energy surface. The DOS will be used to calculate the light absorption

spectrum of direct gap semiconductors.

2.2 Band excitations: electrons, holes and excitons

In a semiconductor at zero temperature the valence bands are completely �lled

with electrons, while the conduction band is completely empty. This is the ground state

of the system. The fundamental excitation consists on the promotion of an electron from

the top of the valence band to the bottom of the conduction band. In this way all the

valence band states except one remain occupied. It is convenient to picture this empty

state as a positive charge in an empty valence band. This is the de�nition of hole, and its

description as a positive charge enables us to consider the valence band masses as positive

in all practical calculations, despite the fact that from the single electron picture they have

negative curvature [See Fig. 2.4 and Eq. 2.16].

In intrinsic semiconductors (undoped), like those treated here, each electron excited

in the conduction band leaves a hole in the valence band. We will only consider light exci-

tations, in which each photon arriving at the sample with energy greater than the bandgap

has a �nite probability of creating an electron-hole pair, as we will treat later. However,

other type of excitations are possible, like electrical injection of electron irradiation.

The excited electrons and holes in the bands conform an out of equilibrium system

which will gradually tend to the ground state situation by radiative (in particular in direct

gap semiconductors of high crystalline quality) and non-radiative processes. Nonetheless,

as long as excited carriers populate the conduction and valence bands, electrons and holes
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tend to form thermalized distributions.[62, 225, 54] At low excitation densities, the low

occupation of the band states allows to use Maxwell-Boltzmann statistics (fnMB (E)) to

describe the carrier distributions in their respective bands, however, at high densities, Fermi-

Dirac occupation functions (fnFD (E)) should instead be used:

fnMB (E) = ρn

(
2π~2

m∗nkBT

)3/2

e
− E

kBT , (2.33)

fnFD (E) =
1(

e
E

kBT
−µ
)

+ 1
, (2.34)

where ρn is the density of carriers in the nth band, T is the temperature of the carriers,

kB is Boltzmann's constant, and µ is the chemical potential obtained in each case from the

normalization condition ρn =
´
gn (E) fnFD (E) dE. At low densities fnMB (E) presents the

same shape as the truly fermionic distribution fnFD (E), with the advantage of being much

easier to manage in calculations. We can arbitrarily set a boundary in the use of Eqs. 2.33

and 2.34. At a given temperature, for densities up to an occupation of 0.5 at E = 0 we will

keep using fnMB (E), while for higher densities we will go back to fnFD (E). Figure 2.5 shows

the density at which an occupation of 0.5 is attained at E = 0, according to fnMB (E), as

a function of the carrier temperature for carriers in the conduction and valence bands in

GaAs.

2.2.1 Excitons

Negatively charged electrons in the conduction band and positively charged holes in

the valence band are subject to Coulomb attraction. This electron-hole interaction gives rise

to bound states, called excitons. In semiconductors with the morphologies we are considering

the electron-hole interaction is highly screened by the sea of non-excited electrons in the

valence band. In this case the net wavefunctions of the bound electron and hole are extended

over several crystal unit cells, and the states are regarded as Wannier-Mott excitons. This

situation is opposed to that found in ionic crystals, in which electrons and holes are strongly

bound together and their wavefunctions localized in the same or nearest unit cell. In this

case excitons are said to be of the Frenkel type.

To model the excitons within the e�ective mass approximation, let us just con-

sider that we have in the crystal an excited electron with momentum ke and a hole with
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Figure 2.5: Carrier density in the conduction (black), light-hole (blue) and heavy-hole (red)
bands in GaAs at which an occupation of 0.5 at E = 0 is attained following fnMB (E).

momentum kh. The time independent Schrödinger equation would be in this case:

(
p2
e

2m∗e
+

p2
h

2m∗h
+

e2

ε |re − rh|

)
ψ (re, rh) = (E − Egap)ψ (re, rh) (2.35)

where pe (ph) and m∗e(h) are, respectively, the momentum and e�ective mass of the electron

(hole), re and rh are the electron and hole positions, Egap is the semiconductor fundamental

gap, and ε is the dielectric function of the material. In the case of the mass of the hole, in

Eq. 2.35 we have considered a mean hole mass m∗h as discussed in Sec. 2.1.4 as a results of

the spherical band approximation.

In the considered picture of a single electron-hole pair excitation, the e�ect of

the rest of the valence electrons present in the crystal is accounted by the e�ective mass

approximation and by the dielectric constant, that includes the background interaction with

those electrons, and results in an e�ective screening of the electron-hole Coulomb interaction.

Notice that Eq. 2.35 is analogous to that describing the hydrogen atom in atomic physics.

As the Coulomb interaction depends only on the relative distance between the electron and

the hole, it is convenient to de�ne a new set of coordinates given by the position of the

center of mass of the electron and hole (R) and its relative distance (r):

R =
m∗ere +m∗hrh
m∗e +m∗h

, r = re − rh. (2.36)
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With that change of variables, Eq. 2.35 becomes:

(
P 2

2
(
m∗e +m∗h

) +
p2

2µeh
+
e2

εr

)
ψ (R, r) = (E − Egap)ψ (R, r) , (2.37)

where P = −i~∇R, p = −i~∇r and µ−1
eh = (m∗e)

−1 + (m∗h)−1 is the reduced mass of the

electron-hole pair. The solutions to 2.37 can be factorized into ψ (R, r) = ϕ (R)ϑ (r). The

equation corresponding to ϕ (R) corresponds to that of a free particle of massm∗e+m∗h, while

that corresponding to ϑ (r) is the well known hydrogen atom equation whose solutions are

the product of Laguerre polynomials [Lnl (r)] and spherical harmonic functions [Ylm (θ, φ)]

with the eigenenergies given by:

Ern = −Eb
n2
, n = 1, 2, 3, . . . Eb =

µehe
4

2ε2~2
. (2.38)

Therefore, the total energy and eigenfunctions of the exciton are:

Enlm = Egap +
~2K2

2
(
m∗e +m∗h

) − Eb
n2
, (2.39)

ψnlm (R, r) = eiK·RLnl (r)Ylm (θ, φ) , (2.40)

where n, l,m are the principal, angular an magnetic quantum numbers, respectively, K is

the exciton center of mass momentum and Eb is the binding energy. The exciton ground

state at rest is given by the n = 1, l = 0, m = 0 wavefunction with K = 0:

ψ100 (R, r) =
2√
a3
B

e−r/aB , (2.41)

where aB = ~2ε/µehe
2 is the exciton Bohr radius and characterizes the spatial extension

of the excitonic complex. In GaAs the heavy-hole exciton (formed from the binding of a

conduction electron and a heavy-hole) has a Bohr radius at low temperature of 11.4 nm,

while its binding energy is of 4.2 meV, four orders of magnitude smaller than the binding

energy of an electron to a proton in the hydrogen atom. If the exciton is formed from the

binding of an electron with a light-hole we will refer to it as a light-hole exciton. Note

that so far we have considered just a mean hole mass for the excitons. This would mean

that both heavy- and light-hole excitons have the same binding energy and Bohr radius.
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Nonetheless we can still distinguish and describe them independently because each hole-

type wavefunction has di�erent angular momenta. When we reduce the dimensionality of

the system, the breakdown of the symmetry will result in the inhibition of the mass reversal

e�ect and heavy- and light-hole excitons will present di�erent reduced masses and binding

energies (see Sec. 3.1.1).

Equations 2.39 and 2.40 tell us some important properties of the excitons. One

of them is that excitons can move freely within the crystal. Nonetheless, interaction with

the lattice excitations, with crystal defects and with carriers and other excitons will result

in dissipation. We can also see that the ground state energy of the exciton (before the

constituent electron and hole pairs recombine) is located at an energy Eb below the band gap

energy, and that the exciton possesses its own parabolic band. Therefore, the fundamental

excitation in the system is not conformed by an electron and a hole at their band edges, but

by the formation of a 1s exciton at rest.

So far we have not considered the spin of the excitons. As we have seen in the

previous sections, the constituent particles of the exciton may have a well de�ned total

angular momentum. For the sake of simplicity, given the complicated band mixing e�ects

in the heavy and light hole bands far from the k = 0 states, lets restrict the analysis to

excitons formed from electrons and holes with k = 0. In this case both particles have a

well de�ned total (J) and third component (Jz) of the angular momentum, as depicted in

Eqs. 2.22-2.25. The resulting exciton will also have a well de�ned total and third component

of the angular momentum (JX , JzX). From now on we will refer to JzX as the spin of the

exciton. Table 2.2 presents all the possible spin states of excitons formed from the binding

of an electron with a heavy or a light hole. Excitons with JzX = 0, 1 , 2 can be formed,

however, as we will describe later, only excitons with JzX = 1, 0 can couple to light due to

momentum conservation rules.

Note also that though the exciton is conformed by two fermions, an electron and

a hole, its total angular momentum is integer. For this reason, in the dilute limit regime,

in which interexcitonic interaction and screening is not very important, excitons can be

described as bosons. Particles of this kind, whose constituents are fermionic but follow

bosonic statistics are referred to as �composite bosons�. Therefore, excitonic interactions are

well described by bosonic operators, and such an approach is widely used when treating the

photon-exciton interaction in the strong coupling regime (see Sec. 3.2.2). However, there

have been some recent theoretical proposals which stress the importance of the fermionic



42 2.2. BAND EXCITATIONS: ELECTRONS, HOLES AND EXCITONS

Jz hh +3/2 hh −3/2 lh +1/2 lh −1/2
+1/2 |+2〉 |−1〉 |+1〉 |0〉
−1/2 |+1〉 |−2〉 |0〉 |−1〉

Table 2.2: Exciton spin state as a function of the third component of the total angular
momentum of its constituent electron (left column) and hole (top row).

composite nature of excitons even in the dilute regime.[60, 59, 58]

2.2.2 Many body e�ects

The description we have followed so far made used of the single electron picture,

in which the system Hamiltonian 2.5 accounted for the average e�ect of the sea of valence

electrons on a particular electron. Moreover, it assumed that all electrons where in the

ground state of the system, i.e., fully occupying the valence band. Under these conditions the

band diagrams depicted in Fig. 2.3 and the associated e�ective masses near the Γ point were

calculated. If we create one excitation in the system, for instance, an exciton, the situation

remains pretty much the same, with the same band gaps, e�ective masses and dielectric

constants characterizing the material. However, when many electrons are promoted from

the valence to the conduction band the situation starts to di�er signi�cantly from the one

electron picture. Under these circumstances large populations of excited electrons and holes

with spread momentum distributions can freely move and interact. If the densities are high

enough so as to overcome the degeneration limit de�ned in Fig. 2.5, a �rst correction to

the energy of the system with respect to the single electron picture would come from the

antisymmetrization of the fermionic total electron and hole wavefunctions, in a Hartree-

Fock approach. On the same grounds, Coulomb correlation e�ects, and the carrier screening

associated to them, are very much a�ected by the wide spread in momentum of the carriers.

These problems have been thoroughly treated theoretically in the literature.[105, 308, 280]

One of the direct consequences of the many-body e�ects is the change of the band gaps. In

particular, the increase in the screening of the system caused by the excited carriers results in

the reduction of the fundamental gap. Also the e�ective masses are a�ected and even exotic

spin-dependent phenomena has recently been predicted in this regime.[303] Interactions of

the carrier ensembles are a�ected too, and the rate of exchange of energy between the excited

electrons and holes and the lattice (carrier-phonon interaction) is altered.

As for the excitons, the increase in the carrier screening at high densities when
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both excitons and electron-hole plasma are present, results in a net change (an increase)

of the dielectric constant ε that describes the surrounding excitonic media in Eqs. 2.39 and

2.40. Thus, the exciton binding energy gets progressively reduced with the increase of carrier

density, and eventually excitons dissociate, as will be thoroughly discussed in Sec. 5.4.

An estimation of the density of these e�ects to be signi�cant might be given by the

degeneration threshold de�ned in Fig. 2.5.

2.3 Optical transitions

2.3.1 Electron-hole pair transitions

We have already mentioned that the promotion of electrons from the valence to

the valence band can be carried out by optical excitation. To analyze this process in some

detail we will again consider the ground state of the system, in which the conduction band is

completely �lled with electrons. We will follow a quantum microscopic approach to the light

absorption and emission. However, semiclassical approaches via the calculation of the di-

electric functions near the optical transitions would yield analogous results.[301] The optical

transitions in a semiconductor are directly determined by two very important momentum

selection rules:

• Linear momentum in the absorption process3 must be conserved:

kγ = ki + kf (2.42)

where ki and kf are the initial and �nal states of the considered excited electron

(typically a state in the valence band and a state in the conduction band, respectively),

and kγ is the momentum of the incident photon. As this momentum is very small

compared to the typical carrier momenta in usual absorption experiments, Eq. 2.42

implies that only vertical transitions in the band diagram [Fig. 2.4(a)] are allowed.

Therefore, the optically allowed transitions impose ki ≈ −kf .

• Angular momentum in the absorption process must be conserved. This rule will impose

polarization selection rules in the optical transitions as it will be analyzed below.

3Here we will make explicit reference to the absorption processes, but the same considerations apply to
the emission.
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In order to include the light-matter interaction in the problem we should go back to the one

electron Hamiltonian [Eq. 2.5] and substitute the momentum operator p by p+ e
cA, where

A is the vector potential of the incident beam:

[
1

2 ·m0

(
p+

e

c
A
)2

+ V (r)
]
· ψ′nk (r) = En (k) · ψ′nk (r) , (2.43)

where we have neglected the spin-orbit coupling. To calculate the transition probabilities we

do not need to solve the complete Hamiltonian 2.43. We can treat the applied optical �eld as

a perturbation to the system. Keeping only the linear terms in the vector potential, selecting

the appropriate gauge and considering the electric dipole approximation, the perturbation

introduced by the light �eld can be introduced as an e�ective Hamiltonian Hdip = −er ·F ,
where F is the amplitude and polarization of the excitation coherent electric �eld. Now

we can apply Fermi's Golden rule to obtain the probability Pvc for the optically induced

transition of an electron from the valence to the conduction band per unit time:

Pcv =
2π
~
∑
k

|〈uc,k |Hdip|uh,k〉|2 δ (Ec (k)− Ev (k)− ~ω) (2.44)

where uc,k and uh,k are the conduction and corresponding hole band wavefunctions as de�ned

in 2.17, 2.18 and 2.22-2.25, and ~ω is the energy of the considered electromagnetic �eld

(either excitation or emission �eld).

In order to calculate Pcv, we need to obtain the electric dipole matrix elements

〈uc,k |r · F |uh,k〉. For this purpose it is convenient to expand the conduction and valence

wavefunctions in terms of the |s〉, |x〉, |y〉, |z〉 wavefunctions as in Eqs. 2.17-2.25. Let us

point out that given the symmetry properties of the wavefunctions and the position operator,

the only matrix elements of the r̂ operator are:[52]

〈s |rx|x〉 = 〈s |ry| y〉 = 〈s |rz| z〉 ≡ im0Π, (2.45)

where rz can be chosen as the direction of propagation of light. Additionally, the spin part of

the wavefunctions are not r dependent and keep the usual orthogonality properties. Recall

that we are working in the electron-hole picture, in which the spin orthogonality is given by:

(〈↑e| ↓h〉 = 1, 〈↑e| ↑h〉 = 〈↓e| ↓h〉 = 0, where e (h) indicates the electron (hole) spin. With

these considerations, the allowed transitions and their relative strengths can be explicitly

obtained.[186] If we restrict to the k = 0 states, the probability amplitudes for the transition

from the heavy-hole to the conduction band are:
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〈
u↓c,0 |r · F |u↑hh,0

〉
=
−1√

2
[〈s, ↓| rxFx |x, ↑〉+ i 〈s, ↓| ryFy |y, ↑〉] =

−i√
2
m0Π (Fx + iFy)

(2.46)

〈
u↑c,0 |r · F |u↑hh,0

〉
=

1√
2

[−〈s, ↑| rxFx |x, ↑〉+ i 〈s, ↑| ryFy |y, ↑〉] = 0 (2.47)

〈
u↓c,0 |r · F |u↓hh,0

〉
=

1√
2

[〈s, ↓| rxFx |x, ↓〉 − i 〈s, ↓| ryFy |y, ↓〉] = 0 (2.48)

〈
u↑c,0 |r · F |u↓hh,0

〉
=

1√
2

[〈s, ↑| rxFx |x, ↓〉 − i 〈s, ↑| ryFy |y, ↓〉] =
i√
2
m0Π (Fx − iFy)

(2.49)

and from light holes to the conduction band:

〈
u↓c,0 |r · F |u↑lh,0

〉
=
−1√

6
[〈s, ↓| rxFx |x, ↓〉+ i 〈s, ↓| ryFy |y, ↓〉] +

√
2
3
〈s, ↓| rzFz |z, ↑〉 =

=

√
2
3
im0ΠFz (2.50)

〈
u↑c,0 |r · F |u↑lh,0

〉
=
−1√

6
[〈s, ↑| rxFx |x, ↓〉+ i 〈s, ↑| ryFy |y, ↓〉] +

√
2
3
〈s, ↑| rzFz |z, ↑〉 =

=
−1√

6
im0Π (Fx + iFy) (2.51)

〈
u↓c,0 |r · F |u↓lh,0

〉
=

1√
6

(〈s, ↓| rxFx |x, ↑〉 − i 〈s, ↓| ryFy |y, ↑〉) +

√
2
3
〈s, ↓| rzFz |z, ↓〉 =

=
1√
6
im0Π (Fx − iFy) (2.52)

〈
u↑c,0 |r · F |u↓lh,0

〉
=

1√
6

(〈s, ↑| rxFx |x, ↑〉 − i 〈s, ↑| ryFy |y, ↑〉) +

√
2
3
〈s, ↑| rzFz |z, ↓〉 =

=

√
2
3
im0ΠFz (2.53)
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Equations 2.46-2.53 show that two possible optical transitions are forbidden in the

electric dipole approximation while the rest present very well de�ned polarization selection

rules. Transitions from the
∣∣∣u↑(↓)lh,0

〉
states to the

∣∣∣u↓(↑)c,0

〉
are in principle allowed if the

excitation �eld is linearly polarized along the propagation direction. This is not the case the

excitation �eld is a plane wave, which is a very good approximation for the experimental

excitation conditions treated in this work. Therefore, we will not consider this linearly

polarized transitions here. The other allowed transitions are active under right and left

circularly polarized light, as in the selected frame of reference these two polarizations (σ+

and σ−) are respectively de�ned as:

F+ =
1√
2

(F x + iF y) , (2.54)

F− =
1√
2

(F x − iF y) . (2.55)

Figure 2.6(a) sketches the relative value and associated polarization of the dipole matrix

elements at the Γ point depicted in Eqs. 2.46-2.53. The allowed transitions depicted in

Fig. 2.6(a) do not only account for the excitation of electrons to the conduction band but

also for the recombination of an electron-hole pair and the emission of a photon of the proper

polarization. For instance, a spin down electron from the conduction band is three times

more likely to recombine with a spin up heavy-hole (emitting a σ+ photon) than with a spin

down light-hole (emitting a σ− photon).

The previous analysis has focused on the conduction and band states at the band

edge (ke = kh = 0). When we consider states with increasing wavevectors, valence band

mixing e�ects start to play an important role. As we have described above, the third

component of the angular momentum is only well de�ned at the Γ point; at large wavevectors

the polarization selection rules are not well de�ned and we can expect polarization forbidden

transitions at k 6= 0 to become allowed. In this cases, a precise computation of the valence

band wavefunctions is needed to calculate the amount of spin-up and spin-down electrons

promoted from the valence to the conduction band by an excitation beam of well de�ned

polarization. At k = 0 and ~ω, a σ+ excitation beam will promote three times more spin

down electrons than spin up electrons to the conduction band. At large k states this electron

spin imbalance generated by the excitation beam will be reduced due to the valence-band

mixing e�ects.
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Figure 2.6: (a) Polarization and relative intensity of the matrix elements associated to the
electric dipole allowed transitions from the valence to the conduction band. (b) Same as (a)
for the resonant creation and recombination of heavy- and light-hole excitons.

In order to extract the actual absorption and emission spectra of an electron-hole

pair transition, it is convenient to transform the sum in Eq. 2.44 into an integral involving

a proper density of states. Within the parabolic band approximation, the energy di�erence

between the electron and hole bands is well de�ned and given by Eg + ~2k2/2µeh, where µeh is

the reduced e�ective mass of electrons and holes. In this sense we can de�ne a joint density

of states of the electron and hole bands, which will be the relevant density of states when

considering transitions form the valence to the conduction bands:

geh (E) =
(µ∗eh)3/2

√
2~3π2

√
E − Egap (2.56)

In this way, Eq. 2.44 can be expressed as:

Pcv (E) dE =
2π
~
|〈uc,Ec |Hdip|uh,Eh

〉|2 (µ∗eh)3/2

√
2~3π2

√
E − EgapdE (2.57)

where now Pcv (E) describes the probability per unit time that a valence to conduction

transition (or viceversa) involving photons of energy between E and E + dE takes place.

The wavefunctions
∣∣uc(h),E

〉
can be labeled with the electron and hole kinetic energies in the

parabolic and spherical approximation. As only vertical transitions are allowed, the kinetic

energy of the electron (Ec) and hole (Eh) involved in the emission or absorption process are

related by: Eh = E − Egap − Ee, and their momenta is ke = kh =
√

2
~2µeh (E − Egap).
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The emission (and absorption) due to electron hole pair recombination is pro-

portional to Pcv (E). If we only consider band to band transitions close to the Γ point,

the matrix element |〈uc,Ec |Hdip|uh,Eh
〉|2 can be taken as constant and independent of the

carrier kinetic energy. Nonetheless the polarization selection rules and transition relative

strengths detailed in Eqs. 2.46-2.52 must be taken into account. For instance, if we con-

sider the recombination of conduction band electrons with heavy-holes, the total emission

intensity will be given by:

Ihh−c(E) ∝
[∣∣∣〈u↓c |Hdip|u↑hh〉∣∣∣2 · f (E)e↓ f (E)hh↑+

+
∣∣∣〈u↑c |Hdip|u↓hh〉∣∣∣2 · f (E)e↑ f (E)hh↓ µ

3/2
e−hh · (E − Egap)1/2, (2.58)

where f (E)e↑(↓) is the spin-up (spin-down) electron occupation function in the conduction

band described by Eq. 2.34 [f (E)hh↑(↓): same for heavy holes in their valence band].

2.3.2 Exciton emission

Excitons can also couple to light. In fact, in high quality direct gap semiconductors

at low temperature the photoluminescence spectrum is dominated by the exciton recombi-

nation. In this process, the excited electron and hole that conform the exciton relax to

the ground state of the crystal by the emission of a photon. The same linear and angu-

lar momentum conservation rules aforementioned for unbound electrons and holes must be

considered. For instance, linear momentum conservation implies that only excitons with

center of mass momentum close to zero can couple to light, as KX = kγ ≈ 0. This restricts

the optically active excitons to a very narrow region in momentum space at the bottom

of the exciton dispersion band. When non-radiative recombination e�ects are small, this

narrow radiative region acts as a bottleneck for the exciton recombination (see Sec. 5.1.2

and Refs. [85, 203, 150]).

The total angular momentum conservation imposes again polarization-dependent

selection rules. Given that the crystal ground state is the absence of an exciton (Jz = 0),

the exciton absorption and emission selection rules is given by:

JzX + Jzγ = 0 (2.59)
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where Jzγ is the third component of the angular momentum of the incident photons, which

in the case of a circularly polarized σ+ (σ−) incident beam is +1 (−1).

A precise calculation of the matrix elements corresponding to the transition from

the empty state (|0〉) to the exciton state (|Xnlm, J
z
X〉) mediated by the electric dipole

interaction (Hdip) is required to obtain the transition probabilities. It is easy to see that due

to parity properties of the vector potential operator Â and the hydrogenic-like eigenfunctions

of the exciton (ψnlm (R, r)), the transition probabilities are proportional to |ψnlm (R, 0)|2

which is nonzero only for the l = 0 (m = 0) states.[301] Therefore, only the 1s, 2s, 3s, . . .can

emit/absorb light in the recombination/emission of an exciton. The fact that the electric-

dipole matrix element is proportional to |ψn00 (R, 0)|2 indicates that the optical transition

probability increases with the overlap of the electron and hole wavefunctions.

Attending to Eq. 2.59 and Table 2.2, where JzX of the l = 0 excitons is depicted, it is

clear that heavy-hole excitons with spin ±2 and light-hole excitons with spin 0 are optically

inactive. For this reason they will be referred to as dark states from now on. Figure 2.6(b)

shows the polarization of the allowed optical transitions for excitons.

The electron and hole wavefunctions that form an exciton overlap in a �nite-size

spatial extension around the exciton center of mass. In fact, most of the weight of their

wavefunctions is concentrated within the Bohr radius, due to the Coulomb attraction be-

tween these particles. The enhanced overlap increases the optical transition rates associated

to excitons as compared to the unbound electron-hole pair absorption and emission. It is

useful then to de�ne an oscillator strength for the exciton transition in the electric dipole

approximation:

fXosc ≡
2ωµX

~
|〈0 |r · uF | ± 1〉|2 (2.60)

where uF is a unit vector indicating the direction polarization of the electric �eld, and the

�±� signs refers to the optically active exciton states with +1 or −1 spin. The oscillator

strength accounts for the total transition probability rate associated to the exciton optical

transition (photon cross section).

Exciton radiative recombination is one of the sources of light emission at the exci-

ton energy below the bandgap in semiconductors, but not the only one, as unbound Coulomb

correlated electrons and holes can also radiatively recombine at that energy. Further discus-

sion on the origin of this luminescence can be found in Sec. 5.2.1.
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Chapter 3

Reducing the dimensionality: QWs

and semiconductor microcavities

3.1 Exciton con�nement: semiconductor Quantum Wells

3.1.1 Electron and hole subbands

Con�nement of matter excitations (electrons, holes and excitons) can be easily

attained in heterostructures composed of layers of di�erent semiconductor materials. One

dimensional con�nement is typically created in Quantum Wells (QWs) by embedding a thin

layer of a semiconductor crystal between two thick layers of a wider gap semiconductor,

as depicted in Fig. 3.1(a). Matter excitations with low momentum that fall into the QW

layer get trapped in a two-dimensional structure in which movement in the z -direction is

inhibited. In these heterostructures quantum con�nement e�ects start to be important

when the extension of the excitation wavefunctions are greater or of the same size than the

con�nement dimension. A characteristic dimension in the systems we are interested in is

given by the excitonic size. In GaAs based QWs, con�nement sizes of the order of tens of

nm or less are necessary to observe quantum con�nement e�ects (aB = 11.4 nm in GaAs).

Lower dimensionality systems, such as Quantum Wires and Quantum Dots, will not be

treated here.

Several approaches have been traditionally considered when calculating the eigen-

functions and eigenenergies in a two-dimensional heterostructure. The tight binding,[241,

242] pseudopotential[123] and k · p[264] methods, which have been widely used in bulk
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Figure 3.1: (a) Γ point band structure of the layers of a semiconductor QW. The z-direction
is taken as the growth or con�nement direction. In dotted lines the con�ned k = 0 electron
and hole levels corresponding to the n′ = 1 subband are depicted. (b) Typical dispersion
relations of the n′ = 1 subbands in the QW layer of a GaAs/AlGaAs heterostructure in
the e�ective mass approximation. The dashed lines depict the highest valence bands in the
absence of mixing.
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semiconductors, and brie�y described in Sec. 2.1.2 have also proved successful in the deter-

mination of the band structure in QWs. However, the most intuitive of them is the envelope

wavefunction approach.[284, 10, 23]

Let us consider a symmetric QW in which the thin layer is composed by the semi-

conductor B and the barriers by the semiconductor A, whose three dimensional band wave-

functions are uBn,k (r) and uAn,k (r), respectively. In the heterostructure, in the envelope

wavefunction method the eigenfunctions can be written as:

Ψk (r) =
∑
n

fAn (r)uAn,k (r) , (3.1)

if r belongs to the barriers, and

Ψk (r) =
∑
n

fBn (r)uBn,k (r) , (3.2)

if r belongs to the thin layer. Imposing the continuity of the wavefunctions and their e�ective

mass weighted derivatives[23] at the material boundaries and accounting for the di�erent

band gap of the constituent materials in the e�ective mass approximation, the Ψk (r) can

be determined.[23] Within this approximations this problem is analogous to the quantum

mechanics textbook example of a particle in a two dimensional square QW.[52] The problem

can then be solved for the conduction and valence bands considering the e�ective masses

of each band. The direct consequence of the con�nement is the splitting of each band in

di�erent con�ned states. The eigenenergies in the growth direction are quantized, while in

the in-plane directions show parabolic dispersions:

En′ (k) = Ezn′ +
~k2
‖

2m∗‖
(3.3)

where m∗‖ is the e�ective mass of the considered band parallel to the plane of the well (in-

plane momentum). In the case of in�nitely high barriers the Ezn′ energies take the values:

Ezn′ =
π2~2

2m∗⊥
n′2 n′ = 1, 2, 3, . . . (3.4)

where m∗⊥ is the band e�ective mass along the growth direction (perpendicular to the QW

plane). Both the conduction and the valence bands split in con�ned subbands, labeled by

n′. From Eq. 3.4 it is clear that the heavy- and light-hole bands are not degenerate anymore

as they have di�erent e�ective masses m∗⊥. Nonetheless, it is important to consider in this
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case the anisotropy related to the mass reversal e�ect. For instance, in AlGaAs based QWs

grown in the [001] direction, the heavy-hole mass along the z-direction (growth direction)

m∗⊥hh is greater than the light-hole mass along the same direction m∗⊥lh . These are the

relevant e�ective masses in order to calculate Ezn′ in Eq. 3.4. The result is that for n′ = 1

the con�nement energy of heavy-hole band is smaller than that of the light-hole. However,

in the QW plane m∗‖hh < m
∗‖
lh and a crossing between the bands would be expected at large

k as indicated by the dashed lines in Fig. 3.1(b), which shows the n′ = 1 conduction, heavy

and light hole subbands. Interaction between the bands analogous to that described in the

k · p formalism in bulk [Eq. 2.13] induces the anticrossing of the bands (solid bands).[24]

Valence band mixing e�ects are, therefore, also important in QWs. The quantiza-

tion axis now de�nes a direction to which set the angular momentum coordinates system.

Then, we can associate the third component of the angular momentum (Jz) direction to the

quantization axis. In this case, Jz for the heavy- and light-hole subbands is still well de�ned

at k = 0. Actually, for momentum states around k = 0 the purity of Jz is enhanced respect

to the 3D case, as the mixing bands (heavy and light) are split in energy. However, for large

values of k, around the anticrossing positions valence band mixing is very important and Jz

is no longer well de�ned in each subband. In any case, we will restrict the experiments and

analysis to wavevectors close enough to k = 0 for which Jz is well de�ned.

Con�nement of the wavefunctions also alters the density of states as compared to

bulk systems. If movement is con�ned to a two-dimensional plane the density of states in

momentum space changes to g2D (k) = S/4π2 (where S is the surface of the QW), and the

transformation into energy space, again assuming parabolic dispersion yields:

g2D (E) =
m∗

π~2
Θ (E − Ezn′) (3.5)

where Θ (x) is the Heaviside step function.

3.1.2 2D excitons

Analogously to the bulk case, electrons and holes from di�erent subbands are

subject to Coulomb interaction leading to the formation of excitons. The wavefunctions

and energies of the exciton can be obtained by solving an equation analogous to Eq. 2.35

introducing the two-dimensionality of the system in the envelope wavefunction approach.

The energy dispersion in this case takes the form:
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E = Egap + Ezn′,e + Ezm′,h −
E2D
b

w2
+

~2K2
‖

2
(
m
∗‖
e +m

∗‖
h

) , (3.6)

where Ezn′,e and E
z
m′,h are the energies of the con�nement energies of the electron and hole

subbands that form the excitons, E2D
b is the exciton binding energy, w is the exciton principal

quantum number, and K‖ is the in-plane momentum of its center of mass.

The overlap of the electron and hole wavefunctions conforming the exciton is greatly

enhanced due to the con�nement. This is one of the major advantages of working with two-

dimensional systems, as it has important consequences in the optical properties of these

systems. For instance, the enhanced wavefunction overlap results in an increased oscillator

strength of QW vs bulk excitons.

In the case of a purely two-dimensional situation the exciton Bohr radius would

be half of the corresponding in bulk, while the binding energy would be as much as four

time its bulk value (Eq. 2.38). By changing the width of the wells and the height of the

barriers, both the electron and hole subbands and the exciton Bohr radius and binding

energy can be modi�ed. Figure 3.2(a) shows the calculated binding energy of the excitons

formed from n′ = 1 electrons and heavy- and light-holes,1 for di�erent well widths (L)

and compositions of the barriers in a GaAs/AlxGa1−xAs heterostructure. In the in�nite

barrier case, the exciton binding energy increases when the well width is diminished as

the electron and hole wavefunctions increase their overlap. In the case of �nite barriers the

wavefunctions penetration in the barriers and larger spatial extension results in a diminished

overlap, resulting in overall lower values of Eb. Nonetheless, Eb still increases with decreasing

width, except when the well width gets very small [below 40 Å in the case of x = 0.15 in

Fig. 3.2(a)], when the con�ned electron and hole levels reach energies close to the barrier.

The same behavior is found in the case of �nite barriers. Let us mention that the band gap

of AlxGa1−xAs increases as the Al content in the alloy is increased (for x . 0.4 to consider

only direct band-gap alloys). Therefore, by changing x, the potential energy height of the

barriers can be adjusted.

1The exciton states formed from the n′ = 1 electron and hole subbands are the lowest lying exciton levels,
and will dominate most of the optical properties of the system. We will thus restrict our discussion to these
subbands' excitons.
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(a) (b)

Figure 3.2: Calculated 1s heavy- and light-hole exciton binding energies (a, Ref. [96]) and
oscillator strengths (b, Ref [9]) as a function of well width in symmetric GaAs/AlxGa1−xAs
heterostructures.

3.1.3 Optical properties

The reduction of the symmetry in a two-dimensional system imposes a well de�ned

quantization axis along the direction perpendicular to the QW plane (growth direction). In

bulk systems (Sec. 2.3.1) the relevant axis, when attending for instance to polarization

properties of the absorbed and emitted light, was the propagation axis of the incoming

beam. In two-dimensional systems, it is convenient instead to use the quantization axis as

the main axis of the system, de�ning the light polarizations.

The optical selection rules for transitions between heavy/light-hole and electron

subbands are the same as those reported in bulk (see Fig. 3.3), with the following particu-

larities:

• In-plane momentum of the absorbed/emitted photon must match the total in-plane

momentum of the generated/destroyed electron-hole pair.

• Due to the parity of the con�ned wavefunctions in each subband, only transitions

between subbands that satisfy n′e +m′h = even are allowed in single photon processes.

However, transitions within the subbands with the same index n′ are the strongest



CHAPTER 3. REDUCING THE DIMENSIONALITY: QWS AND MICROCAVS. 57

+2 +1 −1 −2

σ+ σ−

0

+1 −10

σ+ σ−

Light-hole excitons

Heavy-hole excitons

(b)
excitons

hh

1

3- 2

+
1
2

−
1
2

+ 3
2

− 1
2 + 1

2

σ−

hh

lh lh

σ+

σ+

σ−

1

1/31/3

ππ
2/3 2/3

n’ conduction 
band

n’ valence
band

(a)
free carriers

π
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subband with same n′. (b) Same as (a) for the resonant creation and recombination of heavy-
and light-hole excitons.

(and the only ones allowed in an in�nitely deep well) due to the enhanced overlap of

their wavefunctions.

• When extending Fig. 2.6 to the QW case, for a given set of subbands n′, the heavy-

and light-hole levels should be split, as indicated in Fig. 3.3(a).

• Jz is now de�ned along the quantization axis, the circularly polarized transitions in

Fig. 3.3(a) refer to the coupling with light modes with in-plane angular momenta.

Heavy-holes only couple to this kind of modes, while light-holes can also couple with

light modes linearly polarized with propagation direction in the plane of the well [π

transitions in Fig. 3.3(a)].

Analogously, the optical properties of QW excitons can be extended from those in

bulk, attending to the same particularities related to the heavy-/light-hole exciton splittings,

as indicated in Fig. 3.3(b). In this case the total in-plane momentum of the exciton should

match that of the emitted/absorbed photon, restricting again the properties that can be

investigated by spectroscopic techniques to the exciton states with K‖ ≈ 0.

One of the most interesting consequences of the two-dimensional con�nement is the

enhanced oscillator strength of excitons in these systems. This results from the reduction in
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the Bohr radius caused by the increased overlap of the electron and hole wavefunctions [see

Fig. 3.2(b)]. The transition probability |〈0 |r · uF | ± 1〉|2 in the oscillator strength de�ned in
Eq. 2.60 is proportional to 1/a3

B. Therefore, the oscillator strength of excitons is
(
a3D

B /a2D
B

)3
times greater in QWs than in bulk. Thus, light emitting devices made of several QW stacks

placed together present much better luminescence properties than bulk based devices.

3.1.4 E�ect of interface �uctuations and defects on the exciton linewidth

Let us �nally make some comments on the exciton lineshapes observable in lumi-

nescence measurements. In QW structures with no defects the exciton resonances would be

characterized by a homogeneous lineshape of width γhom, whose magnitude is dominated

by dephasing. Despite the high quality of the heterostructures grown by current epitaxial

techniques, interface and composition �uctuations are present in the QWs.[236] Thus, ex-

citons are subject to an irregular environment in which local �uctuations contribute to the

inhomogeneous broadening (γinh) of the the exciton lineshape, and to Stokes shifts between

the absorption and emission peak energies. In principle, the inhomogeneously broadened

exciton should show a rather symmetric (Gaussian) lineshape. However, the speci�c distri-

bution in size of interface defects in the well, as well as the distributed oscillator strength of

the di�erent exciton sublevels result, in rather asymmetrical shapes.[136, 236]

Interface and composition �uctuation are particularly important in CdTe based

heterostructures, as their quality is still quite far from the GaAs based systems. In appli-

cations in which narrow exciton lines are required, a way to overcome these problems is by

growing wider QWs.2 In this situation the weight of the exciton wavefunction is lowered

at the QW interfaces, which is where roughness and defects are mostly located, resulting

in more symmetrical lineshapes and smaller widths. The price to pay by doing this is the

decrease of the oscillator strength as the con�nement is reduced.

2This is the case of the exciton transitions in microcavities working in the strong coupling regime. As it
will be discussed in Sec. 3.2, the conditions for an optimal exciton-photon coupling in these systems, require
a narrow exciton linewidth, with a sharp distribution of oscillator strengths around the transition's peak.
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3.2 Light con�nement and polaritons: semiconductor micro-

cavities

In this section we will present a brief and qualitative introduction to optical con-

�nement and exciton-photon coupling in semiconductor microcavities. Only an overview of

the most relevant theoretical results will be presented here. Several works can be found in

the literature that address many speci�c points of the theoretical basis in this �eld.[214, 237,

235, 47, 126, 127] The number of published articles is signi�cant when it comes to the area of

dynamics and luminescence properties of microcavity polaritons,[26, 214, 238, 237, 135, 73]

which are light-matter species with very rich physical phenomena associated to them. For

instance, the microcavity polariton system shows very exotic non-linear optical characteris-

tics, the capability to form Bose-Einstein condensates, or super�uid behavior. A more detail

introduction to the many-body properties of polaritons si presented in Sec. 8.

A semiconductor microcavity is a high �nesse Fabry-Perot resonator with a QW,

or a series of QWs, embedded inside the cavity spacer. In the next two sections we will

present each of the ingredients that conform these systems. To do so, we will make use of a

linear semiclassical approach.[126, 127, 237]

3.2.1 Distributed Bragg Re�ectors and the optical cavity

A Distributed Bragg Re�ector (DBR) is a dielectric heterostructure composed of

layers of two alternating materials of di�erent index of refraction (nri ). Usually semiconduc-

tors with high indexes of refraction (∼ 3.5) are employed. If the optical thickness of each

material is λ/4, the heterostructure will present an enhanced re�ectivity for an incoming

light �eld of wavelength λ. At normal incidence and for a su�ciently high number N of

dielectric layers (so that 1 − R � 1), the re�ectivity (R = |r (ω)|2) at wavelength λ = 2πc
ω

can be calculated using classical electromagnetic theory of continuum media:[36]

R ≈ 1− 4
nout
nsub

(
n1

n2

)2N

(3.7)

where nout(sub) is the index of refraction of the external medium (substrate on which the

DBR is grown) and n1 and n2 are the refraction index of the two materials composing

the DBR itself (we have assumed n1 < n2). As the number of layers is increased, both

the re�ectivity and the wavelength region around λ for which the re�ectivity is enhanced,
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Figure 3.4: (a) Normal incidence re�ectivity (R = |r (ω)|2) of a 20 pair DBR with nout =
nsub = 1 and n1 = 3.0, n2 = 3.6, vs normalized frequency (ω/ωm). (b) Corresponding phase
φr of the complex re�ection coe�cient. Both magnitudes are calculated using a transfer
matrix approach.[237]

increase. The spectral region of enhanced re�ectivity around λ is called stop band, and can

be clearly observed in Fig. 3.4(a), where the re�ectivity of a typical 20 pairs DBR is plotted.

The phase of the complex re�ectivity r (ω) has an approximate linear dependence

on ω (angular frequency of the light �eld) inside the stop band [Fig. 3.4(b)]:

φr ≈
nsubLDBR

c
(ω − ωm) , (3.8)

where ωm is the frequency of the center of the stop band. LDBR is the penetration depth of

the electromagnetic �eld inside the mirror, and is given by:

LDBR =
λ

2
n1n2

nsub (n2 − n1)
. (3.9)

An optical microcavity is formed by sandwiching a cavity spacer between two

of such DBRs. The cavity spacer material is usually an additional semiconductor layer of

width Lc. Such con�guration conforms a Fabry-Perot, with a broad stop band in which high

transmission peaks [minima of R (ω)] open at the energy of the cavity modes [Fig. 3.5(a)].

In many cases, microcavities are designed so that the wavelength associated to the central
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frequency of the stop band (ωm) is equal to the length of the spacer, Lc. In this case it

is convenient to de�ne an e�ective cavity length Leff = Lc + LDBR. The condition for

constructive interference in a round trip is given by:

(
ω2

c2
n2
cav − k2

‖

) 1
2

Leff = Mπ, (3.10)

where M = 1, 2, 3, . . ., and ncav is the index of refraction of the cavity spacer. The paren-

thesis in Eq. 3.10 depicts the component of the photon wavevector normal to the plane of

the mirrors. This direction is usually referred to as growth direction, and here we will label

it as z. In other words:

kz =
(
ω2

c2
n2
cav − k2

‖

) 1
2

. (3.11)

k‖ is the photon wavevector parallel to the cavity plane, which can have any value, as the

microcavity does not impose any con�nement in such plane. At normal incidence, k‖ = 0,

Eq. 3.10 imposes the appearance of cavity modes at wavelengths:

λM =
2ncavLeff

M
. (3.12)

The lowest cavity mode corresponds to a wavelength equal to twice optical length of the

e�ective cavity. Usually, microcavities are operated in one of the �rst modes. In this way,

the mode energy splitting is large enough to disregard any e�ect of other cavity modes in the

optical properties. If we consider just one of the cavity modes M , the cavity mode presents

a dispersion given by:

E
(
k‖
)

=
~c
ncav

√
k2
⊥ + k2

‖, (3.13)

where k⊥ = ncav
2π
λM

is the con�ned momentum in the growth direction. k‖ is related to the

angle of incidence θ of the photons outside the cavity by:

k‖ = k⊥ tan
[
arcsin

(
1
ncav

sin θ
)]

, (3.14)

k‖ = ncav
2π
λM

tan
[
arcsin

(
1
ncav

sin θ
)]

. (3.15)
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The cavity mode dispersion of Eq. 3.13, allows the assignation of an e�ective mass

for the cavity photons in the limit k‖ � k⊥. A second order Taylor expansion around k‖ = 0

results in:

E
(
k‖
)
≈ ~c
ncav

(
k⊥ +

1
2k⊥

k2
‖

)
. (3.16)

Applying Eq. 2.16 we obtain a photon e�ective mass of:

mph =
2π~
cλM

, (3.17)

which has a typical value of 3× 10−6 m0.

The linewidth of the cavity resonance is a very important factor of the microcavity.

For the cavity modes at normal incidence and assuming symmetric DBRs with re�ectivity

R, the cavity homogeneous linewidth is:

γc =
c

2πncavLeff

1−R√
R

. (3.18)

It is convenient to use the cavity quality factor Q de�ned as λM
∆λ . Transforming the frequency

width of Eq. 3.18 into ∆λ, and considering just the M = 1 mode in Eq. 3.12 (the so called

λ/2 cavity), the cavity quality factor is:

Q =
λ

∆λ
= π

√
R

1−R. (3.19)

The linewidth γc determines the lifetime of a photon in the cavity (1/γc) at the energy of

the resonance before escaping. In the same sense, Q indicates the average number of round

trips of a photon in the cavity before leaking out. Typical values of the cavity lifetime in real

GaAs based semiconductor microcavities as those described in Sec. 4.1, are on the order of

4 ps (R ≈ 0.9982). These values result in values of Q of about 1700 for a resonance centered

at 810 nm.

Besides the Fabry-Perot characteristics of the microcavity, one of its most im-

portant features is the enhancement of the electromagnetic �eld inside the cavity spacer.

Following the classical theory of �elds employed so far,[237] the electric �eld strength in the

center of a symmetric λ/2 cavity is given by:

|F (ω)|2 = F 2
0

1−R (ω)
(1−R (ω))2 + 4

√
R (ω) sin2

[
1
2 (kzLc + φr (ω))

] , (3.20)
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Figure 3.5: (a) Re�ectivity spectrum of a typical microcavity. (b) Black line, right scale:
pro�le of the index of refraction of a λ/2 microcavity. In this case three QWs have been
embedded at its center. The surface is on the left side. The growth direction is given by
the horizontal axis. Blue line, right scale: electric �eld of the bare cavity mode. Inset: close
up of the cavity spacer region. The electric �eld is maximum at the position of the QWs.
This is the con�guration in which exciton-photon strong coupling is observed, as detailed in
Sec. 3.2.2. (c) Scanning electron microscope image of the cross section of an actual cavity,
where both DBRs and cavity spacer are clearly seen. The black region on the left side has
a size of ∼ 225 nm. Courtesy of M. D. Martín.

where the argument of the sine is the phase change in a round trip inside the cavity, and

φr (ω) is given by Eq. 3.8. F0 is the amplitude of incoming electric �eld (i.e., the amplitude

of the �eld in the absence of a cavity). For the case of a cavity lifetime of 4 ps, as in the

example above, the strength of the electric �eld at the center of the cavity is increased by a

factor of about 500.

The amplitude of the electric �eld for a λ/2 cavity with Bragg mirrors of 15 (left)

and 21 (right) pair periods is shown in Fig. 3.5. Note that due to the boundary conditions

imposed by the DBRs, the electromagnetic �eld inside the cavity is quasi-stationary.
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3.2.2 Semiconductor microcavity with an embedded quantum well: exciton-

photon normal mode coupling

For the sake of simplicity, let us consider a λ/2 photonic cavity. At the end of the

previous section we described how the amplitude of the electric �eld in the center of the cavity

at the energy of the photonic resonance is greatly enhanced as compared to the value of the

�eld outside the cavity. If a material with an optical resonance close in energy to the cavity

mode is placed at such position of enhanced electromagnetic �eld, an important light-matter

interaction is expected. This is the basic idea behind a semiconductor optical microcavity.

The usual con�guration employs a QW with a 1s exciton energy close to the cavity mode.

QW excitons are ideal structures to explore light-matter coupling in microcavities, as the 2D

con�nement enhances their oscillator strength while localizing them at the position of the

cavity where the electric �eld is maximum [see inset of Fig. 3.5(b)]. The excitons and the

photons inside the cavity constitute a system of two bosonic oscillators, as both species can

be treated as boson, coupled through light-matter interaction. As in any classical system of

two coupled oscillators, renormalization of the eigenenergies of the system as compared to

those of the independent oscillators is expected.

In order to understand the consequences of the strong exciton-photon interaction

inside the cavity, we are going to follow a second quantization approach, which provides

very intuitive results. Nonetheless, the physics behind this phenomena do not require the

use of a quantum mechanical treatment; similar results can be obtained following classical

linear approaches.[304, 126, 127, 237]

Within the framework of two coupled oscillators, the Hamiltonian describing the

exciton-photon system inside the cavity can be written as:

Hpol =
∑
k‖

~ωc
(
k‖
)
â†k‖

âk‖ +
∑
k‖

~ωx
(
k‖
)
B̂†k‖

B̂k‖ +
∑
k‖

~ΩR

(
â†k‖

B̂k‖ + âk‖B̂
†
k‖

)
, (3.21)

where B̂k‖(âk‖) is the exciton (photon) creation operator with in-plane wavevector k‖,

~ωx(c)

(
k‖
)
is the in-plane energy dispersion of the excitons (cavity photons), and ~ΩR is the

exciton-photon dipole interaction. In the case of a single QW placed at one of the antinodes

of the electromagnetic �eld inside the cavity, ΩR is given by:[237]
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Ω2
R =

(
1 +
√
R
)2

2
√
R

cΓ0

ncavLeff
, (3.22)

where Γ0 is the exciton radiative lifetime in the absence of the cavity and accounts for the

exciton oscillator strength. Note that ~ΩR is independent of k‖ if k‖ � k⊥,[238] as it is

the case in the treatment we are following. If more QWs are placed in the antinodes of the

cavity �eld, the total exciton oscillator strength of the system is multiplied by the number

of QWs. In the case of N QWs, and assuming no polariton coupling between them, then

ΩR,N = ΩR

√
N .[291, 115] The inset of Fig. 3.5(b) shows a situation of three QWs at the

antinode of the electric �eld.

Within the exciton-photon3 basis (âk‖ , B̂k‖) Hamiltonian 3.21 can be expressed in

matrix form as:

Hpol
(
k‖
)

=

 ~ωc
(
k‖
)

~ΩR

~ΩR ~ωx
(
k‖
)
 . (3.23)

Hpol
(
k‖
)
can be diagonalized by the transformation into the basis given by the following

creation operators, the polariton basis:

p̂k‖ = Xk‖B̂k‖ + Ck‖ âk‖ , (3.24)

q̂k‖ = −Ck‖B̂k‖ +Xk‖ âk‖ . (3.25)

p̂ and q̂ are the lower and upper polariton creation operators respectively, while Xk‖and Ck‖

are the Hop�eld coe�cients with information on the exciton and photon component of each

polariton type with a particular in-plane momentum k‖. In this basis, Hpol is diagonal:

Hpol =
∑
k‖

ELPB
(
k‖
)
p̂†k‖

p̂k‖ +
∑
k‖

EUPB
(
k‖
)
q̂†k‖

q̂k‖ , (3.26)

with eigenenergies:

EUPB
(
k‖
)

=
~ωc

(
k‖
)

+ ~ωx
(
k‖
)

2
+

1
2

√
4~2Ω2

R +
[
~ωc

(
k‖
)
− ~ωx

(
k‖
)]2

, (3.27)

3From now on we will use indistinctly the nomenclature: photon, photon mode, cavity mode, cavity
resonance, cavity.
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ELPB
(
k‖
)

=
~ωc

(
k‖
)

+ ~ωx
(
k‖
)

2
− 1

2

√
4~2Ω2

R +
[
~ωc

(
k‖
)
− ~ωx

(
k‖
)]2

, (3.28)

Note that the minimum energy separation between the UPB and the LPB take places at k‖

states where the exciton and cavity modes are resonant. This minimum energy separation is

called Rabi splitting and amounts to 2~ΩR. Typically the Rabi splitting per QW in a GaAs

based microcavity is on the order of 4 meV. The Hop�eld coe�cients[113] which weight the

photonic and excitonic content of the upper and lower polaritons in Eqs. 3.24-3.25 are given

by:

Xk‖ =
1√
2

1 +
~ωc

(
k‖
)
− ~ωx

(
k‖
)√

4~2Ω2
R +

[
~ωc

(
k‖
)
− ~ωx

(
k‖
)]2
 1

2

(3.29)

Ck‖ =
1√
2

1−
~ωc

(
k‖
)
− ~ωx

(
k‖
)√

4~2Ω2
R +

[
~ωc

(
k‖
)
− ~ωx

(
k‖
)]2
 1

2

(3.30)

The coe�cients satisfy the normalization condition
∣∣∣Xk‖

∣∣∣2 +
∣∣∣Ck‖

∣∣∣2 = 1. At k‖

points of the polariton dispersion in which the bare exciton and cavity energies are the

same, both upper and lower polaritons have a 50% exciton and photon component. The po-

lariton states, thus, conform quantum mixtures of the exciton and photon states. Figure 3.6

shows the polariton dispersions (Eqs. 3.27-3.28; left panels) and the corresponding Hop-

�eld coe�cients (Eqs. 3.29-3.30; right panels) for three di�erent cavity-exciton detunings δ,

which is de�ned as the energy di�erence at k‖ = 0 of the bare cavity and exciton modes. We

can see that by choosing the appropriate detuning, the exciton-cavity content of polaritons

at a given k‖ can be selected. Additionally, the polariton dispersions present very exotic

features. The LPB conforms a trap for polaritons in momentum space. Polaritons �living�

on such dispersion and subject to energy relaxation processes (by interacting with crystal

phonons, for instance) will tend to occupy the energy states at the bottom of the trap. Most

interesting is the in�exion point in the LPB, which will have important implications when

exciting the system resonantly at that energy-momentum state, as detailed in Sec. 8.4.

The polarization properties of polaritons are determined by those of their con-

stituents. Only optically active excitons couple to light, with Jz = ±1. These exciton states

couple to light only via emission/absorption of circularly polarized photons. Thus, when
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the photonic part of the polariton leaks out of the cavity (destroying the polariton), it emits

a circularly polarized photon. This is the situation at k‖ = 0, in which the system is sym-

metric about the growth axis. When k‖ 6= 0, the situation is slightly more complicated, as

the cavity modes presents a small energy anisotropy between the modes linearly polarized

along and perpendicularly to the direction of propagation inside the cavity.[27] More details

about these issues will be found in Sec. 9.4.

In Fig. 3.6 the exciton dispersion is considered as �at, i.e., the exciton mass is

considered as in�nite. This approximation is valid for values of k‖ close to zero, as in this

region the photon mass is much smaller than the exciton mass. Note that the upper and

lower polariton branches (UPB and LPB, respectively) are approximately parabolic close to

k‖ = 0. It is then possible to de�ne a polariton e�ective mass for each branch. Expanding

Eqs. 3.27-3.28 in a Taylor series up to second order, and using Eq. 2.16, the polariton

dispersion can be written as:

EUPB/LPB
(
k‖
)
≈ EUPB/LPB (0) +

~2k2
‖

2mUPB/LPB
, (3.31)

where the polariton mass is again weighted by the Hop�eld coe�cients:

1
mUPB

=

∣∣∣Xk‖=0

∣∣∣2
m∗X

+

∣∣∣Ck‖=0

∣∣∣2
mph

, (3.32)

1
mLPB

=

∣∣∣Ck‖=0

∣∣∣2
m∗X

+

∣∣∣Xk‖=0

∣∣∣2
mph

, (3.33)

where m∗X is the exciton e�ective in-plane mass (m∗‖e + m
∗‖
h ). As m∗X ∼ m0 � mph, at

detunings close to zero the polariton masses are basically given by the mass of the cavity

mode weighted by the exciton or photon content of polaritons at k‖ = 0, for each considered

detuning. The polariton masses, thus, are on the order of the mph(∼ 10−6m0), resulting

in a very small density of states inside the polariton trap [Eq. 3.5]. This property will also

have important implications on the bosonic and condensation properties of cavity polaritons

(Chapter 8).
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Figure 3.6: Left panels: calculated bare exciton and cavity mode dispersions (dashed lines)
as well as the polariton dispersions (solid lines) for di�erent exciton-cavity detunings δ in a
microcavity with a Rabi splitting 2~ΩR = 6.6 meV. Right panels: corresponding Hop�eld
coe�cients obtained from Eqs. 3.29-3.30. Detunings: (a)-(b) +2~ΩR, (c)-(d) zero, (e)-(f)
−2~ΩR.
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3.2.3 Finite cavity and exciton lifetimes

In the preceding section, all results were derived assuming that the exciton and

cavity modes have a vanishing homogeneous linewidth. Actually, it is the exciton decay

rate and the cavity mode parameters (that eventually de�ne its width) the elements that

determine the Rabi splitting [Eq. 3.22] The cavity parameters account for the enhancement

of the electric �eld inside the cavity (Eq. 3.20) and the exciton decay rate re�ects the

strength of the interaction of excitons with the electromagnetic �eld. However, the �nite

cavity lifetime [homogeneous cavity linewidth γc, Eq. 3.18] and the exciton homogeneous

linewidth (γX) modify the properties of polaritons. The most important consequence of the

explicit inclusion of these two parameters, is the alteration of the Rabi splitting, which is

now given by:

Rabi splitting = 2

√
~2Ω2

R −
~2

4
(γc − γX)2. (3.34)

If 2ΩR < (γc − γX) then the content of the square root is negative and solutions

are purely imaginary, resulting in two modes with the same energy This situation is called

weak couping regime, in which the exciton and cavity photon picture is still valid with small

variations in their decay rate. In the opposite case (2ΩR > (γc − γX), real valued Rabi

splitting) the system must be fully described in the polariton picture, appearing a splitting

between the two polariton modes.4 This splitting is analogous to the normal mode splitting

observed in atoms inside cavities.[213, 304] This situation is called strong coupling regime,

and re�ects the fact that the exchange rate between the photon and exciton is much faster

than their decoherence rate in order to conform a polariton (i. e., the quantum exciton-

photon mixture that conforms the fundamental excitation of the system).

Figure 3.7(a) shows the Rabi splitting as a function of re�ectivity of the microcavity,

for a λ/2 microcavity system as calculated by Savona et al.[237] Figure 3.7(b) depicts the

linewidth of each mode as a function of re�ectivity. In general, the homogeneous linewidth

for each particular polariton state is determined by its excitonic and photonic content:

γUPB
(
k‖
)

=
∣∣∣Xk‖

∣∣∣2 γX +
∣∣∣Ck‖∣∣∣2 γC , (3.35)

4Note that the maximum Rabi splitting is obtained when both oscillator linewidths are identical. However,
in order to observe the Rabi splitting in spectroscopic experiments, both γc and γX must be smaller than
ΩR.[114]
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Figure 3.7: (a) Energy di�erence between the UPB/LPB and the cavity mode at k‖ = 0
as a function of re�ectivity for a �xed bare QW γX for δ = 0. The dashed line depicts the
minimum re�ectivity for the onset of strong coupling (R ≈ 0.85). (b) Broadening of the
cavity mode γc and modi�ed γX inside the cavity (R < 0.85), and polariton modes width
(R > 0.85), as a function of re�ectivity. From Ref. [237].

γLPB
(
k‖
)

=
∣∣∣Ck‖∣∣∣2 γX +

∣∣∣Xk‖

∣∣∣2 γC . (3.36)

For a situation of resonant exciton-cavity modes (δ = 0;
∣∣∣Xk‖

∣∣∣2 =
∣∣∣Ck‖∣∣∣2 = 0.5), as

that depicted in Fig. 3.7, the linewidth of polaritons collapse into a single value, given

by 1
2 (γc + γX).
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Chapter 4

Samples and description of the

experimental set-ups

4.1 Samples description

4.1.1 Bulk GaAs and AlGaAs

The bulk, high quality GaAs and AlGaAs samples of the experiments described

in Chapters 5 and 6 were grown by molecular beam epitaxy by Konstantin Zhuravlev and

co-workers at the Institute of Semiconductor Physics in Novosibirsk (Russia).

Di�erent AlxGa1−xAs epilayers were investigated, with Al concentrations of x =

0, 0.015, 0.03 and 0.05. The active layer in each sample had a width of 2.5 µm, and was

encapsulated between two thin (25 nm) AlAs layers in order to decrease surface recombi-

nation. A GaAs bu�er layer of 0.2 µm was grown between the lower AlAs layer and the

substrate, with an embedded superlattice of 20 pairs of (AlAs)2(GaAs)5.

Room temperature residual carrier measurements showed that all samples pre-

sented a p character, with hole concentrations ranging from 8×1014 cm−3 in the GaAs layer

to (1− 5)× 1014 cm−3 in the AlxGa1−xAs layers. Despite the presence of residual carriers,

all the samples show a very narrow free-exciton linewidth at low temperature and excitation

density, well below 1 meV for x < 0.1, indicating their high crystalline quality.
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4.1.2 InGaAs/GaAs/AlGaAs/AlAs microcavity

The microcavity employed in the non-resonant excitation experiments described in

Chapter 9 was grown at the University of She�eld by the group of Maurice S. Skolnick and

John S. Roberts. The sample was grown by metal organic vapor-phase epitaxy. The top

(bottom) Bragg re�ector is composed of 17 (20) repeats of Al0.13Ga0.87As/AlAs λ/4 layers

(thickness of each Al0.13Ga0.87As layer: 616 Å, AlAs layer: 699 Å). The GaAs cavity spacer

has a 3λ/2 con�guration, with a nominal width of ∼ 1500 Å. The cavity spacer presents a

wedge across the sample that enables the tuning of the cavity-mode energy by excitation in

di�erent positions of the sample. The wedge is small enough to neglect any e�ect related

to it, within the extension of the excitation spot. Two groups of three In0.06Ga0.94As QWs

(10 nm thick each) are embedded in the GaAs cavity at the antinodes of the electromagnetic

�eld . Within each group, the QWs are separated by GaAs barriers of 100 Å.

The cavity and excitonic linewidths measured far from resonance (i.e., at very

negative and very positive detuning, respectively) are, in both cases,∼ 1 meV. The cavity

lifetime is on the order of ∼ 4 ps. A Rabi splitting is 6.6 meV is obtained under non-resonant

PL at low temperature and low power (see Fig. 9.1).

4.1.3 GaAs/AlGaAs/AlAs microcavity

The microcavity employed in the resonant excitation experiments described in

Chapter 10 was grown at the Laboratoire de Photonique et de Nanostructures (CNRS, Paris,

France) by the groups of Jacqueline Bloch and Aristide Lemaître, and it is very similar as

that studied by Perrin et al.[201, 200] and Bajoni et al.[16] The sample was grown by molec-

ular beam epitaxy. The top (bottom) Bragg re�ector is composed of 15.5 (24) repeats of

Al0.15Ga0.85As/AlAs λ/4 layers (thickness of each Al0.15Ga0.85As layer: 572 Å, AlAs layer:

675 Å). The AlAs cavity spacer has a λ/2 con�guration, with a nominal width of ∼ 1200 Å.

Analogously to the microcavity described in the previous section, the cavity spacer presents

a wedge across the sample that enables the tuning of the cavity mode energy by excitation

in di�erent positions of the sample. The wedge is even smaller than in the microcavity

described in the previous section. Therefore, wedge e�ects can be neglected within the ex-

tension of the excitation spot. One GaAs wide QW (20 nm thick) is embedded in at the

center of the spacer, at the antinode of the electric �eld. This is the QW whose exciton

resonances couple to the cavity mode.
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One additional narrow QW (2.6 nm thick) is present at each side of the wide QW,

separated by an AlAs layer of 10 nm. The exciton resonances of these QWs are much

higher in energy than any of the polariton resonances of interest here, and do not a�ect the

polariton physics investigated in Chapter 10.

The use of a single, wide QW results in very narrow exciton linewidths, as the

e�ect of interface �uctuations and width distributions are greatly suppressed. In this case

the heavy-hole QW exciton presents a low-temperature linewidth of about 0.3 meV, while

the cavity-mode lifetime is still on the order of 4 ps. The Rabi splitting in the case of the

heavy-hole exciton coupled to the cavity mode is 4.4 meV.

4.1.4 Single QW sample

A single GaAs/AlAs QW sample was employed for most of the experiments shown

in Chapter 7. This QW sample was also grown at the Laboratoire de Photonique et de

Nanostructures. The sample is actually identical to the microcavity described in the previous

section, but a chemical etching was performed in order to remove the upper Bragg re�ector.

In this way the PL from the bare QW could be accessed. The presence of the lower DBR

does not a�ect the PL dynamics from the QW. The amount of collected light might be

increased by the re�ection of the PL on that mirror.

4.2 Experimental set-ups

For the experiments presented in this work two di�erent types of excitation sources

were employed:

• A continuous wave (CW) Ti:Al2O3 (Spectra Physics) laser pumped by a CW Ar+

laser. The laser can be continuously tuned between 720 nm and 860 nm

• A pulsed Ti:Al2O3 (Spectra Physics Tsunami) laser pumped by a CW diode-laser (SP

Millenia), with tunability between 680 nm and 950 nm. The laser was operated in

the picosecond con�guration, with a pulse width of ∼ 1.5 ps and a repetition rate of

82.1 MHz.

For the detection, two devices were employed: a high resolution CCD and a syn-

chroscan Hamamatsu streak camera. The principles of operation of such a streak camera



74 4.2. EXPERIMENTAL SET-UPS

photocathode
photoelectrons

sweep voltage
electrodes

phosphor
screen

CCD

multichannel plate
sweeping unit

sweeping signal

λ resolved PL coming
from the spectrometer

t

t

V

Ti
m
e

λ

Figure 4.1: Principles of operation of a synchroscan streak camera. See text for details.

is depicted in Fig. 4.1. The light impinging upon the photocathode excites photoelectrons

inside the streak tube. The photoelectrons are accelerated by an acceleration mesh (not

shown). Then they travel inside the tube through a region in which there is an electric

�eld whose strength varies in time (region between the electrodes). Early photons create

photoelectrons that encounter a �eld that deviates them upwards. Photoelectrons created

by later arriving photons su�er a �eld de�ecting them in a di�erent vertical direction (down-

wards). In this way, the vertical direction behind the electrodes acquires a meaning of time

evolution.

After the electrodes a multichannel plate multiplies the number of electrons im-

pinging upon it. Finally, the ampli�ed photoelectrons hit a phosphor screen whose light

is recorded by a CCD. In the CCD the vertical direction means time while the horizontal

direction has the same meaning as the horizontal dimension of the light arriving at the pho-

tocathode, which can be wavelength or spatial dimension (real space or momentum space).

The sweeping voltage that deviates the photoelectrons has a sinusoidal shape, but

only the linear part of the sinusoidal is employed. The sweeping-voltage frequency is syn-

chronized with the repetition rate of the excitation laser via a fast photodiode. In this way,

millions of identical measurements (one per excitation pulse) can be performed and signals

can be obtained even in low-emission intensity conditions.

The largest time window of the streak camera has a size of 2100 ps with a resolution

of about 30 ps. However the resolution can be improved below 10 ps by operating the camera

in regimes wit smaller time windows.
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4.2.1 General time-resolved PL set-up

Figure 4.2 shows the time-resolved set-up employed for the experiments of Chap-

ters 5, 6, and 7. The pulsed excitation beam arrives at the sample non-resonantly at small

angle from the sample normal (growth direction). The sample is kept in a cold �nger-cryostat

where the temperature can be varied between 5 K and room temperature. The temperature

sensor is placed very close to the sample holder, where the sample is attached with silver

paint to ensure a good thermal contact.

The light is collected using the focusing lens, in a re�ection geometry, and focused,

with a second lens, on the entrance slit of a spectrometer. The spectrometer, which obtains

the energy resolution in these experiments, is attached to a streak camera. For the experi-

ments of Chapter 6 polarization optics (sets of quarter waveplates and linear polarizers) are

added to the excitation and detection paths. For the experiments of Chapter 7 and Sec. 9.3

a delay stage is added to the pulsed-laser path so that excitation can be performed with two

consecutive pulses on the same spot.

4.2.2 Non-resonant time-resolved PL from microcavities

The experiments described in Chapter 9 make use of a con�guration very similar to

that depicted in Fig. 4.2. In this case an addition is made in order to select the PL coming

from di�erent k-states of the microcavity, which consists on the inclusion of a pinhole in

the detection arm, as depicted in Fig. 4.3. The pinhole is set-up so that it blocks all light

except that corresponding to k = 0. Just by moving the pinhole perpendicularly to the

optical axis, a given k-state is selected. Equation 3.15 relates the in-plane momentum of a

polariton state with the angle of emission of that state. Additionally, polarization optics are

employed (in the excitation and detection paths) in order to study the polarization emission

dynamics.

4.2.3 The TOPO experiment

Here we will present a detailed description of the experimental set-up employed in

the experiments shown in Chapter 10, where the sample is resonantly excited with CW and

pulsed beams, and momentum and real space �lms are recorded.

As shown in Fig. 4.4, each excitation beam is directed towards the sample by an

independent mirror. By positioning them at di�erent distances from the optical axis (∆x)
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Figure 4.2: General experimental set-up for time-resolved PL under non-resonant excitation.
The polarization optics and the translation stage are used only when needed.
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Figure 4.3: Experimental set-up for time-resolved PL under non-resonant excitation with
selection of angle of emission via a pinhole. In the particular depicted con�guration, the
pinhole selects the k‖ = 0 luminescence. Polarization optics (not shown) and translation
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of the focusing lens F, the angle of incidence θinc of each beam can be selected (θinc =

arctan
(

∆x
fF

)
, where fF is the focal distance of the focusing lens).

Two con�gurations can be used for detection. For real-space detection, lens B is

removed from the set-up. Lens A forms an image of the real space of the sample's surface

on the entrance slit of the spectrometer. Along the slit, a slice of the real-space image is

selected and imaged either directly on the CCD or on the input slit of the streak camera.

Additionally, the spectrometer disperses in energy the light arriving at the entrance slit. In

this way, an image of the spectrometer entrance slit (y dimension) at a particular energy is

imaged on the input slit of the streak camera. In this con�guration a one dimension real

space (y, the line selected by the input slit of the spectrometer) vs time image is obtained

as an output of the system. In order to obtain 2D real-space images resolved in time, lens

A is displaced sideways (x dimension, perpendicular to the optical axis), so that the x

position of the image of the sample on the spectrometer entrance slit can be varied. By

acquiring a number of one-dimensional y slices vs time at di�erent x positions, 2D �lms can

be composed.

If the momentum space is to be imaged, lens B is added to the set-up and lens A is

moved from its previous position (at the focal distance fA from the spectrometer entrance

slit) to a distance fA from the Fourier plane of the focusing lens F. In this way, the Fourier

plane is imaged on the entrance slit of the spectrometer, and 2D �lms in momentum space

can recorded. The Fourier plane of the lens F is perpendicular to the optical axis and located

at the focus point of this lens, symmetric to the sample (see Fig. 4.4). All rays coming out

from the sample at a given angle (which correspond to a well de�ned in-plane momentum)

form a point in the Fourier plane. The Fourier plane is therefore a map of the angular

emission from the sample.

Note that switching from the real to the momentum space set-up, and viceversa,

is straightforward taking just a few seconds, and the excitation conditions are not altered.
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Chapter 5

Carrier dynamics of photoexcited

bulk GaAs

5.1 Introduction: photocreation of carrier populations

5.1.1 Coherent and incoherent emission

Light encountering a medium with a non-vanishing susceptibility induces a macro-

scopic polarization which in turn creates an oscillatory electromagnetic �eld. The system in

this situation is said to be in the coherent regime, and the polarizations can be described

by the imaginary part of the solutions of the optical Bloch equations [178]. At energies

close to a resonance the light matter-coupling is stronger and the induced polarization has

a greater magnitude. The induced polarization in the medium is subject to dephasing pro-

cesses, which limit the duration of the coherent regime, once the excitation source has been

removed. Important sources of dephasing in direct gap semiconductors are the interaction

(scattering) of the polarization �elds with interface roughness and alloy �uctuations, [306,

236, 151, 101, 292] with lattice excitations (i.e., phonons),[143, 243, 277] and with carrier

excitations,[143, 287, 188, 101] which limit the lifetime of the polarization �eld in two- and

three-dimensional systems to a few picoseconds. Four-wave mixing[243, 244, 255, 289, 217],

non-linear di�erential transmission[287] and resonant Rayleigh scattering[268, 166, 101, 167]

are some of the phenomena associated to the creation (and destruction) of a polarization in

the media and provide very valuable information about the speci�c light-scattering processes,

and the dephasing mechanisms and times in a material.
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The dephasing scattering processes described above lead to the decay of the po-

larization, which gives rise both to (i) coherent emission of light, and to (ii) the creation

of populations in the semiconductor, i.e., excitons and unbound electrons and holes, which

may decay. Process (i) includes both the purely coherent response of the material, which

results in the emission in the re�ected and transmitted directions of the excitation beam,

and the coherent response arising from the decay of the polarization treated in the previous

paragraph. In this case, the emission may occur in di�erent spatial directions, as for exam-

ple is the case of the speckle interference patterns, which retain part of the temporal phase

coherence of the polarizations [see Fig. 5.1(a)].[166, 183]

As for process (ii), the populations and their subsequent radiative recombination do

not retain any macroscopic phase coherence, and show no preferential direction of emission.

From a conceptual point of view this situation can be regarded as the absorption mechanism

of the light beam, taking place in timescales on the order of the dephasing time.

The experimental distinction between coherent emission and incoherent radiative

recombination is not easy at short delays after the excitation, and not until relatively recent

times a well de�ned picture of the observed initial light emitted by semiconductors has

been obtained. For example, it has been theoretically predicted[307, 48] and experimentally

observed[101] that coherent emission caused by static disorder should rise quadratically in

time, while radiative recombination should do it linearly [see Fig. 5.1(b)]. When excitation

densities are large, carrier-carrier and momentum relaxation enter into play and the emission

is mainly dominated by the incoherent radiative recombination. [101, 288]

Unlike coherent polarizations, populations, which can be described by the real

part of the solutions of the semiconductor optical Bloch equations,[178] can live very long

compared to the dephasing time, as they are not a�ected by phase sensitive processes. For

the case of optical excitation well above the band gap, the decay of the polarization gives

rise to the formation of unbound electrons and holes. Due to the strong Coulomb interaction

and LO-phonon scattering the formation of the electron-hole populations is very rapid (a

few femtoseconds). Once the carrier populations have been created, e�ective carrier-carrier

and carrier-phonon scattering leads to thermalized distributions of electrons and holes, i.e.,

distributions with a well de�ned temperature[225, 5] that can be well described by the

Fermi-Dirac statistics.
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(b)
(a)

Figure 5.1: (a) Directionally and temporally resolved emission intensity (logarithmic grey
scale) of a 35, 15, and 8 nm GaAs single quantum well at 5 K and low excitation intensity
(exciton density of ∼ 2 × 108 cm−2). Γinh indicates the disorder induced inhomogeneous
broadening of the exciton transition (from Ref. [166]). (b) Build-up of the emission at 10 K
in a GaAs/AlGaAs multiple quantum well after resonant photoexcitation of the heavy-hole
exciton line with a 150 fs-long pulse for di�erent excitation densities. The rise changes from
quadratic at low densities (originated from disorder induced dephasing) to linear at high
densities (originated from incoherent exciton photoluminescence).(From Ref. [101]).

5.1.2 Exciton formation

Due to Coulomb interaction, the electron and hole populations in the semiconduc-

tor can give rise to the formation of excitons. Several mechanisms have been proposed for

this process, the most important being geminate[204] and bimolecular[269, 250, 204, 99]

formation. Geminate formation takes place directly from the correlated electron-hole pair

created by the absorption of an above band-gap photon. The created correlated pair extend

over the crystal with total momentum zero, and �nally binds into an exciton via interaction

with phonons. This process is dominated by optical phonon emission and, therefore, it has

a threshold energy for the absorbed photons (~ω) given by the LO-optical phonon energy

(~ω > Egap−Eb+~ωLO). As excitons may form from each generated pair, the geminate for-

mation rate is linearly proportional to the excitation photon density. The geminate process

takes place only during the time in which the correlation between the photocreated electron

and hole survives. However, scattering with other carriers and phonons destroys this cor-

relation very rapidly. Thus, the geminate formation mechanism is only possible during the

time of the excitation pulse in time-resolved experiments.
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In the bimolecular mechanism, excitons form from the thermalized distributions of

electrons and holes. In this case a given electron interacts with all the available hole states,

and the total momentum of the electron and the hole that end up conforming the excitons

is not constrained. In this case the formation rate is given by the probability of interaction

between electrons and holes:

(
dX

dt

)
form bim

= C · ne · nh, (5.1)

where X is the density of excitons formed by the bimolecular mechanism, ne(h) is the total

thermalized unbound electron (hole) density, and C is the bimolecular formation coe�cient

which depends both on the carrier and on the lattice temperatures. After a pulse photoex-

citation the density of carriers and their temperature changes with time, and so does C and

the formation rate. In the calculation of C, LO-phonon mediated processes are the domi-

nant contribution, also with an activation energy given by the LO-phonon energy. Acoustic

phonon contributions only play a role for electrons and holes with low kinetic energies, close

to the band edge [See Fig. 5.2]. Let us point out that the bimolecular formation rate

is proportional the electron and hole densities, i.e. is quadratic on the excitation density

(geminate is linear). Additionally, while the geminate processes only take place during the

excitation pulse, the bimolecular mechanism is constantly depleting the carrier populations

and forming excitons.

In the case of excitation resonant with the 1s-exciton transition, below the actual

bandgap, the decay of the polarization can lead to the direct generation of cold incoherent

exciton populations with center of mass momentum K ≈ 0.[277, 107] Subsequent exciton-

exciton and exciton-phonon interaction leads to a thermalized exciton population.[282, 288,

250] However, excitons are subject to decay processes. In particular, in high purity direct gap

semiconductors the radiative decay is the most important of them. In this case, a thermal

distribution of excitons cannot be truly achieved as the recombination process being selective

in momentum space, is only allowed for excitons close toK ≈ 0. Figure 5.3 shows an example

of how the decay processes can a�ect the thermal character of a resonantly created exciton

distribution.[203, 150]
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holds also for the hole and exciton distribution functions.
The formation rateF is evaluated using the Fermi golden
rule. For the exciton we used a two-dimensional hydrogenic-
like wave function and plane waves for the free carriers. For
the parameters of the exciton wave function and the defor-
mation potentials we refer to Ref. 10. During the evolution
of the system, the free electrons and holes are thermalized at
the same temperatureTc . This thermalization is produced by
fast carrier-carrier scattering. Typical thermalization times in
GaAs QW are found to be of the order; 100 fs for carrier
density above 1010 cm22,11 which are faster than all the
other scattering times, in particular when compared to the
exciton formation time. In the scattering term of Eq.~1!, we
use for f e(ke), and f h(kh) equilibrium Boltzmann distribu-
tion function atTc . Consequently, by summing Eq.~1! over
ke , we obtain an adiabatic equation for the evolution of the
electronic densityne5@(ke

f e(ke)#/S:

dne
dt

52(
kex

F~kex!nenh[Cnenh . ~2!

The coefficientC is the bimolecular formation coefficient,
which depends on bothTc and the lattice temperatureTl
through the interaction with the phonons, andF(kex) is de-
fined as

F~kex!5S 2p\2

kBTc
D 2 1

memhS

3 (
ke ,kh

Fke ,kh→kex
e2[Ee~ke!1Eh~kh!/kBTc] .

The carrier temperatureTc immediatly after the pump pulse
depends on the excess energyDE5Epump2Egap, and is de-
fined by kBTc5DE/2. However, in the dynamics,Tc ap-
proaches the lattice temperatureTl through emission of
phonons showing two characteristic times: a short one asso-
ciated to the emission of optical phonons and a longer one
associated to acoustic phonons. The optical phonon domi-
nates forTc above 50 K. We do not consider the evolution of
the temperature Tc , which may be experimentally
measured,9 and we evaluate the formation coefficientC as a
function ofTc andTl . In Fig. 1 we reportC as a function of
1/Tc for a fixed lattice temperatureTl 510 K, for a GaAs
QW of 50 Å. The two contributions from the acoustic and

optical phonons are shown separately, the optical phonon
dominates for temperatures larger than 40 K. The Arrhenius
plot in Fig. 1 shows an activation energy of 25 meV for the
optical phonon process. This energy corresponds to the dif-
ference between the optical phonon energy (\vLO5 36
meV! and the exciton binding energy (Eb5 10 meV!. We
conclude that the formation process is therefore mainly gov-
erned by optical phonon emissions. For the acoustic phonon
process, we do not find any activation energy. In fact, both
the emission and absorption of acoustic phonons contribute
to exciton formation. The difference between the two pro-
cesses appears clearly in their dependence on the lattice tem-
peratureTl . The optical phonon contribution does not de-
pend onTl , whereas the acoustic phonon one increases
linearly with Tl . The qualitative difference between exciton
formation by the optical and acoustic phonons is also clearly
shown in Fig. 2, whereF(E)5F(kex5A2ME/\2) is plotted
as a function of the energyE of the created exciton. The
thermalized carrier distribution relaxes to form excitons
through emission of optical phonons. Since optical phonons
are dispersionless, this transition is vertical in energy and
produces excitons at the free-carrier temperatureTc . The
energies exchanged by acoustic phonon emission and ab-
sorption are of the order of 1 meV, and the excitons are
created through quasielastic transitions. Therefore, excitons
from this process are formed close to the bandedge, at an
energyE close toEb .

Comparison of these results with experiments is not
straightforward. Strobelet al.4 find C56 6 2 cm2/s in an
experiment whereDE5112 meV andTl5 8 K. SinceDE is
much larger than the optical phonon emission threshold, we
expect thatTc will rapidly decrease in a few ps as assessed
by experiment.2,9 The measure ofC is performed on a time
scale of;10 ps, which is of the same order of the time
variation ofTc . Therefore from the experiment one obtains a
time-averaged value forC. We find the same formation rate
C at Tc5 60 K, which can be considered as the average
temperature during the formation process. However, in order
to perform a closer comparison, the carrier temperature evo-
lution also has to be measured. Robartet al.2 find C larger
than 14 cm2/s, usingDE5 25 meV, andTl5 1.7 K. In this
last experiment, the carrier temperature has been measured,
and has been found to decrease from 60 K after 10 ps from
the excitation, to 10 K after 100 ps. The dynamics at short
times is therefore also needed in order to make a quantitative

FIG. 1. The exciton formation coefficientC as a function of the
carrier temperatureTc , at a fixed lattice temperatureTl510 K.
Other parameters are given in the text.

FIG. 2. The formed exciton distributionF(E), as a function of
the exciton energyE, for optical and acoustic phonon processes.
The free carrier temperature is 50 K.

1334 55BRIEF REPORTS

Figure 5.2: Bimolecular exciton formation coe�cient as a function of the carrier temperature
and for a lattice temperature of 10 K. At low carrier temperatures, electron and holes
mainly populate the low energy states in the bands, and exciton formation occurs mainly
via acoustic-phonon interaction. At high temperatures, carriers start to populate states with
energy ~ωLO − Ebin and the more e�cient LO-phonon mediated process is activated (from
Ref. [204]).

Figure 5.3: Calculated 1s-exciton distributions in a quantum well as a function of the center
of mass momentum (in units of the exciton Bohr radius (a0) at di�erent times following a
pulsed photoexcitation (1.5 ps long) at the energy of the 1s resonance, at a delay of (1) 2 ps,
(2) 9 ps and (3) 25 ps. The low momentum optically active states are depopulated due to
spontaneous emission (from Ref. [150]).
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5.1.3 Summary

We have just seen that the emission of light in a photoexcited direct gap semicon-

ductor originates from (i) the radiative recombination of excitons, (ii) the pair recombination

of electrons and holes, and (iii) emission associated to the decay of the polarization induced

by the excitation source. In the �rst two cases the light emission is called photoluminescence

(PL), and, though it is an incoherent response of the system (it has lost the excitation phase

memory), it can provide valuable information about the carrier populations. In the next sec-

tions of this chapter we will concentrate on the study of the population dynamics via time-

and energy-resolved photoluminescence. All the studies will be limited to photoexcitations

at energies well above the detected signal. Therefore, coherent e�ects as those described in

the previous paragraphs can be neglected.

5.2 Bulk GaAs photoluminescence under non-resonant exci-

tation

5.2.1 The origin of the 1s exciton luminescence

The luminescence characteristics of direct gap semiconductors after photoexcitation

at energies above the band-gap are dominated by the emission at the 1s exciton energy.

Traditionally, the photoluminescence at this transition energy has been entirely attributed

to the recombination of excitons with center of mass momentum K ≈ 0. Despite the rather

long history (over the last three decades) of optical studies in semiconductors, only recently

a strong debate has arisen in the semiconductor community about the origin of this bright

transition.

On one hand, there have been several attempts to calculate the exciton formation

time by direct evaluation of the dynamics of the electron and hole ensembles, mainly in

QWs.[250, 204, 99] These calculations rely on Monte-Carlo[250, 99] and Boltzmann equation

approaches [204] that assume that the luminescence at the 1s exciton energy solely re�ects

exciton recombination. They have concentrated on the formation mechanisms and their

e�ect on the time evolution of the exciton populations, but have not considered the origin

of the spectral characteristics of the exciton-free carrier ensemble. On the other hand,

using a quantum theory of the interaction between photons and an electron-hole population

in GaAs QWs, Kira et al. have shown that a Coulomb-correlated unbound electron-hole
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Figure 3 The influence of exciton populations on ‘excitonic’ photoluminescence spectra in
quantum wells. The left column shows the computed luminescence spectra for an 8 nm InGaAs/
GaAs structure on a linear (top) and a logarithmic (bottom) scale, assuming a quasi-equilibrium
electron–hole population at a temperature of 20 K without any excitonic population. The
corresponding figures in the right column present the results for the same situation, but where 10
per cent excitons in a thermal distribution have been added. The black and red curves have been
computed for carrier densities of 2×109 and 1010 cm−2, respectively. The linear spectra are
normalized, whereas the spectra on the logarithmic scale are in absolute units relative to the peak
value of the 1s peak at 29 cm−2 without excitons (black curve, lower left frame), whose value is set
to unity.

interacting many-body system. The emission of a
photon should therefore not be viewed as the
recombination of any given electron–hole pair in
whatever bound or unbound state, but rather as a
transition from a many-particle configuration with
N interacting pairs to one with N −1 pairs. The
spectral PL properties are then determined not so
much by the detailed state of the population as by
the frequency-dependent strength of light–matter
coupling, as is the case also for the absorption
spectrum. Hence, without a proper microscopic
analysis, it is not obvious how much a given PL
spectrum tells us about the state of the radiatively
decaying population.

Under stationary conditions, a fully
quantum-mechanical theory for luminescence from
a Coulomb-interacting electron–hole system yields
an expression that is very reminiscent of Elliott’s
formula for the band-edge absorption spectrum (see
Box 1). This luminescence equation shows us that
the spectral positions of the PL peaks are determined
by the excitonic resonances of the electron–hole
system, although the source of the emission can be
electron–hole pairs in different states. In other

words, bound excitons as well as a plasma of
unbound electrons and holes can emit at the exciton
resonances. Energy conservation is always valid for
the total electron–hole ensemble; that is, low-energy
(‘cold’) photon emission leads to an effective
‘heating’ of the remaining system.

Because the momentum of the emitted photons
is negligibly small in comparison with typical carrier
momenta in the semiconductor, essentially all the
particles in a plasma can contribute to the emission
spectrum, as long as there are electrons and holes in
matching single-particle momentum states.
However, from an exciton population, only the
bright states with a centre-of-mass momentum close
to zero can recombine radiatively. All other excitons
have a large momentum—they are in ‘dark states’,
and need a scattering partner before they can
contribute to the PL.

At present, the microscopic origin of excitonic
PL, in particular the relative contributions of
correlated electron–hole-plasma and excitonic
populations in different semiconductor material
systems is debated58–60. This discussion was started by
the theoretical analysis in ref. 21, showing that “the
appearance of excitonic signatures in the emission
cannot simply be related to the formation of an
exciton population”. Clearly, this prediction does not
rule out excitonic population contributions to the
emission spectrum. However, it questions the
unambiguous assignment of excitons as the sole
source for ‘excitonic’ PL.

There is a growing number of supporting
observations of emission from a correlated plasma,
mostly in GaAs-type materials. For example,
time-resolved experiments showed that following
nonresonant excitation with ultrafast optical pulses,
the 1s PL appears in a few hundred femtoseconds61,
that is, with a time delay far too short for exciton
formation23,62–65. However, the rapid appearance of
the 1s PL can be explained by plasma emission where
the ultrafast Coulombic carrier scattering reshapes
the optically generated nonequilibrium carrier
distribution (peaked around the laser excitation
frequency) into the form of a Fermi–Dirac
function21,66. Interestingly, despite their supporting
experimental observation, the authors of ref. 61 do
not follow the interpretation of ref. 21, because they
do not see the predicted narrowing of the 1s PL
resonance with increasing time. However, as
demonstrated in Fig. 14 of ref. 66, this spectral
narrowing could not be observed in the experiments
of ref. 61 because of the fast, sub-picosecond
time resolution.

Further detailed experimental investigations on
high-quality quantum-well samples67 have been
analysed with the microscopic luminescence theory.
For lattice temperatures above about 30 K, the PL
can be explained by emission from a plasma
population alone. Corresponding time-resolved PL
measurements show that the different spectral
components of the emission, excitonic-resonance
and continuum-emission spectra show the same
dynamics. Only at low densities and temperatures is
a contribution of exciton populations required to fit
the experimental results. Under these conditions, the
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Figure 5.4: Exciton populations or correlated electron-hole pairs as the source of excitonic
photoluminescence? The left column shows calculated luminescence spectra for an In-
GaAs/GaAs quantum well on a linear (top) and a logarithmic (bottom) scale, assuming
just a quasi-equilibrium electron-hole population at a temperature of 20 K without any ex-
citonic population. The corresponding panels in the right column present the results for
the same situation, but where 10% excitons in a thermal distribution have been added.
The black and red curves show the situation for two di�erent carrier densities (×109 and
1010cm−2). The linear spectra are normalized, whereas the spectra on the logarithmic scale
are in absolute units relative to the peak of the 1s peak of the black curve in the lower left
frame (from Ref. [150, 44]).

plasma can reproduce the PL features traditionally assigned to exciton recombination.[145]

In particular, the work of the group of Stephan Koch has stressed that the emission at the

1s-exciton energy cannot be directly assigned only to the recombination of excitons, but

Coulomb correlated electron-hole pairs can also participate in the emission at that energy

(see Fig. 5.4).[150, 44] The debate, therefore, has recently been centered on the origin of

the luminescence at the exciton energy.

The clari�cation of the situation by direct comparison between the theoretical pre-

dictions and actual experiments is not an easy task. Besides the need to determine the

exciton and electron-hole pair recombination contributions to the PL, also the exciton for-

mation times, exciton relaxation and thermalization and carrier cooling dynamics should be
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considered in the interpretation of the experimental results.[250, 62, 271, 116] A direct and

simultaneous measure of the exciton and electron-hole densities as well as the exciton forma-

tion times would be desirable to clarify the situation. For instance, similar emission dynamics

at the exciton and plasma energies would indicate that the emission at the 1s exciton line

originates from correlated electron-hole pairs.[116] Thus, time-resolved studies can provide

a deep insight on this subject. Early time-resolved PL experiments already paid attention

to the exciton formation dynamics.[62, 79, 222, 100, 300, 269] However these studies did

not considered the unbound electron-hole contribution to the emission at the exciton energy.

Only very recently, due to the availability of very high quality samples, PL experiments have

addressed all these issues in detail by simultaneously considering the emission at the exciton

energy and by a careful measurement of the electron-hole plasma temperature, from the re-

combination above the band-gap energy in high resolution experiments.[270, 271, 44, 116, 18]

New techniques like terahertz spectroscopy are worth mentioning in the investiga-

tion of these topics. Kaindl et al. have open a promising path in the investigation of the

thermodynamical balance between the exciton and electron-hole plasma populations.[128]

By making use of a time-resolved pump and probe technique in which an infrared pump

photoexcites a QW system, they can directly probe the 1s-2p heavy-hole exciton transition

with a terahertz pulse.[128] This experimental con�guration enables the direct study of the

exciton and plasma populations by analyzing the real and imaginary parts of the transmit-

ted probe beams, which present very di�erent features when the majority population of the

system is conformed by excitons or by free electrons and holes.

In any case, all the above mentioned studies evidence that exciton formation is

a very complex dynamical phenomenon, dependent upon many parameters.[117, 100, 250,

128, 300] These studies also show that at low temperatures and low/medium excitation

densities, excitons constitute only a low percentage of the total number of excitations in

the system;[250, 44, 300] however, due to the large radiative recombination rate of excitons

as compared to that of band-to-band transitions, the exciton emission dominates the PL

spectra. Indeed, the competition between the exciton and electron-hole pair contributions

to the PL in direct gap semiconductors is still an open question, where time-resolved studies

can help to clarify the situation.
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5.2.2 Time evolution of the PL rise

The PL-rise dynamics at the energy of the 1s exciton after non-resonant excitation

can be characterized by its rise time (tr), de�ned as the time for the PL to reach its maximum

intensity after a pulsed photoexcitation. In bulk and QW semiconductor structures, the PL

rise dynamics contain vary valuable information about the particular species (excitons or

electron-hole pairs) that originate the PL, the exciton formation and trapping dynamics, or

the cooling/warming of the carriers after the excitation. All these ingredients are determined

by the excitation conditions, lattice temperature and the particular structure and purity of

the considered sample.[203] Thus, for conditions of exciton-dominated PL, the literature

contains a wide spectrum of experimental data with tr increasing[300, 100] or decreasing[62,

158, 192, 226, 79] when, for example, raising the excitation density.

If the carrier density or lattice temperature conditions are such that the PL primar-

ily originates from electron-hole pair recombination (plasma regime), the rise-times dynamics

get very short and have hardly been investigated. Most studies have concentrated on the

thermalization[225, 5, 148] and cooling[285, 227, 175, 176] or warming[219] dynamics of the

electron-hole gas. Figure 5.5 shows a schematic diagram of all the processes participating

in the rise-time dynamics of the PL at the 1s-exciton energy, which will be main topic of

study of the following sections in this chapter.

5.2.3 GaAs

The extraordinary luminescent characteristics of GaAs and its related compounds,

like AlGaAs, along with the development of growth technologies resulting in the produc-

tion of very high quality wafers, have converted these materials into the main constituents of

many heterostructures like Vertical Cavity Surface Emitting Lasers (VCSELs), superlattices,

microcavities, cavity Light Emitting Diodes (LEDs) or Graded Index Separate Con�nement

Heterostructures lasers (GRINSCHs). For this reason we are going to center the PL studies

presented here in AlGaAs based heterostructures with a major emphasis in bulk GaAs. Due

to particular historical scenarios,1 while the luminescence and carrier dynamics of GaAs and

AlGaAs low dimensional heterostructures have been intensely investigated,[290] little atten-

tion has been paid to the luminescence dynamics of their three-dimensional constituents.

1The simultaneous availability of commercial pulsed lasers and of nanostructurated semiconductors in
the late 70s concentrated the attention of the optical studies on carrier dynamics on these heterostructures,
diverting it from bulk III-V materials.
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Figure 5.5: Schematic diagram of the 1s-exciton dispersion showing the most signi�cant
processes contributing to the rise dynamics of the PL at the 1s-exciton energy (2) after a
pulse photoexcitation above the bandgap (1): [A] thermalization and cooling of the electron-
hole plasma, [B] geminate exciton formation with K ≈ 0, [C] bimolecular exciton formation,
[D] exciton relaxation within its own band, [E] free exciton trapping into bound states, which
also radiatively recombine (4). (3) indicates the free electron-hole pair recombination.
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Therefore, historically there has been an important gap in the knowledge and understanding

of many properties of this bulk material. Apart from its importance from a technological

point of view, the use of bulk GaAs presents nice advantages over other systems in the study

of many fundamental properties. GaAs samples are grown in much higher quality than any

other semiconductor material, and can be easily doped. The interface roughness, typical of

QW samples which leads to the appearance of quasi-localized states and to interface �uctu-

ation trapping sites, is completely absent in bulk systems. Surface related defects can also

be neglected, due to the large penetration depth (0.7 µm) of the light excitation. These two

facts result in very narrow exciton lines with inappreciable Stokes shifts.

In the following sections of this chapter we will present novel experimental results

on the photoluminescence dynamics of GaAs and AlGaAs bulk systems addressing some of

the issues discussed in the preceding paragraphs. In particular we will concentrate on the

e�ects of composition, excitation density and lattice temperature in the rise dynamics of the

PL. We will see that the onset dynamics and rise times are strongly a�ected by the ratio of

the populations of excitons and free carriers, which can be altered by changing the above

mentioned parameters. The main result of this chapter is the determination and analysis of

the phase diagram of the nature of the dominant contribution to the PL in the system (i.e.,

excitons or free carriers), in the phase space of lattice temperature and total carrier density.

This phase diagram is obtained from the information contained in the PL rise dynamics.

The transition from the exciton dominating phase to the plasma dominating phase can be

regarded as a Mott transition, from an insulating to a conducting state.

5.3 Low power regime: exciton dynamics

As mentioned in the preceding section, little attention has been paid to the lu-

minescence dynamics of bulk GaAs and AlGaAs. Only recently some works,[100, 262, 94]

which complement but not complete older scattered studies,[273, 1, 31, 110] have investi-

gated the emission dynamics just in GaAs. Yet, important issues in III-V alloys, such as the

in�uence of defects or Aluminum content on the exciton dynamics, have not been addressed.

In this section, results of the PL dynamics at the exciton energy at low excitation densities

and low lattice temperatures will be presented.
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5.3.1 Spectral and time evolution characteristics

The investigated samples were four high quality AlxGa1−xAs epilayers of 2.5 µm

thickness, with Al concentration x = 0, 0.015, 0.03 and 0.05, grown by Molecular Beam

Epitaxy.[305] All the samples, which were nominally undoped, showed p-type conductivity

with hole concentrations in the range 1 − 8 × 1014 cm−3. The samples were mounted on

a cold-�nger cryostat, which enabled precise control of the lattice temperature. The time-

resolved photoluminescence excitation and detection con�gurations described in Sec. 4.2.1

were employed for this set of experiments, with a pulsed non-resonant excitation energy of

1.630 eV, and a laser excitation spot of 100 µm in diameter (FWHM). The excitation volume

is de�ned by the FWHM of the laser spot and the penetration depth of the excitation in

the material, which exponentially decays as it is absorbed with an absorption coe�cient of

1.67 µm−1 (penetration depth of 0.6 µm). The area delimited by the FWHM of the laser

spot concentrates 94% of the excited pairs, while the excitation volume concentrates 60%

of the excited pairs. Thus the excitation is pretty well de�ned and concentrated within this

volume.

Figure 5.6(a) shows the PL spectra at 5 K and low excitation density (n = 1.8 ×
1014cm−3) of the GaAs (black line) and x = 0.03 (grey line) samples 1 ns after the excitation.

The PL is dominated by the emission from the free excitons (FX ) and bound excitons

(BX ). In particular, attending to the emission energy,[31, 108] di�erent types of bound

exciton complexes can be identi�ed �acceptor bound excitons (A0 − X), donor bound

excitons (D0−X)� as well as electron-acceptor (e−A0) recombination peaks. An exciton

localization energy in acceptor related sites, of about 2.7 meV, can be extracted from the

peaks' position.2 Despite the presence of localization centers, the narrowness of the excitonic

lines (full width at half maximum below 1 meV) evidences the high quality of the samples.

At low excitation densities, the BX luminescence and e − A0 recombination gets

stronger than that of the FX as the Al fraction in the alloy is augmented, due to the increase

in the number of defects. In Fig. 5.6(a) the ratio of the e−A0 to FX luminescence intensity

increases from 2.1 in the GaAs sample to 11.4 in the 3% Al one. However, at high excitation

densities (n = 7.5 × 1015cm−3) the PL is completely dominated by the FX emission in all

samples, as depicted in Fig. 5.6(b). In the analysis of the time-resolved PL carried on in

this section we will concentrate on the FX and A0 −X lines.
2The value of the localization energy will be important later as it sets the temperature (thermal energy)

needed to ionize the bound excitons.
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Figure 5.6: (a) Low temperature (5 K) PL spectra of the GaAs (black line) and x =
0.03 (grey line) samples recorded at a delay of 1 ns after excitation (excitation density
0.18×1015 cm−3; excitation energy 1.630 eV). (b) GaAs spectra at 5 K at di�erent excitation
densities. The numbers on the right indicate the excitation density in units of 1015 cm−3.
Each spectrum has been normalized to the FX intensity and rigidly o�set.

Figure 5.7 depicts the time evolution of the FX (solid points) and A0 −X (BX ;

open points) emissions for the GaAs and the x = 0.03 samples under the same conditions of

Fig. 5.6(a). We can characterize the emission rise dynamics by the time the free-exciton PL

takes to reach its maximum, tmax. This rise time of the photoluminescence, which can be

easily assigned as indicated in the �gure by the horizontal bars, is considerably longer for the

GaAs than for the x = 0.03 sample. We have observed that tmax is also longer for the BX

than for the FX (Fig. 5.7) in all investigated samples, revealing longer energy-relaxation

processes in the case of the BX. In addition, as can be clearly seen for GaAs in Fig. 5.7(a),

the BX luminescence presents a concave time evolution at short times after the excitation,

while that of the FX is convex. The concave curvature of the BX traces indicates that the

build up of the BX population results from a multi-step relaxation process. Both facts, the

shorter tmax for FX than for the BX and the concave curvature, evidence that the source

of the BX luminescence is the trapping of FX with center of mass momentum K∼0, in
a cascade process similar to that observed when carriers from the barrier are trapped in

quantum dots.[262, 3]
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Figure 5.7: (a) Time evolution of the FX (solid dots) and the BX (A0 −X; open dots) for
the GaAs sample (excitation density 1.8 × 1014cm−3; T = 5 K). (b) same as (a) for the
AlxGa1−xAs x = 0.03 sample. tmax is indicated by horizontal bars. The solid lines are �ts
to the model described in the text (τk = 464 ps, τB = 1240 ps and τr = τrB = 565 ps for
GaAs). The inset shows the level scheme and the transitions considered in the model.
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5.3.2 The e�ect of trapping on tmax: rate equations model

In order to account for this cascade process we have considered a four-level rate-

equation model as depicted in the inset of Fig. 5.7(b). The excitation pulse creates electron-

hole pairs at high energies in the conduction and valence bands (level 3 in the inset). The

free electrons and holes, which rapidly thermalize and spread over their bands,[225, 148] bind

to form FX with a distributed momentum.[150] The FX relax their kinetic energy towards

the radiative K ∼ 0 states (level 2) via emission of acoustic phonons.[100] The characteristic

relaxation time, τk, that describes the transition from level 3 to level 2, thus, re�ects both

the exciton formation and momentum relaxation times. Once they have reached the K ∼ 0

states, FX can either radiatively recombine (τr) or get trapped in localization sites (τB)

giving rise to a BX population (level 1), which can also radiatively recombine (τrB). The

di�erential rate equations that describe the dynamics of such a four-level model, can be

easily analytically integrated, are:

∂n3(t)
∂t

= −n3(t)
τk

, (5.2)

∂n2(t)
∂t

=
n3(t)
τk
− n2(t)

τB
− n2(t)

τr
, (5.3)

∂n1(t)
∂t

=
n2(t)
τB
− n1(t)

τrB
, (5.4)

∂n0(t)
∂t

=
n2(t)
τrB

+
n1(t)
τr

, (5.5)

where n3,n2,n1 and n0 are the populations of the 3, 2, 1 and 0 levels, respectively (inset of

Fig. 5.7).

Figure 5.7 also shows the simultaneous least squares �ts of the temporal traces

extracted from the four-level model to the FX and BX data. For the sake of reducing the

number of �tting parameters, the �ts were performed assuming the same recombination

times for FX and BX (τr = τrB). Good agreement is found between the experiments and

the �ts. From the �tting parameters we have found a trapping time τB four times shorter in

the x = 0.03 epilayer than in the GaAs one, evidencing a density of traps about four times

greater in the x = 0.03 sample (τB ∝ [traps]−1).[1]
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Figure 5.8(a) shows the dependence of the FX-tmax on excitation density at 5 K

for the four investigated epilayers. All the samples show a similar non-monotonic behav-

ior,3 with a maximum tmax at a carrier density n ∼ 1.2 × 1016cm−3≡ nx−x. This density

corresponds to a mean distance between excitons of ∼40 nm, which is of the same order of

magnitude as the exciton Bohr radius in GaAs (11.2 nm). For n > nx−x, exciton-exciton

and carrier-exciton elastic scattering are important sources of scattering events and result in

a fast relaxation of FX with large K toward the radiative states with K ∼ 0, as previously

reported in QWs.[62, 226, 18] The higher the carrier density in the sample the more e�cient

these processes become, resulting in a decrease of tmax with increasing excitation density.

For these densities, the free-carrier recombination contribution to the PL also results in a

decrease of tmax, as will be discussed in section 5.4, in which the high density regime is

treated in detail. The threshold density nx−x only depends on aB and thus is expected to

be independent of the Al content for the low concentrations considered in our studies, as

borne out by our experiments.

For n < nx−x, FX-tmax increases with increasing excitation density. This behavior

can be understood if trapping of FX in localized states is taken into account in the framework

of the proposed four-level model. The PL spectra in all investigated samples are dominated

by BX emission for densities below nx−x. Therefore, at the lowest studied densities, there

are two mechanisms for the depletion of excitons from the K ∼ 0 FX level: (i) exciton

radiative recombination, and (ii) trapping of FX with K ∼ 0 into localized BX states.

As the excitation density is increased, BX trapping states are gradually �lled up to their

saturation. When n is high enough, the number of available localization sites is small

compared to the FX population, and the trapping channel (ii) has very little e�ect on

the dynamics of the FX population. The direct consequence of the saturation of trapping

centers, and therefore, the closing of one of the depletion channels, is the increase of tmax.

This situation is reproduced by the model, as shown in detail in Fig. 5.9, where

the time evolution of the FX -PL has been simulated according to the rate Eqs. 5.2-5.5 for

di�erent values of τB while �xing the values of τk and τr obtained from the �ts of Fig. 5.7(a).

As n increases, the number of available localization centers diminish and the trapping time

increases.[1] The extreme case, when all localization centers are saturated, corresponds to

the elimination of the BX level. Figure 5.9 shows that taking τB → ∞, the model would

3It should be mentioned that a similar non-monotonic behavior in the tmax dependence on n can be
hinted in Fig. 4(a) of Ref. [100].
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Figure 5.8: (a) Time for the free exciton to reach its maximum intensity, tmax, as a function
of excitation density in the four investigated AlxGa1−xAs epilayers at a lattice temperature
of 5 K. The Aluminum content is indicated in each curve. (b) tmax as a function of excitation
density for the GaAs sample at di�erent lattice temperatures, up to 45 K.
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Figure 5.9: Simulated FX PL time evolution for di�erent values of τB for �xed τr, τrB and
τk [those corresponding to the �ts shown in Fig. 5.7(a)]. ↑ [↓] indicate tmax for τB =∞ [430
ps, the value from the �t in Fig. 5.7(a)].

give a FX temporal trace with tmax considerably longer -512 ps- than that obtained in

the presence of the localization channel -430 ps-. This is in qualitative agreement with the

increase of tmax with carrier density shown in Fig. 5.8(a).

This simple phenomenological model can in partly account for the dispersion in

tmax values found in the literature in GaAs epilayers, if the di�erent densities of trapping

centers inherent to all samples are considered. For instance, Shen et al. [262] �nd a value

of tmax for the FX at 2 K of ∼50 ps which is almost independent of the excitation density.

This result can be well reproduced by our four level model if τB, is very short compared

to τk. Indeed their PL spectra are dominated by the BX emission at all excitation powers,

evidencing a high density of localization sites.

The increase of the Al content in the alloy results in two e�ects: (i) an acceleration

of the dynamics due to the enhancement of alloy scattering, which results in the reduction

of tmax for any n; (ii) a larger number of alloy defect-related traps. As already mentioned

above, a higher density of localization centers produces a reduction of the trapping time τB

which, according to the four level model (see Fig. 5.9), results in an additional decrease of

tmax for n < nx−x, as observed in Fig. 5.8(a) when the Al content in the sample is increased.
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For a 5% content of Al the trapping time is reduced by a factor of ∼20.
In order to gain a deeper insight into the in�uence of trapping on the FX dynam-

ics, time-resolved experiments have been performed at di�erent lattice temperatures. The

results for GaAs are shown in Fig. 5.8(b), which depicts tmax versus excitation density

for temperatures (T ) up to 45 K. For T ≤ 30 K, the observed behavior follows the trends

discussed above for low T (non-monotonous dependence of tmax on n). In contrast, if the

lattice temperature is raised above the bound exciton localization energy (2.7 meV↔31.3

K), the BX are ionized and trapping is hindered. In the absence of the trapping depletion

channel, according to the model, no dependence of tmax on excitation density for n < nx−x

is expected, as found experimentally for T = 38 K and T = 45 K [Fig. 5.8(b)].

5.4 Medium and high power regime: towards the Mott tran-

sition

5.4.1 Introduction: Mott transition in photoexcited semiconductors

As we have just seen in the previous section, the GaAs luminescence at low power

and low temperature is dominated by exciton emission, and tmax is greatly a�ected by

trapping centers. In the opposite case, i.e., lattice temperature above the exciton bind-

ing energy and/or high excitation densities, the system is conformed by an electron-hole

plasma and the PL is dominated by unbound electron-hole pair recombination. The car-

rier relaxation dynamics after a pulsed non-resonant excitation is pretty well understood in

this plasma regime. Both bulk and QWs time-resolved studies have concentrated on the

thermalization[225, 5, 148] and cooling[285, 175, 176, 257] mechanisms of the hot photocre-

ated carriers but, for instance, little attention has been paid to the processes responsible

for the onset of the luminescence, characterized by tmax. Furthermore, the PL dynamics

in the intermediate range, where a Mott transition[191] between the excitonic regime and

the conducting electron-hole plasma phase should take place, has not been investigated in

detail.

The concept of the Mott insulator was introduced after the studies of Mott on crys-

tals with half-�lled bands that showed no conductivity,[189] and his ideas on the transition

from metallic to non-metallic states in crystals when the inter-atomic distance is varied.[190]

In a metal, at large inter-atomic/valent-electron distances (or U/W > 1, where W is the
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intersite valent electron interaction and U is the intra-atomic binding Coulomb interaction)

electrons are repelled from the neighboring sites and remain attached to their ions, conform-

ing an insulator. As the density is increased (the ions in the crystal get closer together),

the overlap of the valent electrons and the screening of the electron-ion binding Coulomb

interactions reduces the ratio U/W to values smaller than 1, enabling the delocalization of

electrons and giving rise to a metallic (conducting) phase.

In a semiconductor we can make an analogous picture to that of the metal-insulator

transition. A system of dilute photocreated excitons is formed by electrons bound to holes

due to Coulomb interaction. This situation would correspond to the insulating phase, in

which electrons are tightly bound to holes conforming the neutral excitons. If the exciton

density is increased, not only the inter-exciton distances but also the carrier screening is

dramatically altered, eventually giving rise to a delocalized phase of conducting free electrons

and holes, analogous to the metallic regime.

In direct gap semiconductors, the exciton and electron-hole populations can be, in

principle, accessed via the energy- and time-resolved detection of their luminescence. Addi-

tionally, the density of carriers can be controlled by changing the excitation photon density

in PL experiments. Thus, direct gap semiconductors, like GaAs, constitute an advantageous

workbench for the study of the nature of this transition and the carrier correlations. The

major complication, however, in such experiments is the di�culty in the identi�cation of the

precise exciton density present in the system at a given time, as already discussed in Sec.

5.2.

Many theoretical works have been devoted in semiconductors to the determi-

nation of the conditions of density and carrier and lattice temperature that de�ne the

Mott transition as de�ned in the previous paragraphs. Early studies concentrated on the

calculations[279, 57, 216, 308] and experiments[256, 216] of the Mott transition phase dia-

gram in Si and Ge. However, the interest in this �eld has been renewed in the past four

years, mainly from the theoretical point of view, concentrating in low-dimensional GaAs

based systems and taking into consideration the modern perspectives on the formation,

relaxation and relative contribution to the PL of excitons and electron-hole plasma.[28, 149]

In GaAs, experimental studies have been very scarce. We can quote a low-resolution

time-resolved experiment performed in the early 80's in bulk GaAs[93] and two very recent

studies in 2D (Refs. [131, 266]). These last two works can be included in the revival of this

�eld that has taken place in the past 5 years. The works of Göbel et al.[93] and Kappei et
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al.[131] show that the Mott transition, as the density of photogenerated carriers is increased,

is not abrupt. Let us also mentioned that recently, by means of time-resolved broadband THz

spectroscopy, the group of Chemla has also addressed the issue of the exciton to electron-hole

plasma transition in QWs by means of intraband di�erential absorption.[128, 118] Despite

this experimental technique being very promising in the understanding of the phases and

coexistence of the exciton/electron-hole system, this group has not reported further results

on this topic.

In this section we will extend the study of the PL dynamics in bulk GaAs presented

in Sec. 5.3 to a wider range of lattice temperatures (5-100 K) and excitation densities. By

analyzing tmax and the luminescence onset dynamics we will study the interplay between the

exciton and electron-hole pair recombination to the PL. As brie�y discussed in Sec. 5.2 in

the transition from the low temperature/low density to the high temperature/high density

regimes, the origin of the major contribution to the PL shifts from excitonic to electron-

hole pair recombination. Additionally, the excitation-power dependence of the rise time for

di�erent lattice temperatures presents a behavior typical of a metal-to-insulator transition,

at a critical lattice temperature Tc. In a similar way, the lattice-temperature dependence of

the rise time as the excitation density is increased, also undergoes a relatively abrupt change

at a critical density nc. In Sec. 5.4.4 we will present a detailed phase diagram of the Mott

transition in bulk GaAs as obtained from the rise time characteristics.

5.4.2 Spectral characteristics

The �rst indication of the di�erent contributions, either from excitons or electron-

hole pairs, to the light emission can be obtained from the T dependence of the PL, as

demonstrated in Fig. 5.10, which depicts spectra recorded 1.8 ns after the excitation at

di�erent lattice temperatures for a low excitation density of n = 0.75 × 1015cm−3. For

such a long delay, thermodynamical quasi-equilibrium between free carriers, excitons and

the lattice has been reached.4

At 5 K the spectrum displays the characteristic excitonic emission (1.512-1.516 eV

range) and electron-acceptor recombination structures discussed in Sec. 5.3. For tempera-

tures up to a critical temperature, Tc = 49 K, the spectra are dominated by the excitonic

4Thermal equilibrium between carriers and the lattice may not be reached at the lowest lattice temper-
atures (TL < 20K) before all carriers have radiatively recombined, as found in QWs.[270, 176, 18] However,
thermodynamic equilibrium between free carriers and excitons is present at all times (see Ref. [222]).
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Figure 5.10: PL spectra recorded 1.8 ns after an initial pulsed excitation density of n =
0.75 × 1015 cm−3 for di�erent lattice temperatures, speci�ed on the side. Arrows indicate
the energy position of the band gap at each temperature using the parameters of Ref. [81].
The shadowed regions show the electron-hole pair luminescence. The inset depicts the 30 K
spectrum (open symbols) and the �t to a Lorentzian plus band-to-band recombination (green
solid line) as described in the text; the dashed lines show these two contributions.
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emission. In the range 5 K≤ T < 49 K the emission from electron-hole pairs becomes appar-

ent (shaded regions) at the band gap energy (indicated by arrows), and its relative intensity

increases. In this temperature range, the full width at half maximum (FWHM) of the PL

band also increases with temperature (a factor of 2.2 from 5 to 45 K), as it is shown in Fig.

5.11(b). For TL ≥ 49 K the spectra present a much wider overall linewidth. Although these

temperatures imply thermal energies that are above the exciton binding energy, Coulomb-

correlation e�ects are responsible for the appearance of a wide PL peak at energies below

the bandgap.[98] It is remarkable that the spectrum corresponding to TL ≥ 49 K undergoes

an abrupt shift towards lower energies, as can be seen in Fig. 5.11(a), and it is signi�cantly

much wider than that at TL =45 K.

Let us note that the abrupt broadening that takes place at TL ≈ 49 K is observed

not only in the overall emission band, but it also becomes apparent when we focus on each of

the contributions to the PL that appear in the spectra shown in Fig. 5.10. For this purpose

each spectrum shown in Fig. 5.10 is �t to a function of the form:

IPL (E) = A
w

4 (E − EX)2 + w2
+B

√
E − Egap

1

exp
(
E−Egap−µ

kBT

)
+ 1

(5.6)

In Eq. 5.6 the excitonic contribution to the PL is given by the �rst term, which is a Lorentzian

of amplitude A and width w, centered at EX . The second term corresponds to the band-to-

band recombination, characterized by a 3D DOS and a Fermi-Dirac electron-hole distribution

at temperature T and chemical potential µ. The inset of Fig. 5.10 depicts the PL (open

symbols) together with the �t (solid line) for the case of TL = 30 K, where A, B, w, EX , T ,

and µ are the �tting parameters. Each of the contributions in Eq. 5.6 (excitonic/band-to-

band) is plotted in dashed lines. The �ts are only meaningful for TL up to 49 K, as for higher

temperatures the low energy Coulomb-correlated plasma requires a many-body treatment

and cannot be described by a simple Lorentzian lineshape. The energy position and the

FWHM of the Lorentzian contribution are plotted as open diamonds in Fig. 5.11. They

present the same features as the overall PL (solid points), including the abrupt broadening

at TL = 49 K [a factor of 1.5 (1.7) from TL = 45 K to TL =49 K in the excitonic (overall)

PL band].

The abrupt shift and the broadening at Tc demonstrate that there are two kinds of

spectra belonging to two di�erent regimes, as we shall discuss below. Moreover, Fig. 5.11(a)
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Figure 5.11: (a) Energy of the spectral maximum extracted from the curves of Fig. 5.10
(solid points) and that obtained from the Lorentzian contribution of the spectra �tted to
Eq. 5.6 (open diamonds), and energy position of the band gap for each lattice temperature
(open red circles; obtained from Ref. [81]). (b) Full width at half maximum (FWHM) of
the whole luminescence band (solid points) and that of the Lorentzian contribution of the
�t (open diamonds) for each temperature; the lines are a guide to the eye.

shows that the exciton emission energy (diamonds) approaches the band gap (open dots) at

Tc, indicating the disappearance of the exciton binding energy (exciton ionization) at this

lattice temperature.

Similarly to the critical temperature just de�ned, we can also identify a critical

density, nc, that acts as a boundary between two very distinct behaviors if we focus on the

spectral characteristics of the emission at a given TL for di�erent carrier densities. Figure

5.12(a) shows PL spectra at TL = 30 K, obtained 60 ps after the arrival of the excitation

pulse, for di�erent carrier densities ranging from 0.75 × 1015 cm−3 to 390 × 1015 cm−3.

Figure 5.12(a) is, then, analogous to Fig. 5.10, with n playing the role of TL as the changing

phase parameter in the observation of the spectral characteristics of the emission. The

energy position of the peak of the emission shows a non-monotonous dependence on n: it

red-shifts up to a density of nc = 120− 150× 1015 cm−3 and blue-shifts for larger densities,

as compiled in Fig. 5.12(b) �solid dots�. Below nc the shifts are due to many body e�ects,

such as band-gap renormalization that red-shifts the emission. Above nc the carriers start

to �ll the bands above the degeneration limit resulting in a displacement of the center of

gravity of the emission towards higher energies. Finally, Fig. 5.12(c) �solid dots� shows
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Figure 5.12: (a) PL spectra at TL = 30 K, 60 ps after the pulse arrival, for di�erent carrier
densities (shown on the right in units of 1015cm−3). The straight lines are a guide to the
eye. (b) Energies and (c) FWHM of the PL peak as a function of carrier density at a delay
of 60 ps (solid points) and 2000 ps (green diamonds). The vertical dashed line marks the
boundary between the insulating and metallic phase. The arrows emphasize the peak energy
shift and FWHM jump at the boundary.
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the dependence of the FWHM on carrier density. A jump on the emitted FWHM is also

apparent at nc as marked by the arrow.

In the next sections we will see that nc corresponds to the critical density for the

transition from an exciton dominated PL (n < nc) to an electron-hole plasma (n > nc)

dominated PL dynamics at short times. Figure 5.12(b) and (c) �green diamonds� shows

that at very long times after the excitation the dependence on n of the spectral maximum

and FWHM are monotonous and very similar to the situation at a delay of 60 ps for n < nc,

but in this case no jump is observable. This indicates that for the conditions of Fig. 5.12

(TL = 30 K), at long times the system stays in the excitonic phase for all the densities used

on our experiments.

In the remaining of this chapter we will concentrate on the carrier dynamics at

short times after excitation, in particular we will pay attention to tmax. We will show

experimental results on the behavior of tmax with TL and n that will justify the de�nitions

of critical lattice temperature and critical injected carrier density brie�y introduced in the

preceding paragraphs.

5.4.3 Rise time characteristics

Figure 5.13 depicts PL time-evolution traces at the energy of the spectral maximum

for low [20 K; (a)] and high [80 K; (b)] TL at di�erent excitation densities, n. Let us

start discussing the high excitation-density regime. The temporal traces at these densities

(n > 150 × 1015 cm−3) are qualitatively very similar for both lattice temperatures: for

such high densities the system behaves like an electron-hole plasma due to the e�ective

carrier screening, and the initial carrier temperatures are much larger than TL. A detailed

analysis of the traces shows that for TL = 80 K the rise times are slightly shorter due to the

enhancement of the phonon-assisted relaxation of carriers in the bands, and to the opening of

non-radiative recombination channels associated to carrier-phonon scattering at high lattice

temperatures. On the other hand, at low excitation densities the PL time evolution presents

very di�erent features at TL = 20 K and TL = 80 K, as easily seen in Fig. 5.13.

The shape and characteristic times of the onset of the PL at low excitation densi-

ties, are strongly dependent on the lattice temperature. Figure 5.14 depicts temporal traces

for an excitation of 0.75× 1015 cm−3 at di�erent TL at the spectral maximum. For temper-

atures up to 45 K, the onset of the luminescence is characterized by two distinct features:
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Figure 5.13: Time evolution traces at the spectral maximum for TL = 20 K (a) and TL =
80 K (b). The numbers on the right side of each panel show the excitation density for each
trace in units of 1015 cm−3.

(i) a fast initial component (enclosed by a circle in the trace of 20 K); and (ii) a subsequent

slower rise. The interplay between the exciton and electron-hole pair emissions is respon-

sible for the shape of the time evolution of the onset of the PL at the free-exciton energy.

This interplay results in a competition between the fast component (related to electron-hole

pair recombination) and the slow component (excitonic recombination) in the onset of the

luminescence, as we will analyze in detail in the following paragraphs.

As we discussed in the preceding section, at low excitation densities, such as the

one corresponding to Fig. 5.14, the slow component fully dominates the onset of the

PL at the lowest TL (5 K). Under these conditions the PL mostly arises from excitonic

recombination.[270, 44] The long tmax re�ects the slow phonon-assisted exciton relaxation

from large momentum K to the radiatively active states at K = 0,[150] and the slow exci-

ton formation time.[270, 18] The fast component, already seen at 13 K, has been previously

observed in GaAs and tentatively attributed either to the emission of free electron-hole

pairs[110] or to a rapid exciton formation mediated by LO-phonon interactions.[215] Our

results discard the latter mechanism since the fast component is absent at the lowest tem-
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perature and LO-phonon emission is nearly temperature independent. Therefore, the fast

component in the rise can be unambiguously attributed to the recombination of unbound

electron-hole pairs. As TL is increased, the fast component becomes more important, as can

be seen in Fig. 5.14, which implies that the fraction of excitons present in the system at

short times is reduced when TL is increased. This �nding is in agreement with the com-

putational results of Koch et al. presented in Ref. [149]. For TL > Tc = 49 K, the fast

initial component fully dominates the rise time. For those values of TL excitons are ionized

(as kB · TL > 4.2 meV, the exciton binding energy, for TL > 49 K) and the luminescence

arises from the recombination of Coulomb-correlated electron-hole pairs. Such behavior is

consistent with the observations depicted in Fig. 5.10, where the spectra above Tc is fully

dominated bu the electron-hole pair recombination.

We have just discussed the behavior of the fast rising component of the PL for a

given low excitation density as a function of TL. Let us now examine this dependence at a

given TL for di�erent excitation powers. For a low TL [i.e., 20 K; Fig. 5.13(a)], where exciton

formation is not inhibited by thermal ionization, the fraction of electron-hole pairs that bind

to form excitons increases with increasing excitation density.[270, 204, 250] As a result, the

fast component in the PL rise (electron-hole recombination) is overcome by the slow excitonic

component when the excitation density is increased (0.3× 1015 cm−3< n < 30× 1015 cm−3

at short times), as borne out by our experiments. However, with a further increase in the

excitation density, screening between carriers starts to be an important factor and inhibits

the binding of electron-hole pairs into excitons;[149] electron-hole pair recombination is again

important and the dynamics accelerate. At the highest densities (n > 150× 1015 cm−3) the

emission occurs mainly from electron-hole pair recombination.

The preceding discussion shows that the interplay between the exciton recombina-

tion and electron-hole pair emission determines the shape of the time evolution of the onset

of the PL at the free-exciton energy. At the shortest times the emission comes mainly from

electron-hole pair recombination (fast component). Its relative contribution to the PL, com-

pared to the excitonic one (slow component), increases when TL is increased and decreases

when the excitation density is increased, as long as n is kept below 15 × 1015 cm−3. With

a further increase in excitation density (above 150× 1015 cm−3) the system is populated by

electron-hole pairs as exciton formation is hindered by screening.

Figure 5.14 also shows a striking feature in the high TL temporal evolutions. For

TL above 49 K the fast component of the onset of the PL is followed by an initial fast
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decay, which is more evident as TL is increased. If we focus on the TL = 80 K case,

Fig. 5.13(b) reveals that this fast initial drop is more important at low excitation densities,

being completely absent for n > 50×1015 cm−3. The origin of this initial fast decay may be

sought in the warming of the electron-hole plasma. At the lowest excitation densities, the fast

sub-picosecond thermalization[225, 5, 148] in conjunction with e�cient LO-phonon assisted

relaxation, may result in thermalized carrier populations with initial temperatures close but

slightly below TL. Figure 5.15(a) shows the initial carrier temperature 〈T 〉 (averaged over

the �rst 25 ps, i. e., just before the initial fast decay) as a function of excitation density for

TL = 80 K. The temperature was extracted from the high energy tail of the PL assuming, for

the sake of simplicity, Boltzmann distributions.[219] Indeed, for excitation densities below

50 × 1015 cm−3 the initial carrier temperature is lower than TL. We interpret the initial

fast decay of the PL as a consequence of the warming of the carriers to TL, which changes

the carrier distributions, in particular resulting in a depletion of the states at the energy of

the maximum of the PL band (close to Egap), as indicated by the red arrow in the inset of

Fig. 5.15(a). Figure 5.15(b) �red dotted line� shows the expected PL time evolution under

such conditions of carrier warming [modeled in Fig. 5.15(c)]. This behavior has also been

observed for excitons in GaAs QWs.[79] For n > 50 × 1015cm−3 this initial drop is absent

since the carrier temperature is above TL and, therefore, the depletion does not occur [see

solid lines in Fig. 5.15(b) and (c), and black arrow in the inset of (a)]. Similar e�ects related

to the fast redistribution of carriers in the bands and their in�uence in the PL dynamics,

will be discussed in detail in Chapter 7.

Let us �nally comment on the observed monotonic increase of 〈T 〉 with n, for high
carrier densities. In a low power, linear regime in which all excitations (carriers, phonons,

...) in the system are in quasi-thermodynamical equilibrium at all times, the initial carrier

temperature would only be determined by the excess energy above the gap of the exci-

tation laser. However, at high n the establishment of an initial carrier temperature and

the subsequent cooling is strongly a�ected by (i) the screening of the carrier-carrier and

carrier-phonon interaction, (ii) the electron degeneracy which may a�ect the cooling rates

by frustrating the relaxation of electrons to the low energy states, and (iii) the creation of

non-thermal phonon distributions.[176, 210, 258, 257, 227] The latter contribution causes

the appearance of a phonon bottleneck and arises from the slow di�usion and decay of the

carrier-generated phonons. Fast re-absorption of the excited phonons by the electron-hole

plasma thus results in higher initial temperatures, as obtained from our experiments, and
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slower cooling rates.

The main conclusion that we can extract from all the above discussions is that

a critical temperature Tc = 49 K can be identi�ed, which sets a boundary in the spectral

(Fig. 5.10) and dynamic (Figs. 5.13 and 5.14) behavior of the carriers in the system. In the

case of the dynamics, the interplay between the excitonic (slow component) and electron-

hole pair (fast component) recombination is summarized in Figs. 5.16 and 5.17 for di�erent

TL and excitation densities. Figure 5.16 depicts tmax as a function of excitation density, n,

for di�erent lattice temperatures. The curves can be classi�ed in two groups, corresponding

to TL < Tc (solid symbols) and TL > Tc (open symbols), plus the curve at 49 K. The tmax

dependence on n of these groups shows certain symmetry with respect to the TL = Tc curve,

with negative curvature for TL < Tc and positive for TL > Tc. This symmetric behavior is

characteristic of a metal-to-insulator transition,[276, 154] with TL as the order parameter

having a critical value of 49 K (in resistivity measurements in doped semiconductors the

order parameter in the metal-to-insulator transition is the electron density). The lattice

temperature that sets the boundary between the insulator and metal behavior in tmax (Tc =

49 K) coincides with the exciton binding energy (i. e., kB ·Tc = 4.2 meV). This fact evidences

that ionization is dominated by exciton-phonon interaction rather than by exciton-exciton

scattering.

The �rst group of curves in Fig. 5.16, TL < 49 K (solid symbols), corresponds

to the excitonic insulating phase in which the onset of the PL is dominated by the slow

component and tmax is governed by the exciton relaxation, as was discussed in Sec. 5.3. As

discussed in that section, a detailed analysis reveals that for n < 3 × 1015 cm−3 and TL

up to 30 K, the monotonic increase of tmax with density is related to the trapping of free

excitons in bound states. For higher excitation densities, the steady decrease of tmax with

increasing density arises from the fast exciton formation time and from the rapid relaxation

of excitons induced by exciton-exciton scattering (see section 5.3).

The second group, TL > 49 K (open symbols), corresponds to the metallic phase,

with the onset of the PL dominated by the fast component (electron-hole pair recombina-

tion). The rise time, which increases monotonically with increasing n, is determined by the

thermalization and cooling of carriers. This increase can be qualitatively explained, taking

into account the initial carrier temperature, as follows. For densities above ∼ 50×1015cm−3,

the temperature of the initial electron-hole plasma is higher than TL (see Fig. 5.15); car-

riers cool down to TL through carrier-phonon interaction and it takes some time to reach
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Figure 5.15: (a) Initial carrier temperature 〈T 〉, (averaged over the �rst 25 ps), as a function
of excitation density for TL = 80 K; the solid line is a guide to the eye. (b) Simulated
photoluminescence 0.5 meV above the band gap and (c) carrier temperature in the plasma
regime. In order to simulate the curves in (b) and (c), Boltzmann distributions of electrons
and holes were assumed with a carrier decay time of 3.5 ns. For the large (small) photoin-
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in the conduction band for carrier temperatures of 100 K (black line), 80 K (blue line) and
64 K (red dotted line).
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the highest occupation of the lowest energy states, resulting in a delay for the PL to reach

its maximum.[79, 270] As the excitation density is raised, the initial carrier temperature is

higher and the cooling takes longer, leading to an increase of tmax.[176, 170, 69]

Only at the highest excitation densities, in the region where all the curves tend

to approach a common value of tmax ≈ 100 ps, the rise time is essentially characterized by

electron-hole recombination for any lattice temperature, due to the e�ective carrier screening,

as already discussed above. In order to reinforce this idea we have plotted, in Fig. 5.17, the

dependence of tmax on TL for several excitation densities. There is a temperature (49 K, the

critical temperature) for which tmax is nearly independent of the excitation density. More-

over, the curves reverse their order when crossing this temperature (see inset of Fig. 5.17;

only 3 curves are shown for clarity). These two facts are qualitatively identical to what is

found in resistivity studies around the metal-to-insulator transition in two dimensional high

mobility semiconductors.[154, 124]

Figure 5.17, shows again two groups of curves, separated by an excitation density of

∼ 150× 1015 cm−3. For n ≤ 120× 1015 cm−3 (solid points) and TL ≤ 49 K, the dependence

of the rise time on lattice temperature re�ects the aforementioned interplay between exciton

and electron-hole pair recombination. For n ≥ 180× 1015 cm−3 (open points) the rise-time

dependence on TL shows a behavior much less dependent on excitation density, as in this

regime the carriers in the system form an electron-hole plasma (metallic state). Thus, the

excitation density range 120 − 180 × 1015 cm−3 establishes a phase boundary in the char-

acteristics of the onset of the PL, similar to the TL = 49 K boundary discussed above. The

metal-to-insulator transition in the system, set by this density range (densities varying by

a factor 1.5), is much more abrupt than the observed Mott transition in recent experiments

in QWs,[131] which takes place over an order of magnitude in excitation densities. The

transition densities we �nd are about �ve times greater than the theoretical calculations

for the Mott transition by Haug and Schmitt-Rink.[105] Their calculations, making use of

Hartree-Fock and self-screening corrections to the exciton energy, yield a Mott density for

GaAs of 28.1× 1015 cm−3 at TL = 0.

5.4.4 Phase diagram for tmax

The existence of a critical TL and n in the phase space that describes the rise-time

characteristics of the system enables us to compose a phase diagram for the transition from
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the excitonic dominated to the electron-hole pair recombination dominated luminescence.

Figure 5.18 shows TL data already depicted in Figs. 5.16 and 5.17 as a function of these

two coordinates (TL and n) in which the boundaries between the two phases are marked

by dotted lines. The dashed area correspond to the carrier density range over which the

transition takes place.

Finally, let us further comment on the relation between the exciton binding energy

and the density and temperatures at which the Mott transition takes place. This can be

readily investigated in QWs, where the binding energy can be controlled by varying the well

width. One could argue that higher binding energies would lead to higher critical lattice

temperatures for the metal-to-insulator transition. Theoretical calculations[206] show that

for GaAs/AlGaAs QWs and a �xed lattice temperature, both the binding energy and the
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critical transition density increase when the well width is reduced, con�rming that a stronger

exciton is harder to dissociate. However, when it comes to the critical temperature the

scenario is rather complex. Calculations of Ben-Tabou de-Leon and coworkers[28] show that

even for a given well width (�xed Eb) the transition temperature varies from 40 K to 80 K

when the carrier density is increased in a given GaAs/AlGaAs QW.

5.4.5 Summary

As a summary of this chapter, let us mention that a systematic study of the

exciton/electron-hole plasma PL dynamics in bulk GaAs in a wide range of lattice temper-

atures and excitation densities after a pulsed non-resonant excitation has been presented.

We concentrated on the onset of the luminescence and on the e�ect of the coexistence of

free carriers and excitons on the temporal evolution of the PL. The excitation density de-

pendence of the rise time for di�erent lattice temperatures presents a behavior typical of a

metal-to-insulator transition, qualitatively similar to those observed in resistivity measure-

ments in doped bulk semiconductors,[276, 224] in high mobility two-dimensional electron

systems,[153, 154, 124] or in superconducting thin �lms.[106, 139, 278] This transition,

which is continuous but abrupt, takes place at a critical lattice temperature Tc. In a similar

way, the lattice-temperature dependence of the rise time as the excitation density is in-

creased, also undergoes a relatively abrupt change at a critical density nc. Thus, monitoring

the PL rise time, we have observed a transition that takes place at a density that is about

�ve times greater than the theoretically predicted Mott transition density in photoexcited

semiconductors.[105]
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Chapter 6

Electron spin dynamics in the plasma

regime

In the preceding chapters we have presented experimental results on the PL dy-

namics of carriers in bulk GaAs under very di�erent regimes of excitation density and lattice

temperatures. In this chapter we will study an additional degree of freedom that so far has

not been considered, namely, the spin of the carriers in the system. In particular, we will

present experimental results on the momentum dependence of the spin-�ip dynamics of the

electrons in bulk GaAs. We will make use of the knowledge of the phase diagram of the dy-

namics introduced in the preceding section in order to prepare the system in the conditions

of excitation density and lattice temperature that ensure that the dominant excited popula-

tion is conformed by free electrons and holes. Let us �rst present a brief phenomenological

introduction on the state of the �eld of electron spin-�ip in bulk semiconductors.

6.1 Phenomenological introduction

As introduced in Secs. 2.1 and 2.2, excitons, electrons and holes in semiconductors

posses a spin degree of freedom. The spin degree of freedom of these particles can be accessed

through optical spectroscopy given the speci�c polarization selection-rules that govern the

light coupling to these excitations, in what has been called �optical orientation�.[187]

From the three mentioned species, the electron spin-relaxation processes have at-

tracted the most attention in the solid-state physics community for the past three decades.

This interest has been renewed recently due to the feasibility of spin-based devices for the
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storage, transport and processing of information.[309] In fact, optical-orientation related

techniques have proved to be extremely powerful tools for the manipulation and study of

the electron-spin degree of freedom in direct gap semiconductors. An extensive review of

some of the most signi�cant experiments in this �eld both in bulk and lower dimensional

systems can be found in Ref. [309].

Although the theoretical basis underlying the physics of the electron spin-�ip pro-

cesses were established in the late 1970's (a review can be found in Ref. [187]), its under-

standing is still a very active �eld of research.[179, 265, 173, 303] Theoretical studies have

been performed mainly considering doped systems. They have composed a very detailed

map of the electron spin-�ip relaxation mechanisms under very di�erent conditions of mate-

rial composition, temperature, and doping density,[265, 78, 205, 142] and have successfully

explained and predicted many of the experimental observations in this �eld. In the last

decade, on the quest for the use of the electron spin as a fundamental constituent in spin-

tronic devices, many experimental studies have concentrated on the design and development

of GaAs-based structures with long electron spin-relaxation times,[78, 140, 286, 230, 142]

which can reach the microsecond scale.[56]

However, despite all the thorough investigations, some fundamental aspects of the

physics of electron spin relaxation in semiconductors have historically been neglected. One

of these issues is the electron-momentum (k) dependence of the spin-�ip processes. This k-

dependence is of great importance not only from a fundamental point of view, but also for the

design of applications that rely on the transport and injection of electrons with a preserved

spin state. In these applications electrons travel some distance in the system with a non-zero

momentum, and a precise knowledge of the k-dependence of the spin relaxation time may

help to improve the designs.[229, 125, 88, 141] Generally, this is carefully accounted for in the

theoretical derivations of the spin-�ip times (τsf ) under di�erent mechanisms,[179, 265, 205]

but has remained largely unexplored in experimental works. For example, in the related

topic of the electron g-factor, only recently direct data has been obtained on the energy

dependence of the electron g-factor in bulk GaAs.[162]

Bulk n-doped GaAs, in which the conduction band is �lled up to the Fermi level

with electrons coming from dopants, is not very suitable for such experimental studies since

photoinjected electrons may only keep a spin imbalance at the Fermi edge.[78, 140] Then,

in these systems the spin-�ip times can only be investigated for electrons with momentum

corresponding to the Fermi energy. In the case of p-doped and undoped GaAs samples, the
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measurement of the k-dependence of τsf by optical means should be feasible, but it has

simply not been performed.1. In any case, the use of doped samples should be avoided in

such studies as doping introduces (i) extrinsic scattering centers whose strength may vary

depending on the dopant and even depending on the sample (compare τsf values, for the

same doping concentration, in Refs. [55] and [78]); and (ii) localization centers that are

critical in the determination of the spin-relaxation mechanism.[78, 230, 56]

Another fundamental issue that has not been explored until very recently, is the

physics of spin-dependent electron many-body processes[211, 193, 303] and phase-space

�lling e�ects.[130, 209] Due to the di�culties in the theoretical modeling and in the analysis

of the experimental results, the spin relaxation mechanisms in the regime where these e�ects

are important are not well known.

As already anticipated, in this chapter we present experimental results on some

aspects of the two aforementioned issues, i.e., the k-dependence of the electron τsf , and the

spin-dependent many-body and phase-space �lling e�ects on the electron spin-�ip processes.

The optical-orientation technique used to access the spin degree of electrons with di�erent

k will be introduced in subsection 6.2, while the experimental results and Monte-Carlo

simulations that model the physical processes evidenced in the experimental results will be

presented in Secs. 6.3 and 6.4 respectively. As a brief preview of the results contained in

this section, let us mention that the experiments presented here yield the largest observed

τsf in undoped GaAs.

6.2 Optical orientation

The main experimental results of this section make use of optical orientation to

obtain the electron spin-�ip times. In an intrinsic bulk semiconductor, the probability for the

excitation of electrons from the valence to the conduction band after a circularly σ+polarized

non-resonant pump pulse with photon energy E is given by Eq. 6.1:

α+(E) ∝
[
|〈e |Pdip|hh〉|2 · µ3/2

e−hh + |〈e |Pdip| lh〉|2 · µ3/2
e−lh

]
(E − Eg)1/2, (6.1)

where 〈e |Pdip|hh〉(〈e |Pdip| lh〉) is the electric dipole matrix element for the absorption of

a σ+ photon and creation of a spin-down (spin-up) electron and a Jz = +3/2 heavy-hole
1In the experiments available in the literature, only a single electron energy has been studied in each

investigated sample.[302, 254, 89]
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(Jz = +1/2 light-hole), Eg is the band gap, µe−hh (µe−lh) is the reduced electron and

heavy-hole (light-hole) mass, and Jz is the third component of the total angular momentum.

Thus, a σ+ incident pulse excites both spin-down and spin-up electrons. Taking into account

that |〈e |Pdip|hh〉|2 is 3 times greater than |〈e |Pdip| lh〉|2 if valence band mixing e�ects are

neglected,[186] and that the reduced masses µe−hh and µe−lh are nearly the same when they

are averaged in all directions of space, the maximum injected total electron spin imbalance

amounts to ∼ 50%. Even though this is an old, well established theoretical result,[187]

only recently, by means of two photon absorption techniques, Bhat and coworkers[30] have

presented detailed experimental results that corroborate this theoretical prediction.

The photogenerated holes are also spin polarized but, due to the angular mo-

mentum mixing in the valence bands, they loose their spin memory in a time scale of

∼ 100 fs,[111] much shorter than any other spin-�ip time considered here. Therefore, for

the rest of this section, we will assume that holes are not polarized.

After thermalization and energy relaxation of the carriers in the bands, the elec-

trons recombine with the unpolarized holes, and the σ+polarized light emitted at energy E

is given by Eq. 6.2:

I(E, σ+) ∝
[
|〈e |Pdip|hh〉|2 · fe↓fhh↑ · µ3/2

e−hh + |〈e |Pdip| lh〉|2 · fe↑flh↑ · µ3/2
e−lh

]
(E − E∗gap)1/2,

(6.2)

where E∗gap is the renormalized band gap, fe↓(↑) are the Fermi-Dirac occupations of spin-

down (-up) electrons and fhh↑(lh↑) those of Jz = +3/2 heavy- (Jz = +1/2 light-) holes.

The same selection rules apply to the excitation and emission processes. σ+ luminescence

will originate from the recombination of spin-down electrons with heavy-holes, and spin-up

electrons with light holes in a ∼ 3 to 1 ratio. The σ− emission [i. e., I(E, σ−)] is given by an

expression analogous to Eq. 6.2 with the arrows in the distribution functions in the opposite

direction, meaning a change of sign in the spin or Jz. Then, due to the just mentioned 3

to 1 ratio in the optical selection rules, electrons mainly recombine with heavy-holes. The

degree of circular polarization of the emitted light, at energy E, after excitation with a σ+

pulse, is given by Eq. 6.3:

℘(E) =
I(E, σ+)− I(E, σ−)
I(E, σ+) + I(E, σ−)

. (6.3)

℘ provides a direct measurement of the imbalance of the two electronic spin populations.
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After the pulsed injection of spin-polarized carriers, they thermalize, slowly cool

down (see Sec. 5.4) and progressively �ip their spin towards a spin balanced situation of

electrons in the conduction band. The maximum value of ℘(E) is obtained at zero delay

after the excitation. The spin-�ip rate of the electrons τsf (E) at a given energy can be

monitored through the time evolution of ℘(E). The decay time of the polarization τ℘(E) is

directly connected to τsf (E) through:[274] τsf (E) = 2 · τ℘(E).

Let us mention that the use of polarization- and time-resolved PL procedures, as

that described in the previous paragraphs, provide a direct quanti�cation of τsf without

the possible spurious e�ects and complications associated to the use of external magnetic

�elds and/or post-experimental theoretical �ttings which are inherent to other techniques,

such as those based on the Hanle or Kerr e�ects.[78] It also avoids other limitations present

in techniques like time-resolved photoemission, which just probes the surface of the sample

where the localization of carriers destroys any possibility of accessing the information on the

electron momentum.[240]

6.3 Experimental results

We have used the same experimental con�guration as in the experiments of Secs. 5.3

and 5.4, with the additional use of polarization optics in the excitation beam and in the PL

collection path (see Sec. 4.2.1). Combinations of linear polarizers and λ/4 plates enabled the

preparation of the excitation pulses in a σ+ polarized state and the analysis of the collected

luminescence into its σ+ and σ− components. All experiments where performed in the bulk

GaAs sample at a lattice temperature of 5 K.

Figure 6.1(a) shows the GaAs PL spectrum 300 ps after the arrival of the laser

pulse (energy: 1.630 eV) at low excitation density (1.5 × 1015 cm−3), where the photoex-

cited electrons and holes mainly form free excitons. As only excitons with K ≈ 0 couple

to light, the spectral characteristics of the free exciton line primarily arise from the homo-

geneous nature of the resonance and from exciton dephasing processes.[245, 85] Due to the

homogeneous origin of the free-exciton line, no spectral dependence of ℘ is expected across

the resonance,2 as observed in Fig. 6.1(a): ℘ remains almost constant along the free exciton

2Even if the excitonic lineshape would have shown inhomogeneous broadening (caused for example by
alloy �uctuations), no spectral dependence of ℘ would be expected. Individual excitons at slightly di�erent
energies contributing to the inhomogeneously broadened lineshape would in principle show the same spin
dynamics.
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Figure 6.1: GaAs PL spectra (σ+�closed points�, σ−�open points�; left scales) and
degree of circular polarization (right scales) for di�erent excitation densities and delays
after the σ+ pulse arrival: (a) very low excitation density, 1.5 × 1015 cm−3 at 300 ps; (b)
130 × 1015 cm−3 at 150 ps; (c) 390 × 1015 cm−3 at 150 ps; (d) 390 × 1015 cm−3 at 515 ps.
The thick solid lines are �ts to the PL as explained in the text. The dashed vertical lines
in (c)-(d) depict the selected energies at which the time evolution of the PL is depicted in
Fig. 6.2.
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emission, and in particular at its high-energy side with a value of 0.21 ± 0.04. The slight

abrupt jump (∆℘ ≤ 0.05) at the center of the line originates from a splitting between the

σ+ and σ− components of the PL (∼ 0.1meV), due to inter-excitonic interactions.[281]

As was thoroughly discussed in Sec. 5.4, at high excitation densities (above nc ∼
120× 1017cm−3) screening of the carriers leads to the formation of an electron-hole plasma.

In this case, the σ+ photoexcitation creates two ensembles of electrons with a high excess

energy in the conduction band (with down- and up-spin in a ∼ 3 to 1 ratio as discussed

earlier). Again, due to strong carrier-carrier and carrier-phonon interactions, each popula-

tion thermalizes within 1 ps conforming broad Fermi-Dirac distributions in the band, with

a common temperature well above the lattice temperature.[225, 5] Simultaneously, an anal-

ogous process for the depolarized holes leads to the achievement of a thermal distribution

also in the valence band. The carrier distributions then slowly cool down towards the lattice

temperature through carrier-phonon interaction. For such high carrier densities, where exci-

ton formation is hindered, electrons and holes with any k can radiatively recombine, as long

as the total electron-hole pair momentum is close to zero (only vertical transitions between

the bands are allowed). Electrons with �nite kinetic energy can then recombine at energies

above the gap. In this situation the PL lineshape does not originate from the homogeneous

character of the resonance (as in the case of excitons) but from the occupation of electrons

and holes at di�erent energies in the band.

The kinetic energy Ek−e and the momentum k of the electrons that recombine at

an emission energy E are related by:

Ek−e =
~2k2

2me
=

mh

mh +me
(E − E∗g ), (6.4)

where me is the electron e�ective mass, and mh is the heavy- or light-hole mass depending

on the kind of hole with which the electron recombines.

Figures 6.1(b)-(d) show the PL spectra for two excitation densities in the electron-

hole plasma regime, at di�erent delays after the excitation pulse arrival. Very broad emission

from the plasma is observed (notice the x -scales). The graphs show the widest spectral

window allowed by the setup; the central detection energy was chosen in order to cover

the high energy tail, which contains all the information about the electron populations.

The large amount of injected carriers produces a renormalization of the band gap, due to

exchange and correlation e�ects.[280] Band-gap renormalizations as large as 25 meV have
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been reported in similar systems under analogous conditions.[39]

As clearly seen in Fig. 6.1(b), the degree of circular polarization shows a strong

spectral dependence, which results from the spin imbalance of the two spin electron pop-

ulations. At short delays after excitation, the occupation of electron states with low Ek−e

(emission energy close to the renormalized band gap, 1.508 eV) is very similar for both elec-

tron spin populations, resulting in very low values of ℘. However, for higher Ek−e there are

progressively more spin-down than spin-up electrons, yielding higher polarization degrees,

which approach values of 0.4 for the lowest initial carrier density at high energy. At larger

densities [Fig. 6.1(c)] an analogous spectral dependence of ℘ can be observed but with

smaller values. This decrease of ℘ with power can originate from a broader initial distribu-

tion of carriers together with a reduction of τsf with Ek−e (see below) with increasing n,

and/or from spectral-hole burning e�ects, which are more important for electrons excited

from the heavy-hole than from those from the light-hole band.3 At latter times [Fig. 6.1(d)],

the spin-�ip processes, which tend to balance both populations, produce an overall decrease

of the polarization degree. Nonetheless, the monotonous increase of ℘(E) with emission

energy is preserved.

We can now focus on the PL dynamics at di�erent emission energies. Figure 6.2

depicts the time evolution traces of the σ+ and σ− luminescence for the highest investigated

excitation density at two di�erent emission energies [corresponding to the vertical lines in

Figs. 6.1(c) & (d)]. Both rise and decay dynamics are very di�erent in the two cases as a

consequence of the relaxation and cooling dynamics of the electron ensembles. At low (high)

energies the PL evolution re�ects the radiative recombination and the �lling (emptying) of

electronic states. The cooling process of the electron populations from high- to low energy

states results therefore in a slow (fast) dynamics at low (high) energies.[240]

In the lower panels of Fig. 6.2 the time evolution of ℘, extracted from the upper

panels traces, is presented. ℘ decays with time and τ℘ can be obtained by �ttings to mono-

exponential decay functions.

Figure 6.3(a) depicts the electron spin-�ip time τsf obtained from τ℘, for di�erent

excitation densities as a function of electron kinetic energy in the conduction band. To

obtain the kinetic energy we have used Eq. 6.4 assuming that the emission energy comes

3Nemec et al. (Ref. [193]) have reported signi�cant non-linear e�ects in pump-and-probe con�gurations
under strong optical pumping above the bandgap. However, these e�ects are negligible in PL experiments,
as those considered here.
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Figure 6.2: PL intensity (upper panels) of the σ+ (black line) and σ− (grey line) components,
after σ+ excitation, for the highest excitation density (390 × 1015 cm−3), at two emission
energies [denoted by vertical lines in Figs. 6.1(c) and 6.1(d)]: (a) 1.514 eV (Ek−e = 5 meV);
(b) 1.544 eV (Ek−e = 33meV). The lower panels show the corresponding degree of circular
polarization. The lines are �ts to a exponential decay function, with polarization decay
times of 4.2 ns in (a) and 0.72 ns in (b). Note the di�erent vertical scales in (a) and (b).

from electron and heavy-hole recombination. The renormalized band-gap energy, E∗gap has

been obtained from the �ts to the PL that will be discussed in Sec. 6.4 τsf increases with

excitation density and decreases with increasing electron kinetic energy. Values of τsf up to

26 ns are obtained for low Ek−e at the highest density. These are the longest spin-relaxation

times reported in a nominally undoped GaAs sample, and of the same order than those

reported for lightly doped n-type GaAs.[56] As it will discussed in the following sections,

the observation of such long τsf is related to the Pauli blockade of the spin-�ip processes for

electron states with occupations close to 1.

6.4 Monte-Carlo simulation and discussion of the experimen-

tal results

6.4.1 Spin relaxation mechanisms

The three main electron spin relaxation mechanisms in bulk zinc-blende semicon-

ductors are the Elliot-Ya�et (EY),[82, 299] D'yakonov-Perel (DP) and Bir-Aronov-Pikus
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Figure 6.3: (a) Measured spin-�ip time as a function of the electron kinetic energy for
initial excitation densities of 390 × 1015 cm−3 (circles), 240 × 1015 cm−3 (triangles) and
130 × 1015 cm−3 (squares). Solid lines depict the �tted spin-�ip time as discussed in the
text. The dashed line corresponds to the non-degenerate case (τnon−degsf , Eq. 6.9) with a hole
density of 143× 1015 cm−3, which corresponds to the hole density at 150 ps for the highest
excitation case (n = 390× 1015 cm−3). The black dashed line is then to be compared with
the solid black line. (b) Occupation of the electron states with spin-down and -up (dashed
lines), as well as the total electron-hole scattering rate (solid dark line) for the excitation
and time delay shown in Fig. 6.1(c). The solid light green line depicts the scattering rate
for the conditions of Fig. 6.1(b). The inset presents a zoom of the electron occupations in
order to clearly show the electron spin imbalance in the 20-42 meV electron kinetic energy
range. The non-linear upper scale in (a) corresponds to the momentum of the electrons.
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(BAP).[32, 33] Let us brie�y discuss them.

EY arises from the spin-orbit interactions of conduction band electrons. This

coupling mixes opposite spins in the electron wavefunctions due to bulk inversion asym-

metry4-related terms in the electron Hamiltonian, and more importantly, mixes electron

wavefunctions with valence band states. In this way, when scattering with carriers, impuri-

ties or phonons, electrons have a �nite probability of �ipping their spin. The spin-�ip rate

for an electron with kinetic energy Ek following this mechanism is given by:[205]

1
τEYsf

=
16
27

Φ
(
Ek
Egap

)2

η2

(
1− 1

2η

1− 1
3η

)2
1
τp
, (6.5)

where Φ is a cross section related to the dominant scattering mechanism, τp is the electron

momentum relaxation time, and η =
δEso

δEso + Egap
. The EY mechanism is important in

narrow gap semiconductors, where band mixing e�ects are more important, as indicated by

Eq. 6.5, or at very low temperatures.[265]

DP purely originates from the spin splitting caused by bulk inversion asymmetry

(Sec. 2.1.3), which results in electrons with the same wavevector k but opposite spin having

slightly di�erent energies. The splitting can be modeled as originating from an e�ective, in-

ternal magnetic �eld in the direction of k. Electron collisions randomly change the direction

and magnitude of k, giving rise to a τsf inversely proportional to the electron scattering

time τp:[205]

1
τDPsf

=
32
105

γα2
cτp

E3
k

~2Egap

2

, (6.6)

where γ is a parameter that accounts for an average of the angular dependent scattering

probability and depends on the dominant scattering mechanism, and αc ≈
4η√
3− η

m∗e
m0

[265]

BAP relies on the electron-hole exchange interaction. In an scattering process like

the one depicted in Fig. 6.4, the involved electron and hole have a �nite probability of

exchanging their spin. This action in itself is not enough to relax the spin of an electron

ensemble, as an electron which just �ipped its spin in this exchange process could �ip its

spin back by scattering with another hole. However, due to the valence band mixing, holes

randomize their spin in a time-scale much shorter than the electron-hole scattering time.

4This e�ect has been brie�y mentioned in Sec. 2.1.3 an arises from the mixing of the spin terms in the
electron Hamiltonian.
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Figure 6.4: Electron-hole scattering event with spin exchange (momentum, Jz). Note that
momentum and spin are conserved in the process as k + k′ = k′′ + k′′′

In this way, a process such as the one described in Fig. 6.4 e�ectively contributes to the

relaxation of the electron spin. In the case of a non-degenerate system τsf is given by:

1
τBAPsf

= Γp
µ

1/2
eh a

4
B

~
nh
√
Ek, (6.7)

where nh is the hole concentration in the system, and Γp is a rate related to the electron-hole

exchange and scattering probabilities. The most important feature from Eq. 6.7 is that τsf

is directly proportional to the electron-hole exchange and scattering time.

For temperatures above ∼ 4 K and very weak photoexcitation, DP is the domi-

nant mechanism in n-GaAs, and in p-GaAs for doping concentrations below 1016 cm−3. At

higher acceptor concentrations, the main spin-relaxation mechanism is BAP.[265] Theoreti-

cal calculations predict that, in undoped samples under weak photoinjection, the main spin

relaxation mechanism is DP.[265] We are interested in a situation of strong optical pumping

in an undoped semiconductor, which has not been explored in detail.[254] Under this cir-

cumstance, a high electron concentration would favor a spin relaxation mechanism based on

DP but, on the same ground, a high hole concentration would result in the enhancement of

the BAP mechanism.[265, 78, 140] However, if we extrapolate the results for electron-spin

relaxation obtained in doped samples, where the BAP relaxation rate in p-type materials

is much stronger than the DP in n-type for the same doping concentrations,[265, 230] we

expect the BAP mechanism to dominate the electron-spin relaxation in undoped samples

under strong pumping. The BAP mechanism is so e�cient in �ipping the electron spin, as

compared to DP, that even in n-doped samples the presence of photoexcited holes has been

proved to shorten the spin lifetime due to the e�cient electron-hole exchange scattering

(see Ref. [142] and the inset of Fig. 2 in Ref. [78]). Additionally, calculations of Fishman

and Lampel[89] and Maialle[179] show that, for hole concentrations similar to the ones pho-

toinjected in our system and electron kinetic energies below 100 meV, the spin relaxation
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rate associated to the BAP mechanism is up to 3 orders of magnitude greater than that

associated to the DP mechanism.

6.4.2 Monte-Carlo simulations: phase-space �lling e�ects

In strongly excited systems, on the top of the intrinsic spin-relaxation mechanisms,

phase-space �lling e�ects can be of great importance. Spin-�ip rates can be highly in�uenced

by the occupation of the �nal electron state. In the framework of a spin relaxation fully

dominated by the BAP mechanism, and in order to explore the in�uence of the phase-space

�lling e�ects, we have performed Monte-Carlo simulations of the carrier populations that

evaluate the electron-hole scattering rates (1/τe−h) under our experimental conditions.

The injected electrons and holes in the Monte-Carlo simulations scatter among

themselves and with phonons, conforming thermalized Fermi-Dirac distributions. The carrier-

carrier and carrier-phonon scattering processes, which carefully include �nal-state exclusion

e�ects, are accounted for by using a static multiscreening approach as discussed in Ref. [225]

with the simpli�cation of considering only degenerate Γ conduction bands, and a heavy-hole

valence band (no light-hole band), all of them parabolic. The simpli�cation in the use of a

heavy-hole valence band only, is justi�ed in our case as the electron�light-hole scattering

has a very weak in�uence on the electron spin-�ip time.[179]

Before proceeding to the calculation of τe−h one needs a precise knowledge of the

electron and hole distribution functions, fe↑(↓)(E) and fhh(E), for each considered excitation

density and time-delay after excitation (the spin in the hole distribution can be neglected

due to the depolarization of the holes). In order to do so, at a given time delay we have

simultaneously �tted the σ+- and σ−-PL emission with I(E, σ+) and I(E, σ−) [Eq. 6.2],

respectively. We have used the density of each type of carriers, their temperature and

the renormalized gap as �tting parameters. In the �ts, electrons and holes are forced to

stay in thermodynamic equilibrium, i.e., the temperature of spin-up electrons, spin-down

electrons and holes is the same, and the total density of holes is equal to the total density

of electrons. By performing such �ts at di�erent delays, the time-dependent fe↑(↓)(E) and

fhh(E) can be obtained. The thick solid lines in Figs. 6.1(b)-(d) depict the results of these

�ts for di�erent excitation powers and delays. Table 6.4, show the temperature and carrier

densities extracted from the �ts to the analyzed σ+- and σ−-PL spectra.

Once the distribution of spin-up and spin-down electrons and holes is obtained from
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(a)

delay (ps) Tcarriers(K) ntot (×1015 cm−3) n ↑ /ntot n ↓ /ntot
150 54.0 143 0.539 0.461

265 48.0 102 0.531 0.469

515 36.6 60 0.524 0.476

(b)

delay (ps) Tcarriers(K) ntot (×1015 cm−3) n ↑ /ntot n ↓ /ntot
150 54.2 112 0.542 0.458

265 43.8 83 0.531 0.469

515 37.6 50 0.523 0.477

(c)

delay (ps) Tcarriers(K) ntot (×1015 cm−3) n ↑ /ntot n ↓ /ntot
150 47.4 52 0.567 0.433

265 41.9 44 0.553 0.447

515 35.2 30 0.538 0.462

Table 6.4: Parameters obtained from the �ts of Eq. 6.2 to the measured σ+- and σ−-PL at
di�erent delays for a nominal excitation density of (a) 390×1015 cm−3, (b) 240×1015 cm−3,
(c) 130×1015 cm−3. ntot indicates the total density of electron hole-pairs, while n↑(↓) shows
the density of spin-up (-down) electrons.
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the experiments, we can proceed to the calculation of τe−h. The Monte-Carlo method enables

us to calculate the electron-hole scattering rates for each �tted delay. In the simulations, a

carrier is randomly chosen from the spin-up/-down electron or hole distributions and made

to scatter with electrons, holes or phonons with a probability given by the above mentioned

static multiscreening approach.[225]

The Monte-Carlo method here employed can only compute the direct Coulomb

carrier scattering. Actually, accounting for the exchange interaction in inter-particle scat-

tering goes beyond the scope and capabilities of the standard Monte-Carlo simulation of the

relaxation dynamics of a photoexcited electron-hole distribution. To the best of our knowl-

edge, only very preliminary attempts in such direction have been presented in the literature

(see, e.g. Ref. [87]). We have therefore considered explicitly only the direct Coulomb-like

carrier-carrier interactions. We will phenomenologically account for the e�ect of the ex-

change interaction via a �tting on the results of the results of the direct Coulomb scattering

results, as will be explained in detail later.

The electron-hole scattering rates are calculated by integrating during a �xed time

interval (5 ps), the number of total scattering events between holes and electrons of either

spin that are not frustrated by the �nal state occupation of the scattering partners.

Let us discuss the results of the simulations for a �xed delay of 150 ps and two

di�erent excitation densities. Figure 6.3(b) depicts 1/τe−h (thick solid lines) for the scatter-

ing of electrons with heavy holes, in the conditions of Fig. 6.1(b) �n = 130 × 1015 cm−3,

green line�, and Fig. 6.1(c) �n = 390× 1015 cm−3, black line�. For the latter case, also

the Fermi-Dirac distributions of both electron populations are shown (dashed lines). The

scattering rates of the low kinetic energy electrons are considerably smaller than those of

high-energy ones, due to the higher occupation of the low Ek−e states. Figure 6.3(b) shows

that for the case of n = 390×1015cm−3, the electron-hole scattering rates are 4 times smaller

for electrons with Ek−e = 1 than for electrons with Ek−e = 25. The e�ect of the electron

occupation on 1/τe−h is also evidenced when comparing the electron-hole scattering rates for

di�erent excitation densities: at low Ek−e, 1/τe−h is more than twice larger for low carrier

density [green line in the �gure, n = 130× 1015 cm−3 ] than for high carrier density [black

line in the �gure, n = 390 × 1015 cm−3 ], where the higher occupation of electronic states

inhibits the electron-hole scattering.

So far we have discussed the simulations for a time delay of 150 ps. As time evolves,

the carrier distributions slowly change due to the radiative recombination and to the cooling
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Figure 6.5: Computed electron-hole scattering rate for an injected carrier density of 390 ×
1015 cm−3 at di�erent delays after the arrival of the pulse (solid lines). Black: 150 ps, red:
265 ps, blue: 515 ps. The dashed line depicts the averaged scattering rate.

of the ensembles. Figure 6.5 depicts the computed scattering rate at di�erent delays for an

injected carrier density of 390×1015 cm−3. τe−h changes only slightly during the PL lifetime.

To account for these small changes, in the simulations we have averaged τe−h during the

time needed for the PL to decay to 1/e of its maximum value (dashed line in Fig. 6.5).

6.4.3 Scaling relation

As we have discussed above, the employed Monte-Carlo approach can only account

for the direct Coulomb scattering. In order to compare results of the simulation for the

direct electron-hole scattering rate with the experimental results on the spin-�ip rate (which

is equivalent to the electron-hole exchange scattering rate in the BAP mechanism), we have

made use of a scaling relation of the type:

1
τsf (k)

= C

(
1

τe−h(k)

)β
, (6.8)

where C and β are the scaling coe�cient and scaling exponent respectively showing no de-

pendence on k. Analogous scaling relations can be inferred from calculations on the electron-

electron scattering rates including and excluding exchange[53] (see discussion below), and

can also be deduced for the case of the correlation and exchange mean-energies per electron

in an electron-hole plasma in the context of a screened potential approximation.[105]

We have �tted the experimental points shown in Fig. 6.3(a) with Eq. 6.8 using the

simulated averaged τe−h for each excitation density. The �t was performed simultaneously

for the three considered excitation densities to obtain the �tting parameters C and β. The

results of the �t is shown in Fig. 6.3(a) as solid lines, yielding values of C = 2.05 × 10−3
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Figure 6.6: (a) Figure 5 of Ref. [53]: calculated electron-electron scattering rate as a function
of density for electrons with a distribution 20 meV wide in energy, centered at an excess
energy of 60 meV. Triangles: static screening approximation without exchange (τdirect);
diamonds: static screening approximation with exchange (τtotal); squares: dynamic screening
with exchange; circles: electron�LO-phonon scattering. (b) τexc vs τdirect obtained from
the points enclosed in a circle in (a). Note that both scales are logarithmic. The dashed line
is a linear �t to the data.

and β = 2.81. The agreement is excellent for the three investigated densities.

Let us further comment on the justi�cation for the use of the scaling model in-

troduced in Eq. 6.8. Our scaling model of the direct and exchange spin-�ip electron-hole

scattering rates is based on the idea that the spin �ip is dominated by exchange interaction.

Both direct and exchange interactions scale with di�erent powers of the density. Therefore,

one can scale exchange as a power of the direct term. This general argument has proved to

be valid in calculations of carrier-carrier scattering by Collet in undoped GaAs in a static

screening approximation.[53] The calculations of Collet focus on the electron-electron scat-

tering rates as a function of density (instead of electron-hole rates) and are here reproduced

in Fig. 6.6(a) [Fig. 5 of Ref. [53]]. Triangles depict the calculated rate without exchange

(τdirect; direct terms only), while the diamonds include exchange both exchange and direct

terms (τtotal). If we focus on the points enclosed by the dashed circle, we can plot the bare

exchange scattering rate (τexc) vs the bare Coulomb scattering rate τdirect. In order to esti-

mate the bare exchange scattering rate from the data of Fig. 6.6(a), we make the following



136 6.4. MONTE-CARLO SIMULATION AND DISCUSSION

approximation: τexc = τtotal − τdirect. The obtained τexc is plotted vs τdirect in Fig 6.6(b),

where a scaling relation between direct and exchange scattering rates analogous to Eq. 6.8

can be extracted, as indicated by the dashed linear �t. In this case of electron-electron

scattering, which should not di�er much from the electron-hole case, a scaling exponent of

3.5 is obtained, not far from our result of β = 2.81 for electron-hole scattering.

Let us now focus on the e�ects of phase-space �lling on the spin-�ip time. In

order to do so, we have calculated τsf for the case of non-degenerate holes and empty

conduction band. The dashed line in Fig. 6.3(a) shows τsf as derived by Bir et al,[32, 33]

and reformulated in Ref. [179] as:

1

τnon−degsf

= nhσs

(
2

µe−hh

)1/2

E
1/2
k−e, (6.9)

where nh is the hole density and σs is the spin-�ip cross section. For our evaluation of

τnon−degsf we have used a hole density corresponding to the highest investigated density in

our experiments at a delay of 150 ps (143× 1015 cm−3), which is far beyond the assumption

of non-degeneracy, but provides a qualitative reference for the e�ect of phase-space �lling

on the spin-�ip rates.[179] To visualize the e�ects one has to compare the dashed line with

the bold solid black line: for low kinetic energies τsf is greatly increased with respect to

τnon−degsf (∼ 8 times, from 3.6 ns to 29 ns for Ek−e = 2 meV) due to the frustration of

the electron spin-�ip in highly occupied states (Pauli blockade). At higher electron kinetic

energies (> 20 meV), the occupation is much lower [see Fig. 6.3(b)] and τsf approaches

the non-degenerate values. Thus, the Pauli blockade of the spin relaxation does not only

modify the overall value of τsf , but it also a�ects the energy dependence of the spin-�ip

processes.[179]

The k-dependence of the electron spin-�ip time reported in Fig. 6.3(a) shows τsf

values and follows trends very close to those calculated by Maialle in bulk GaAs, assum-

ing a BAP spin-relaxation mechanism, with p-doping concentrations very similar to the

photoinjected electron-hole pair densities of our experiments.[179] Our measurements yield

slightly higher values of τsf caused by a higher Pauli blockade of the electron-hole scattering

due to the presence of degenerate electron populations (the calculations of Ref. [179] are

performed in the absence of electrons in the conduction band, but account for degenerate

valence bands). Despite the di�erences in the system's conditions between the calculations

of Ref. [179] and our experimental results shown in Fig. 6.3(a), the good qualitative agree-
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spin �ip mechanism scattering time vs n spin-�ip time vs excitation density

DP τe ∼ n τsf ∝
1
τe
⇒ τsf ↓when n ↑

Our model (BAP) τe−h ∼ n τsf ∝ (τe−h)β ⇒ τsf ↑when n ↑

Table 6.5: Expected qualitative dependence of τsf for the Dyakonov-Perel (DP) and Bir-
Aronov-Pikus (BAP) mechanisms with increasing n assuming that the electron scattering
time (τe and τe−h) increases with excitation density as obtained in the Monte-Carlo simula-
tions due to the Pauli blockade.

ment between the two supports our model of electron spin relaxation through the BAP

mechanism under strong Pauli blockade for our experimental results.

Let us �nally note that the DP mechanism, as compared with the BAP one, would

result in a very di�erent dependence of τsf with n. In the DP mechanism, τsf is inversely

proportional to the electron scattering time, while in our model both times are proportional

to each other [see Eq. 6.8 and Table 6.5]. Our experiments clearly show an increase of

τsf with increasing optically pumped carrier density (τsf ∼ n). The simulations obtain

an increase of the electron scattering time with density (τe−h ∼ n), due to Pauli blockade

[compare green and black solid lines in Fig. 6.3(b)], con�rming the validity of our model

(τsf ∼ τe−h) and discarding the DP mechanism (τsf ∼ 1/τe−h).

6.5 Summary

In this chapter, by means of optical orientation techniques, we have shown experi-

mental results on the k -dependence of the electron spin-�ip times in a direct-gap bulk semi-

conductor. In the case of undoped GaAs under strong photoexcitation, where the densities

of free electrons and holes are identical, the main spin-�ip mechanism is BAP. Furthermore,

by means of a Monte-Carlo simulation we have evidenced that in this situation of a highly

degenerate system, the large occupation of low energy states frustrates the electron-spin

relaxation, yielding an increase of τsf of up to 8 times as compared with a non-degenerate

system. This Pauli blockade also a�ects the energy dependence of τsf , as the occupation

of electrons in the conduction band follows a Fermi-Dirac distribution, with the highest

occupation for the lowest energy electrons. These e�ects result in values of τsf up to 30 ns

at k ≈ 0, the longest reported spin-relaxation time in undoped GaAs in the absence of a

magnetic �eld. Additionally, we have introduced a simple scaling relation between the direct
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Coulomb and exchange electron-hole scattering rates, that fully accounts for the measured

dependence of τsf on n and k.
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Chapter 7

Tailoring the carrier distributions in

QWs: two pulses experiments:

7.1 Introduction

In the preceding chapters we have presented studies demonstrating that the dis-

tribution of excited excitons, electrons and holes in the bands determine many emission

properties (rise time dynamics, luminescence spectra, spin-�ip dynamics) in bulk direct-gap

semiconductors such as GaAs. In particular, in the experiments presented so far, we have

seen that there is an intimate relation between the exciton formation time (Secs. 5.3.2

and 5.4.3), the distribution and cooling dynamics of the unbound electrons and holes (Secs.

5.4.3 and 6.4), and the emission dynamics of the system.[270, 44, 128] Under several cir-

cumstances, both species (excitons and electron-hole plasma) coexist in the system (see rate

equations of Sec. 5.3.2 and Sec. 5.4.3). Moreover, recent studies have demonstrated that

at low TL excitons and plasma do not only coexist but share a thermodynamical quasi-

equilibrium.[18, 271, 222] Bearing these facts in mind, it is expected that induced changes

in the distributions of free carriers in the bands will a�ect the excitonic emission dynamics.

The aim of the experiments presented in this chapter is the study and manipulation

of the excited carrier distributions in their bands. In these experiments we will concentrate

in high quality QWs instead of bulk samples. The reasons for this choice are related to

the reduced dimensionality e�ects. In bulk systems, the small exciton binding-energy and

the high ratio in oscillator strength between excitonic and electron-hole pair recombination,
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hinders the possibility of simultaneously detecting the exciton and the plasma dynamics with

high resolution. The plasma pair-recombination is simply buried in the high energy tail of the

inhomogeneous exciton lineshape. However, in the QWs employed here, the high quality of

the samples and the con�nement e�ects, which increase the exciton binding-energy, do enable

us to measure the emission from both the heavy-hole excitons and from the electron-hole

plasma above the band gap. In this way we can study the relationship between the exciton

dynamics and the distribution of free carriers in their bands. Additionally, con�nement

e�ects also simplify the DOS and split the valence bands in QWs (see Sec. 3.1.1), so that the

calculation of the carrier temperature from the measured electron-hole pair recombination

is straightforward, as we shall see below.

Here we show experimental results on how pre-existing thermalized distributions

of carriers in QWs can be modi�ed by the pulsed photoexcitation of hot carriers in the

bands, resulting in abrupt, but controlled, changes of the carrier and exciton temperatures.

The most striking e�ect of the induced ultrafast redistribution of carriers is the appear-

ance of sharp dips in the PL dynamics of heavy-hole (hh) excitons. We will present a

quasi-equilibrium thermodynamical model of the exciton/carrier excitations in the QW that

accurately relates the magnitude of the observed dips in the excitons PL with the precise

carrier warming induced by the pulse.

7.2 Photoluminescence under two pulses excitation

The studies were carried out on two samples based on GaAs/AlAs: the �rst one

was a heterostructure with a single wide QW (20 nm), the second one contains multiple

(50) narrow QWs (7.7 nm). Similar results were also found in a multiple InGaAs/GaAs QW

sample (10 nm), showing the generality of the phenomena presented in this section. More

details of the samples structure can be found in Sec. 4.1.4.

The samples were kept in a cold �nger cryostat at 9 K. We employed the time-

resolved PL excitation and detection con�gurations in a back re�ection geometry described

in Sec. 4.2.1, with a pulsed non-resonant excitation energy 26 meV above the hh exciton.

In this case we used two consecutive pulses (PI and PII), whose power and delay can be

independently controlled by means of attenuators and a delay unit. Both pulses arrive at

the sample at the same excitation spot (∼20 µm in diameter).

Figure 7.1 shows streak camera images of the excitonic emission from the single QW
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Figure 7.1: Streak camera images of the single QW hh-PL under one pulse excitation (left
panel) and under two consecutive pulses excitation with a delay between pulses of 400 ps
(right panel). The color scales are normalized in each panel. The white arrow indicates the
arrival of PII and the subsequent formation of a dip in the hh-exciton PL emission. The
black (red) arrow mark the emission from hh (lh) excitons.

after excitation by one single pulse of 70 µW (left panel) and by two identical consecutive

pulses delayed by 400 ps (right panel; 70 µW each). In the latter case, a clear dip appears

in the emission of the hh exciton (black arrow) at the time of arrival of PII (marked with a

white arrow).

Figure 7.2(a) shows in detail the time evolution of the hh exciton PL when the two

pulses excite the QW independently (dashed lines) and when both excite it jointly (solid

line). The abrupt quenching of the PL is limited by our time resolution. The emission from

the light-hole (lh) exciton can also be detected 4.7 meV above the hh exciton [red dotted line;

red arrow in Fig. 7.1]. In contrast to the hh, the lh dynamics do not show the appearance

of a dip in the PL at the time of arrival of PII .

7.3 Origin of the dip: thermodynamical model

The origin of the dip can be explained considering the redistribution of carriers

in the bands that takes place after the absorption of PII . To account quantitatively for
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Figure 7.2: (a) Photoluminescence dynamics of the single QW hh-exciton under one pulse
excitation (grey dashed lines) and under two consecutive pulses excitation (black solid line;
conditions of Fig. 7.1). In red dotted line the emission of the lh excitons (enhanced by a
factor of 4) is presented under two pulses excitation. (b) Measured electron-hole temperature
for a single (open points) and double (solid points) pulse experiment. (c) Exciton occupation
right before (black line) and right after (orange line) the arrival of PII ; the black (red) arrow
indicates the energy of the K = 0 heavy (light)-hole exciton.
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the observed magnitude of the dip depth, we have developed a dynamical quasi-equilibrium

thermodynamical model of the carriers in the QW, which is sketched in Fig. 7.3. The

absorption of the �rst non-resonant pulse creates a non-thermal population of electrons and

holes at high energies in the conduction and valence bands [Fig. 7.3 panel (a)]. In a time

scale of the order of 200 fs the carriers distribute in the bands achieving a well de�ned

temperature, higher than the lattice temperature [panel (b)].[225, 148] The carrier densities

considered in this section are far from the degeneration limit, and the electron population

can be well described by a Maxwell-Boltzmann distribution function:

fMB(E) =
n

kBT

1
DOS

exp(−E/kBT ), (7.1)

where E is the energy of the electrons above the bottom of the conduction band, and n is

the density of electrons. A similar description can also be made for holes. As time evolves,

the carrier distributions cool down due to the interaction with phonons, and the populations

decrease due to pair recombination and exciton formation [panel (c)].[176] When the PII

reaches the QW new hot carriers are photoinjected at high energy in the bands [panel (d)].

Due to e�cient carrier-carrier scattering, the newly created carriers and the preexisting pop-

ulations rethermalize in a timescale given by the pulse duration, at a temperature (Taft)

higher than the carrier temperature right before the absorption of PII (Tbef ) [panel (e)].

Thus, the e�ect of the delayed pulse is to warm-up the carriers and increase their concen-

tration, in a time-scale shorter than a few picoseconds (∼2 ps).

Concomitantly to the free carrier dynamics that has just been described, electrons

and holes bind to form excitons in a time-scale, for the conditions of our experiments, of

the order of several hundreds of picoseconds.[18, 270] The exciton population obeys also a

Maxwell-Boltzmann distribution law.1 Recent studies have successfully developed kinetic

theories, �tted to experimental data, based on the assumption that excitons and the coex-

isting electron-hole plasma have the same temperature at all times.[270, 271, 44, 116] Bajoni

et al.[18] have actually measured independently the temperature of the excitons and that

of the electron-hole plasma, in a sample very similar to the single, wide QW structure used

here. They observe that both species do show the same temperature for times larger than

1In Sec. 5.1 it was argued that due to the fact that only optically active excitons are those with K ≈ 0
results in non-thermal character of the exciton distributions. However, the exciton population outside the
light-cone, which accounts for the vast majority of the total population, do follow quasi-Maxwell-Boltzmann
like distributions, and so we will consider them in the rest of this section.[203]
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(holes are not shown for simplicity). See text for details.
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200 ps after a pulse non-resonant excitation. For shorter times, Bajoni and coworkers pro-

pose that the exciton populations have not reached a thermal con�guration to explain the

di�erences in the measured temperature. This argument agrees with the theoretical predic-

tions of Selbmann et al.[250]. They �nd that the exciton formation is favored for electrons

lying with kinetic energies around the LO-phonon, as LO-phonon assisted electron and hole

binding is the most favorable excitons formation mechanism according to their calculation.

This fact, added to the slow exciton momentum relaxation, results in the non-thermalicity

of the exciton population in the �rst 200 ps, according to their model. During this initial

time excitons form, relax and thermalize simultaneously.

The situation in our two-pulses con�guration is slightly di�erent. In our case PII

reaches the sample more than 200 ps after the arrival of PI , and we can expect thermal

equilibrium between excitons and plasma at that time. Therefore, PII injects hot electron-

hole pairs in a system populated by already thermalized excitons. In the �rst picoseconds,

after the arrival of PII , the rethermalized electron-hole plasma just warms the preexisting

excitons. However, in contrast to the plasma population, due to the slow formation dynamics

of excitons �two orders of magnitude slower than the excitation pulse�, the exciton density

is hardly altered within the pulse duration. Thus, no additional non-thermalized excitons

should be considered during the time of arrival of PII .

From these premises, we can conclude that within a reasonable approximation,

we can assume that excitons and the electron-hole plasma have the same temperature at

the time of arrival of PII , and probably for some time after that. Therefore, an analogous

dynamics to that of the free carriers takes place also for the exciton population: during the

arrival of PII , the abrupt warming of the carriers results in an ultrafast warming of the

exciton population.

With these assumptions and using Eq. 7.1 the appearance of the dip in the hh-

exciton PL can be understood. The hh-exciton occupation of the zero momentum states

(K = 0) before/after the arrival of PII is given by:

f
bef/aft
MB (0) =

n′

kBTbef/aft

1
DOS

, (7.2)

where n′ is the pre-existing density of excitons at the arrival time of the pulse, and Tbef/aft

is the exciton (and carrier) temperature before/after the arrival of PII .

The PL intensity of the hh excitons is directly proportional to the occupation

of states with K close to zero, as these are the excitonic states that can couple to light.
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Therefore, modi�cations in the occupation of these states at the arrival of the delayed pulse

[see Fig. 7.2(c)] induce changes in the PL. In particular, the abrupt warming of the carriers

produced by the arrival of PII (Taft > Tbef ) results in an abrupt drop of the K = 0

populations (faftMB(0) < f befMB(0)) and consequently in an ultrafast quenching of the hh-PL,

as born out by our experiments (see Fig. 7.2).

The details of the exciton redistributions after the arrival of PII also accounts for

the absence of a dip in the lh emission. The lh-exciton energy is higher than that of the hh

exciton and the increase in temperature of the excitons results in a negligible change of the

excitonic occupation at the K = 0 lh states [as depicted in Fig. 7.2(c) for an energy marked

with the red arrow].

In order to gain a deeper insight into the quantitative validity of this quasi-

equilibrium thermodynamical model, we have directly measured the carrier temperature in

the single, wide QW. Figure 7.4 shows PL spectra detected at di�erent times after the arrival

of PI for the conditions of Fig. 7.2 (PII arrives at 400 ps) . The spectra show the hh- and lh-

exciton lines as well as the direct free electron-hole pair recombination above the lh exciton

energy. A Maxwellian �t can be performed at the high energy tail (indicated by solid lines)

to extract the carrier temperature. Figure 7.2(b) shows the temperatures of the electron-hole

plasma for the conditions of Fig. 7.2(a). The solid (open) dots corresponds to the double

(single) pulse experiments. In the case of the single pulse excitation, a monotonous cooling

of the plasma is observed, with a �nal equilibrium temperature (∼19 K) higher than the

lattice temperature (∼9 K).[176, 300] In the two-pulses experiment, an abrupt warming of

the plasma, and consequently of the excitons, can be observed at the time of arrival of PII .

At longer times (>1 ns) the same temperature as that obtained in a single pulse experiment

is reached.

The measured temperature of the carriers enables us to predict the dip depth

following our model. A relative dip depth can be de�ned as r ≡ (Ibef − Iaft)/Ibef , where
Ibef (Iaft) is the intensity of the hh-exciton PL right before (after) the arrival of PII . From

this de�nition and Eq. 7.2, the relative dip depth can be related to the excitonic temperature

before and after the arrival of PII by:

r ≡ f befMB(0)− faftMB(0)

f befMB(0)
= 1− Tbef

Taft
. (7.3)

The inset of Figure 7.5(a) shows in solid dots (•) the values of r directly measured
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Figure 7.4: Spectra taken at di�erent delays for the conditions of Fig. 7.2 for the single,
wide QW. The spectra have been rigidly o�set. The thick solid lines are �ts to the free
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the temperature of the carriers can be extracted. Recall that the second pulse reaches the
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from the hh-exciton PL as a function of the delay between the two pulses for the single QW.

The high values of r demonstrate the capability of PII to quench the PL. The open dots (◦)
depict r obtained from the measured carrier temperature ratio Tbef/Taft and Eq. 7.3. In a

symmetrical manner Figure 7.5(a) depicts in open dots Tbef/Taft as directly measured, while

the solid points compile the temperature ratio as obtained from Eq. 7.3. Figure 7.5(b) shows

Tbef/Taft as a function of the power of PII relative to that of PI . In this case, the signal

to noise ratio of the spectra limited the lowest power of PII for which the temperature of

the electron-hole plasma could be attained. The good agreements between the temperature

ratios obtained from the relative dip depth in the hh PL (•) and those measured directly

(◦) con�rms the validity of our model.

This is further demonstrated in Fig. 7.5(c) that depicts Tbef/Taft obtained from

the hh PL for the GaAs/AlAs narrow multiple QW sample as a function of the power

of PII (delay = 300 ps) in the low power regime (solid points). In this case the broader

excitonic linewidth hinders the possibility of extracting the carrier temperature from the

spectra. Nonetheless, our model reproduces quantitatively the observed experimental de-

pendence without the need of any adjustable parameters, as shown by the red line, which

plots Tbef/Taft obtained in the following way: the temperature after PII is given by Taft =

(nbefTbef +ninjT
∗)/(nbef +ninj), where nbef is the density of carriers at the time of arrival

of PII , determined from the power of PI and the PL decay-time; ninj is the density pho-

toinjected by PII ; T ∗ and Tbef , taken as 38 K and 24 K, respectively, are the initial carrier

temperature and that measured at a delay of 300 ps in the single QW experiments (see

Fig. 7.2), which were performed under very similar conditions to those in the multiple-QW

structure.

7.4 Summary

In this chapter, we have presented experimental results demonstrating the capabil-

ity to optically control in a short time-scale (< 2 ps) the carrier distributions in the bands

in QWs. In particular, we have seen that the arrival of a short light pulse results in a

sudden warming of a pre-excited electron-hole plasma. The exciton distributions, which are

in thermal equilibrium with the electron-hole plasma, are also abruptly warmed-up by the

arrival of the pulse, originating an ultrafast dip in the hh-exciton luminescence.

We have introduced a model that quantitatively reproduces the observed lumines-
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Figure 7.5: Temperature ratio (just before the second pulse/just after the pulse) in the
single GaAs/AlAs QW sample as a function of (a) delay between pulses for a �xed power
for both pulses (70 µW), and (b) power of PII for a �xed delay between pulses of 400 ps and
�xed power of PI (70 µW). The solid (open) dots quantify the temperature ratio as directly
measured from the PL (predicted from the model). The dashed lines are guides to the eye.
The inset of (a) shows the corresponding relative dip depths (r). (c) Same as (b) for the
multiple narrow QW sample with delay between pulses of 300 ps; the solid line computes
the model (see text).
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cence quenching and can be used to obtain the relative increase in carrier/exciton temper-

ature induced by the arrival of the pulse, by measuring the magnitude of the dip in the

hh exciton PL [Eq. 7.3]. Let us also mention that although the results presented here con-

centrate on the light emission from bare QWs, the physics and observed phenomena can

be directly extrapolated to more complicated systems such as semiconductor microcavities,

VCSELs or structures with active media of higher dimensionality, like the bulk direct-gap

semiconductors treated in the preceding chapters. In particular, the relationship between

the dip depth and the carrier warming can be exploited to study the carrier-relaxation dy-

namics in microcavities as we will show in Sec. 9.3. It could also be helpful to investigate

phase transitions, such as condensation of indirect excitons [37] or polaritons,[133, 21] in

which the carrier temperature plays an important role.
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Chapter 8

Introduction to the many-body

properties of microcavity polaritons

8.1 Bose-Einstein condensation of polaritons

One of the most interesting properties of microcavity polaritons is their capability

to form Bose-Einstein condensates (BEC). This property arises from the bosonic character

of polaritons, which is inherited from the bosonic nature of its constituents: photons and

excitons. It is easy to see that a set of indistinguishable integer-spin particles in a system

of energy levels εi follows the so called Bose-Einstein distribution function:[163]

fBE (εi, T, µ) =
1

exp
(
εi−µ
kBT

)
− 1

, (8.1)

where µ is the chemical potential. And the total number of particles in the system is:

N (T, µ) =
∑
i

1

exp
(
εi−µ
kBT

)
− 1

=
∑
i

fBE (εi, T, µ) . (8.2)

The fact that the occupation of a state cannot be negative (Ni ≥ 0) imposes that µ ≤ ε0,

being ε0 the ground state of the system. Note that µ increases with the number of particles.

We can rewrite Eq. 8.2 as:

N (T, µ) = fBE (ε0, T, µ) +
∑
i 6=0

fBE (εi, T, µ) ≡ N0 (T, µ) +Nexc (T, µ) (8.3)
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Figure 8.1: Occupation of particles following Bose-Einstein statistics at a temperature of
10 K and increasing density in the system (µ increases with density).

At a �nite T , when the chemical potential µ approaches ε0 from lower values something

special happens: on one hand fBE (εi > ε0) saturates asymptotically and the number of

particles in all the excited states tends to:

N c (T ) ≡ Nexc (T, µ = ε0) (8.4)

On the other hand fBE (ε0, T, µ) diverges, as can be seen in Fig. 8.1.

If the total number of particles exceedsN c (T ) then the additional particles, N−N c,

will populate the ground state. In other words, above N c (T ) if we add a new particle in such

a way that this particle does not change the temperature of the system, this particle will

occupy the ground state. In this way, the ground state can achieve macroscopic occupations,

and Bose-Einstein condensation takes place. In fact, this degenerate situation starts to

dominate the physics of the system when the ground state occupations are close to 1, and it

is the basis for many properties found in bosonic systems such as polaritons in microcavities.

For instance, the tendency to occupy the ground state above the degeneration limit results

in �nal state stimulation phenomena as we will describe later.

Using the above mentioned condition [Eq. 8.4], it is straightforward to calculate

the density of particles required for condensation to take. If we take a three dimensional

gas of free particles of mass m, with dispersion ε = ~2k2

2m (ε0 = 0), and we consider that the
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level states are so close together that we can integrate over the energy states with use of the

DOS [Eq. 2.31], then the critical density is given by:

nc (T ) =
N c (T )
V

=
Nexc (T, 0)

V
=
(
mkBT

2π~2

) 3
2

 2√
π

∞̂

0

1
ex − 1

x1/2dx

 , (8.5)

where V is the volume of the system. The �rst parenthesis in the right hand side of Eq. 8.5

is the inverse cube of the so-called de Broglie wavelength λT ≡
(

2π~2

mkBT

) 1
2 , and it re�ects

the average quantum size of the particles conforming the gas at temperature T . The second

parenthesis in the equation has a value of 2.612 and, therefore:

nc (T )λ3
T = 2.612 (8.6)

Equation 8.6 tells us that in order for a Bose gas to condensate in a BEC, the average

distance between particles must be on the order of their quantum size. When this occurs,

the wavefunctions that describe the individual bosonic particles start to overlap and and the

particles start to occupy the same quantum state. The macroscopic ensemble of condensed

particles can then be well de�ned by a single wavefunction:[207]

Ψ (r) =
√
n0 |ψ0 (r)| eiφ0(r) +

∑
j 6=0

√
nj |ψj (r)| eiφj(r) = Ψ0 (r) + Ψexc (r) , (8.7)

where ψj (r) and φj (r) are the amplitude and phase of the individual quantum states of

the system. The wavefunction describing the macroscopically occupied ground state Ψ0 (r)

has a well de�ned phase φ0 (r).[61, 174] The density matrix of the system is given by:

ρ1

(
r, r′

)
=
〈

Ψ† (r) Ψ
(
r′
)〉

=
〈

Ψ†0 (r) Ψ0

(
r′
)〉

+
〈

Ψ†exc (r) Ψexc

(
r′
)〉

(8.8)

and describes the �rst-order correlation between particles at di�erent positions r and r′ in

the system. The second term in the right hand side of Eq. 8.8 goes to zero when |r − r′| goes
to∞, while the �rst term has a �nite and constant value due to the well de�ned phase of the

macroscopically occupied ground state.[61] This property is called o� diagonal long-range

order, and along with super�uidity, which will be treated in Sec. 8.5, is one of the most

important and characteristic properties of Bose gases, and has been thoroughly studied in

dilute atomic systems since they were obtained for the �rst time in 1995.[65, 6]
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species atomic gases polaritons

mass m∗/m0 104 10−5

Bohr radius 10−1Å 102Å
λT at Tc 103Å 104Å

Tc < 1µK 10− 300K

Table 8.1: Comparison between di�erent parameters in atomic and polaritonic BECs. m0

indicates the free electron mass.

Due to the heavy mass of the atomic bosons employed in BEC studies, and the

low density required to keep the bosonic character of those particle, condition 8.6 implies

working at sub-µK temperatures. Alternative BECs can be studied in the microcavity

polariton system, as polaritons themselves are bosons. Polaritons have a very small e�ective

mass due to its photonic component, of the order of 109 times smaller than those of atoms.

For this reason, the transition to a Bose-condensed phase can take place at much higher

temperatures, as compiles in Table 8.1.

So far we have considered an ideal non-interacting Bose gas. It is not straightfor-

ward to see why the non-interacting particles should all condense into a single quantum state

instead of in a series of quasi degenerate states if, their energy separation is small enough,

as could be inferred from Fig. 8.1. However, BEC in a single quantum state does occur, and

the reason is that particles in real Bose gases interact repulsively. The repulsion interaction

prevents the gas from collapsing and also accounts for condensation taking place in a single

quantum state, as this is the energetically favored situation when considering Hartree and

exchange interactions in the system.[194]

Atomic condensates are regularly studied in three dimensional con�gurations, where

the above mentioned properties of BEC can be directly applied. However, polaritons in mi-

crocavities live in a two dimensional environment. Considering the constant density of states

characteristic of two-dimensional systems (see Sec. 3.1.1) the critical density for the Bose

phase transition described by Eq. 8.5 diverges and the transition can only take place at

T = 0. Equivalently, the impossibility of formation of a BEC in 2D can be seen as caused by

the destruction of the phase correlations by long wavelength thermal �uctuations.[112] This

is actually caused by the divergence at low energy of the Bose-Einstein distribution itself

when µ→ ε0 [see Fig. 8.1]. A BEC phase transition can be recovered in 2D in the presence

of potential traps.[15, 202, 61] Nevertheless, if interactions are present long-range order and

super�uidity can still develop below a critical temperature. This critical temperature char-
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acterizes a phase transition known as Berezinski-Kosterlitz-Thouless (BKT).[29, 152] The

critical density and temperature are related by a linear relation:

nc =
2mkBTBKT

π~2
, (8.9)

where, in this case, nc is the density of the condensed fraction of the gas. Equation 8.9 can

also be expressed in terms of the de Broglie length:

nc (T )λ2
T = 4, (8.10)

and the same interpretation about the overlapping of the Bose particle wavefunctions can be

applied as in 3D. Note that even though the BKT transition requires interactions between

particles, Eq. 8.9 does not show any particular interaction-energy term. The BKT transition

actually relies on two particles interactions. Above the critical temperature unconnected

local quasi-condensed droplets can form, but also free vortices do spontaneously appear,

destroying the super�uidity and the long-range order. Below the critical temperature phase

�uctuations also induce the formation of vortices, but in this case they tend to bind in pairs

of opposite circulations due to the energy relief of such con�guration caused by interactions.

The pairs and clusters of vortices with total zero circulation have little in�uence on the

super�uid properties. In this way the condensate ends up conforming percolation paths that

connect the phases of spatially separated points, and quasi-long range order is recovered.

Two di�erent �uids coexist: a normal �uid and a percolated condensed phase. In this

situation the �rst term of the correlation function [Eq. 8.8] is not constant, and decreases as

a function of distance |r − r′|. Then true long range order is not achieved and the system

does not conform a true BEC.

Recent calculations speci�cally performed on the two-dimensional polariton system

and starting from the internal structure of polaritons without considering BKT e�ects,

�nd that the problem can actually be treated in a mean-�eld approach.[138] When phase

�uctuations are introduced in the calculation, at low densities nc follows a linear dependence

on T , similar to that given by Eq. 8.9.

Although the above mentioned di�erences between the two and three dimensional

cases must be kept in mind, the theoretical treatment of the polariton condensate in two

dimensions can be carried on within the standard Gross-Pitaevskii and Bogoliubov theories

as in the three dimensional case. In Sec. 8.5 we will brie�y introduce the Bogoliubov theory
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to describe the most important features of super�uidity in these systems, in the frame-

work of Bose-condensed phases. In any case, even though it may not be the most rigorous

terminology, from now on we will refer to the two-dimensional polariton condensate as a

BEC.

8.2 Microcavity polaritons phase diagram

It is important to remark that excitons, and consequently polaritons, are composite

bosons, formed from two spin-paired fermions. This sets up an important limit to the

bosonic treatment of microcavity polaritons. If the density of polaritons is too high, the

bosonic picture of polaritons does not hold, as the electron and hole wavefunctions that

conform the excitons from di�erent polaritons start to overlap, evidencing their fermionic

nature. Also, interparticle screening changes the exciton oscillator strength and the coupling

to the photon modes, eventually destroying the strongly-coupled polariton. In this case the

microcavity enters into the regime of weak-coupling, in which the system is well described

by the bare exciton and cavity modes. In GaAs based microcavities at low temperature and

non-resonant excitation, the carrier density threshold for the onset of laser operation, in the

uncoupled exciton-photon system, is usually lower than the threshold for the weak-coupling

regime, and lasing usually takes place right at the density point of polariton destruction.[38]

In the photon-lasing regime (VCSEL) the quantum wells inside the cavity act as a gain

medium, and the cavity itself as a laser resonator.

Thermal ionization of the exciton can also take place at high enough temperatures,

driving the system into LED operation. Figure 8.2 shows the di�erent phases in excited

microcavities of di�erent materials as a function of particle density and temperature. Only

at temperatures and densities lower than those characterizing the onset of LED and VCSEL

operation, strongly coupled polaritons conform the excitations and light-emission properties

of the system, in the region enclosed by the dashed vertical and horizontal lines in Fig. 8.2.

Within this region, an incoherent polariton phase (polariton diode) or a BEC of polaritons

can be found. The solid line shows the BKT transition with its linear dependence on T

described by Eq. 8.9 at low densities.
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Polariton laser: thermodynamics and quantum kinetic theory

Figure 2. Phase diagrams for GaAs-based (a), CdTe-based (b), GaN-based (c) and ZnO-based (d ) microcavities. The vertical and
horizontal dashed lines show the limits of the strong coupling regime imposed by the exciton thermal broadening and screening,
respectively. The solid lines show the critical concentration Nc versus temperature of the polariton KT phase transition. The dotted and
dashed lines show the critical concentration Nc for quasi-condensation in systems with lateral sizes of 100 µm and 1 m, respectively. The
thin dotted line symbolizes the limit between vertical cavity surface emitting laser (VCSEL) and light-emitting diode regimes.

on samples having a lateral size of about 1 cm. Electron–
hole pairs are generated by a laser light having a spot area of
about 100 µm. These electron–hole pairs rapidly (typically
on a timescale less than 1 ps) form excitons, which relax down
to the optically active region, where they strongly interact
with the light field to form polaritons. The excitons which
form polaritons have a finite spatial extension in the plane of
the structure, but they are all coupled to each other via light
[40, 41]. The polariton system thus covers the whole surface
where excitons are generated. If KT critical conditions are
not fulfilled, but if the typical droplets size are larger than the
light’s spot size, the whole polariton system can be transiently
phase coherent and thus exhibits local BEC. This situation is
most likely to occur in current optical experiments performed
at low temperature.

Let us emphasize at this point an important advantage
of polaritons with respect to excitons weakly coupled to
light for the purposes of BEC or superfluidity. Individual
excitons in real structures are subject to strong localization
in inevitable potential fluctuations which prevents them from
forming condensed droplets. In contrast, polaritons are
basically delocalized even though the excitons forming them
could be localized. This is why their interactions are expected
to be more efficient and bosonic behaviour more pronounced.

The dotted and dashed lines in figures 2(a)–(d)
show the critical concentration for local quasi-condensation

in microcavity systems, which have lateral sizes of
100 µm and 1 m, respectively. In the high-temperature
(high-concentration) limit, critical concentrations are very
similar for both lateral sizes and they slightly exceed
the critical concentrations of the KT phase transition.
This means that in this limit the KT transition takes
place before the droplet size reaches 100 µm. In the
low-temperature (low-concentration) limit, the KT curve is
between transition curves of the 100 µm and 1 m sized systems.
This implies that droplets at the KT transition are larger than
100 µm but smaller than 1 m. Since the typical laser spot
size is about 100 µm, the local Bose condensation takes place
before KT transition at low pumping. A detailed analysis
could allow us to obtain the percolating droplet size versus
temperature, which is, however, out of our present scope.

2. Quantum kinetic description of polariton lasing

Now that we have gained a deeper understanding of the
physics befitting the polariton laser, we supplement it with
a description of polariton dynamics in a finite area system.
In this section we provide both a theoretical formalism for
the kinetics of the various quantities involved and numerical
simulations. Two of the authors have already investigated
the dynamics of the polariton populations in the framework

S399

Figure 8.2: Phase diagrams for microcavities based on (a) GaAs, (b) CdTe, (c) GaN and
(d) ZnO. The vertical and horizontal dashed lines show the limits of the strong coupling
regime imposed by the exciton thermal broadening and screening, respectively. The solid
lines show nc vs temperature relation at the BKT phase transition. The dotted and dashed
lines show the nc for the case of quasi-condensation in �nite size systems (lateral dimension
of 100 µm and 1 m, respectively). Taken from Ref. [181].
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Figure 8.3: Microcavity dispersion in the strong coupling showing the trap in momentum
space and the polariton formation and relaxation channels.

8.3 Spontaneous BEC of polaritons

Many properties associated to the formation of BEC of polaritons in microcavities

have been observed in many di�erent experiments in the past decade.[64, 239, 267, 220, 221,

133, 147, 132, 161] The most extended con�guration employed to explore this phenomenon

is the use of the energy trap in momentum space found in the lower polariton branch around

k = 0. If a su�cient amount of polaritons accumulate in the quantum states at the bottom

of the trap, condensation may take place.

This momentum trap con�guration is sketched in Fig. 8.3. In order to unambigu-

ously observe a true phase transition, the externally injected polariton population in the

system must be incoherent. In this way, if any long range order coherence arises in the

system it will be solely due to the spontaneous condensation, and not inherited from the

coherence of the excitation source (which is usually a laser). For this reason, in experiments

that attempt to demonstrate the condensation of polaritons, the polaritons injected in the

system are created non-resonantly, with energies far above the bottom of the trap, expecting

that relaxation in the carrier bands will destroy any trace of the coherence of the injected

carriers. As depicted in Fig. 8.3 the non-resonantly created polaritons relax energy and

momentum until they reach the momentum-bottleneck region.

Relaxation from the bottleneck region to the bottom of the polariton trap is a slow
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process at low excitation densities, as it requires the simultaneous relaxation of signi�cant

amounts of energy and momentum. LO-phonon assisted scattering processes cannot par-

ticipate due to energy conservation constraints, and only polariton-polariton and acoustic

phonon-polariton interaction can mediate in the polariton relaxation.[180] Apart from the

relaxation bottleneck, another important constraint for the accumulation of polaritons at the

bottom of the trap is their reduced lifetime. As discussed in Sec. 3.2.2, due to the photonic

content of the lower branch polaritons, which is close to 50% in the considered experiments

(δ = 0), the polariton lifetime in those states is of the order of 1-10 ps in standard GaAs

and CdTe based systems. Faster relaxation times are required to achieve occupations at

k‖ = 0 above 1 to trigger the condensation. The usual strategy has been to increase the

excitation density until the occupation of the ground state is high enough, as long as the

strong-coupling regime is not destroyed by the high carrier density.

The relaxation bottleneck has been the major obstacle for the observation of the

BEC phase transition in GaAs based microcavities until very recently.[161] In these systems

due to the reduced electron-hole binding energy (. 10 meV) the exciton can be ionized (and

the polariton destroyed) at not very high carrier densities. This is the situation depicted

in Fig. 8.2(a) with an horizontal dashed line. When the excitation density is increased

it is found that the system looses strong coupling due to screening and exciton ionization

in the high-dense polariton gas. Actually, when non-resonant excitation is above the QW

bandgap (as in Fig. 8.3) the critical carrier density for the strong coupling to break down

is even smaller than that indicated in Fig. 8.2(a). In this situation polaritons coexist with

free carriers (injected by the excitation source), which contribute to the screening in the

system and eventually destroy the strong coupling at densities lower than those required

for condensation. In such conditions, the system is driven into the VCSEL regime, where

photon lasing takes place under weak coupling.[38, 251, 35, 17]

Several con�gurations have been attempted in order to reduce the bottleneck ef-

fect and to enhance the polariton relaxation in the lower branch in GaAs based microcavi-

ties: (i) the increase of the lattice temperature to relax the energy-momentum conservation

constrictions,[275, 157, 200] and (ii) the introduction of free carriers in the system to enhance

the polariton relaxation scattering.[157, 200, 16] Despite the fact that these approaches have

demonstrated that the bottleneck e�ect can be substantially reduced, none of them result

in k = 0 occupations high enough to trigger the condensation. In Chapter 9 we will present

some studies on the thermodynamics of the polariton states above the bottleneck.
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Recently, spontaneous Bose-Einstein condensation of microcavity polaritons has

been demonstrated in a CdTe based microcavity.[133] In these systems the exciton binding

energy is much larger than in GaAs and the density threshold for the ionization of the po-

lariton is much higher [see Fig. 8.2(b)]. For this reason, the non-resonant excitation density

can be increased above the limit over which the occupation of the ground state becomes

macroscopic and condensation can take place. Let us note that once this occupation is

above 1, in a thermalized bosonic distribution newly injected particles will tend to occupy

the ground state just by following the Bose-Einstein distribution, and the condensed state is

reinforced. Figure 8.4 depicts the momentum distribution below (a) and above (b)-(c) the

condensation threshold for the condensed state realized by Kasprzak and coworkers.[133] In

the last two cases the macroscopic occupation of a single momentum state (k = 0) can be

easily appreciated. Other predicted properties associated to the polariton BEC condensation

are accessible through the photons that scape out of the cavity. These photons retain infor-

mation of the polariton state from which they were originated. For instance, the condensed

ground state is expected to show the build-up of spontaneous linear polarization,[261] nar-

rowing of the emission linewidth,[208] superlinear excitation density dependence,[208] and

spatial long-range coherence.[182] All these properties have been demonstrated in the afore-

mentioned CdTe based microcavity experiments.[64, 220, 221, 133, 147, 132]

In very recent experiments, the group of Yamamoto has also been able to demon-

strate BEC of polaritons in a GaAs based microcavity. In order to overcome the bottleneck

and excitons ionization problem, in their experiments the excitation is resonant with the

lower polariton branch with very large in plane momentum (i.e., very large incidence angle,

∼ 60◦), where polaritons have a very large excitonic character. With this con�guration, only

polaritons are created in the system and no free carrier bath, which would screen the exci-

tations. In this way, a su�ciently high polariton density of the ground state is achieved and

condensation takes place. The most important feature demonstrated in these experiments

is the appearance of long-range order,[71, 161] in particular when an array of weak spatial

polariton traps is built.[161]

Nevertheless, some aspects of the observations of BEC of polaritons are still not

clear. One of them is, for instance, the importance of achieving a thermalized distribution

of polaritons. By measuring the light intensity emitted from the microcavity as a function

of angle (i.e., polariton momentum) it is possible to obtain the polariton occupation distri-

bution as a function of polariton momentum.[133, 70, 201, 17] However, in many occasions,
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physics soon exits the regime of weakly interacting bosons that
describes ultracold atoms; second, the lifetime is short enough that
we must confront the role of non-equilibrium physics25. Never-
theless, the principal experimental characteristics expected for BEC
are clearly reported here: condensation into the ground state arising
out of a population at thermal equilibrium; the development of
quantum coherence, indicated by long-range spatial coherence, and
sharpening of the temporal coherence of the emission.

Experimental procedure

The sample we studied consists of a CdTe/CdMgTe microcavity
grown by molecular beam epitaxy. It contains 16 quantum wells,

displaying a vacuum field Rabi splitting of 26 meV (ref. 26). The
microcavity was excited by a continuous-wave Ti:sapphire laser,
combined with an acousto-optic modulator (1-ms pulse, 1% duty
cycle) to reduce sample heating. The pulse duration is sufficiently
long (by four orders of magnitude) in comparison with the charac-
teristic times of the system to guarantee a steady-state regime. The
laser beam was carefully shaped into a ‘top hat’ intensity profile
providing a uniform excitation spot of about 35 mm in diameter on
the sample surface, as shown in Fig. 4i. The excitation energy was
1.768 eV, well above the polariton ground state (1.671 eV at cavity
exciton resonance), at the first reflectivity minimum of the Bragg
mirrors, allowing proper coupling to the intra-cavity field. This
ensures that polaritons initially injected in the system are incoherent,
which is a necessary condition for demonstrating BEC. In atomic
BEC or superfluid helium, the temperature is the parameter driving
the phase transition. Here the excitation power, and thus the injected
polariton density, is an easily tunable parameter, and so we chose it as
the experimental control parameter. The large exciton binding
energy in CdTe quantum wells (25 meV), combined with the large
number of quantum wells in the microcavity, is crucial in maintain-
ing the strong coupling regime of polaritons at high carrier density.
The far-field polariton emission pattern was measured to probe the
population distribution along the lower polariton branch. The
spatially resolved emission and its coherence properties are accessible
in a real-space imaging set-up combined with an actively stabilized

Figure 1 | Microcavity diagram and energy dispersion. a, A microcavity is a
planar Fabry–Perot resonator with two Bragg mirrors at resonance with
excitons in quantum wells (QW). The exciton is an optically active dipole
that results from the Coulomb interaction between an electron in the
conduction band and a hole in the valence band. In microcavities operating
in the strong coupling regime of the light–matter interaction, 2D excitons
and 2D optical modes give rise to new eigenmodes, called microcavity
polaritons. b, Energy levels as a function of the in-plane wavevector kk in a
CdTe-based microcavity. Interaction between exciton and photon modes,
with parabolic dispersions (dashed curves), gives rise to lower and upper
polariton branches (solid curves) with dispersions featuring an anticrossing
typical of the strong coupling regime. The excitation laser is at high energy
and excites free carrier states of the quantum well. Relaxation towards the
exciton level and the bottom of the lower polariton branch occurs by
acoustic and optical phonon interaction and polariton scattering. The
radiative recombination of polaritons results in the emission of photons that
can be used to probe their properties. Photons emitted at angle v correspond
to polaritons of energy E and in-plane wavevector kk ¼ ðE="cÞsinv:

Figure 2 | Far-field emission measured at 5 K for three excitation
intensities. Left panels, 0.55P thr; centre panels, P thr; and right panels,
1.14P thr; where P thr ¼ 1.67 kW cm22 is the threshold power of
condensation. a, Pseudo-3D images of the far-field emission within the
angular cone of^238, with the emission intensity displayed on the vertical axis
(in arbitrary units). With increasing excitation power, a sharp and intense peak
is formed in the centre of the emission distribution ðvx ¼ vy ¼ 08Þ;
corresponding to the lowest momentum state kk ¼ 0. b, Same data as in a
but resolved in energy. For such a measurement, a slice of the far-field
emission corresponding to vx ¼ 08 is dispersed by a spectrometer and
imaged on a charge-coupled device (CCD) camera. The horizontal axes
display the emission angle (top axis) and the in-plane momentum (bottom
axis); the vertical axis displays the emission energy in a false-colour scale
(different for each panel; the units for the colour scale are number of counts
on the CCD camera, normalized to the integration time and optical density
filters, divided by 1,000 so that 1 corresponds to the level of dark counts:
1,000). Below threshold (left panel), the emission is broadly distributed in
momentum and energy. Above threshold, the emission comes almost
exclusively from the kk ¼ 0 lowest energy state (right panel). A small blue
shift of about 0.5 meV, or 2% of the Rabi splitting, is observed for the ground
state, which indicates that the microcavity is still in the strong coupling
regime.
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Figure 8.4: (a) Far �eld emission (kx and ky momentum space) from the LPB of a CdTe
based microcavity under non-resonant excitation at 5 K at di�erent polariton densities, in
the experiment of Kasprzak et al. where a BEC of polaritons was observed. (b) Same as (a)
for ky = 0 and energy resolution. Extracted from Ref. [133].

under the conditions of condensation (where spectral narrowing of the ground state, onset

of non-linear power dependence, etc. take place) polaritons do not always follow a proper

Bose-Einstein distribution.[133] In order for the system to be thermal, the ground and ex-

cited states lifetimes should be longer than the thermalization time. It has been shown that

this might only be achieved under particular exciton-photon detunings. In particular, large

enough positive detunings are more favorable, as the excitonic content of the polariton ex-

tends its lifetime and increases the polariton-polariton and polariton-phonon interactions so

that thermalization is accelerated.[70] On top of these di�culties, a recent work by Bajoni et

al. shows that a microcavity in the weak coupling regime, above the onset of photon lasing,

may show an angle-dependent emission pattern resembling very much that of a Bose-Einstein

distribution.[17]

Let us �nally mention that a di�erent strategy has recently been proposed for the

formation of a BEC of polaritons in microcavities by making use of spatial traps.[21] These

traps in real space are created by the local reduction of the photonic potential when localized

pressure is applied to the microcavity sample. The traps act as the magnetic quadrupole

traps in atomic condensates and should be able to lower the temperature of the polariton
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ensemble by evaporative cooling.

In summary, as described above, BEC of polaritons in microcavities has recently

been demonstrated. However, several properties related to BECs, which are well known

in atomic physics, are yet to be found in the polariton system. Some of these phenomena

are the creation of vortices,[2] observation of Josephson oscillations between two interacting

condensates, appearance of Čerenkov-like shockwaves,[43] or super�uidity. The experimental

observation of the last of these two phenomena in GaAs based microcavities will be the

subject of Chapter 10.

8.4 The polariton system under resonant excitation of the

LPB

When polaritons are resonantly injected into the lower polariton branch, the po-

lariton relaxation mechanisms giving rise to the LPB luminescence are very di�erent to

those described in the previous section. In this case, the excitation laser introduces large

populations of polaritons in a particular state, which is easily macroscopically occupied. The

con�guration we are considering is depicted in Fig. 8.5, where the laser energy and incidence

angle is set to excite the LPB close to its in�exion point. At low powers, polaritons relax

incoherently via phonon scattering, populating (pretty much evenly) all the LPB states be-

low the pump energy. If the pump intensity is high enough, polaritons created in this state

strongly interact with each other and there is a high probability for pair scattering events

to take place.[51, 293, 164, 165] The pair (parametric) scattering events are characterized

by the following conservation rules:

2EP = ES + EI , (8.11)

2kP = kS + kI , (8.12)

P , S, and I, indicating the pump, signal and idler modes, respectively. The so-called phase

matching conditions 8.11 and 8.12 are only satis�ed when pumping is performed at very

speci�c points of the dispersion curve. The con�guration shown in Fig. 8.5 is in fact the

most suitable for this process as pump is resonant with the in�exion point of the LPB, at the

so called magic angle. Around the magic angle it is easy to �nd pairs of points that satisfy
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(a) (b)

0.5 W/cm2

500

Figure 8.5: (a) PL spectra of a resonantly excited GaAs-based microcavity at the magic angle
and at a CW power above the threshold for stimulated OPO operation. The inset shows
the dispersion, where the pair scattering process is indicated by arrows. From Ref. [231].
(b) Power dependence of the PL spectra under similar conditions of excitation as (a), in
the range 0.5 − 500 W/cm2. The laser intensity saturates the detector. The onset of the
stimulated OPO regime occurs at 150 W/cm2 (marked with an arrow). From Ref. [263].

Eq. 8.11 and 8.12.[155] If the polariton linewidth is taken into account, pair scattering is

also possible when pumping at di�erent angles. The e�ciency of the process diminishes the

further apart the pump is from the magic angle, as energy and momentum conservation

rules are less likely satis�ed.[25] Let us note that the quantum nature of the pair scattering

process can be evidenced through the observation of intensity correlations between the signal

and idler states.[234, 14, 223]

In addition to the activation of the pair scattering processes, if the pump power is

further increased, it is possible to populate the ground state of the system with occupancies

above unity. In this case, stimulated scattering to the ground state is triggered as a result

of the boson distribution properties described in Sec. 8.1, and as depicted in Fig. 8.5(b).

Therefore, above a given threshold, polariton pair scattering is strongly favored towards the

ground state1, and simultaneously an idler state is formed, such that conditions 8.11-8.12 are

satis�ed. The idler state is visible in Fig. 8.5(a), and the regime under which this takes place

1The parametric process could be spontaneously initiated towards signal states di�erent to k = 0. How-
ever, the OPO with signal state at k = 0 has the lowest density threshold.[294]



164 8.4. THE POLARITON SYSTEM UNDER RESONANT EXCITATION

is called Optical Parametric Oscillator (OPO). From now on we will refer to the low-energy

parametric state of the OPO as signal.

The OPO regime is accompanied by the abrupt decrease of the signal emission

linewidth, and the non-linear increase of the signal intensity with pump power.[267, 239]

These two facts appear as a consequence of the macroscopic occupation of the signal state.

On the other hand, the emission from the idler state is signi�cantly smaller than that of

the signal. The number of particles in both states should be identical, if pure parametric

processes were responsible for their occupation. However, the idler state lies at an energy

and momentum very close to the polariton states above the bottleneck, with a large excitonic

component. The states above the bottleneck region [at about 30◦ in Fig. 8.5(a)] are usually

referred to as the reservoir, and they strongly interact with the idler leading to its very fast

dephasing and spread in k. It is this fast dephasing of the idler what ultimately limits the

coherence of the OPO. If the idler state is not well de�ned (large energy indetermination

caused by dephasing), the parametric process is not well set.

The non-linearities associated with the onset of OPO regime are also responsible for

the appearance of bi-stability.[49, 294] This e�ect has recently been observed as a hysteresis

loop in the variations of the signal intensity versus the pump intensity around the onset of

the threshold density.[13, 95]

One of the most spectacular properties of the polariton OPO, and �nal state stim-

ulation, is the observation of very high gains when a weak probe is shone on the signal

state at k = 0.[239] Under OPO conditions, the weak probe increases the occupation of the

signal k = 0 state and stimulates the scattering from the pump state to the signal state.

The probe transmitted light through the sample shows ultrafast gains of up to 70.[239]

Additionally, the process is very much dependent on the polarization con�gurations of the

interplaying beams, evidencing the important e�ects of spin on the pair stimulated scat-

tering mechanisms.[160, 134] Final state stimulation and high gains (up to 20) have also

been observed in atomic BEC in four-wave-mixing experiments,[283, 72] demonstrating the

universality of the phenomenon, purely associated to the bosonic statistics.

Let us point out that in this con�guration the system as a whole does not follow

a true Bose-Einstein distribution, as there is a very high occupation of polaritons in a well

de�ned state di�erent from the ground state (the pump state). Nevertheless the signal state

does show characteristics associated to the condensed ground state of a BEC. Recent the-

oretical studies by Wouters and Carusotto[298] support this idea, as they predict that the
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ground state in an OPO con�guration should show the appearance of Goldstone modes,

associated to the spontaneous breaking of the symmetry characteristic of a transition into a

BEC phase. These authors consider the spontaneous parametric processes associated to an

OPO as the one depicted in Fig. 8.5(a), where the aforementioned momentum and energy

phase matching conditions are satis�ed between pump, signal and idler modes. The ampli-

tude and phase of the pump mode is fully determined by the pump incident laser. However,

the phase of the signal and idler remain free as they are invariant under a simultaneous

complementary rotation:

S → Sei∆φ I → Ie−i∆φ, (8.13)

where S and I are the complex amplitudes of the signal and idler modes, respectively. In

other words, the total phase of the trimodal system should be conserved:

φP + φS + φI = constant. (8.14)

φP is �xed by the pump laser, and φS and φI are in principle free as long as condition 8.14

is satis�ed. Above the threshold for the onset of the OPO, a random value of the phase of

the signal and, thus, of the idler, is spontaneously set, and a U(1) phase-rotation symmetry

[Eq. 8.13] is spontaneously broken. This is the kind of spontaneous symmetry breaking

associated to many properties of Bose-Einstein condensates, like the onset of super�uidity.

Wouters and Carusotto show that the spectrum of excitations [ωG (k), Goldstone modes]

around the signal state has a linear shape Re [ωG (k)] = cG (k − kS). This linear dispersion of

the excitations is indeed a manifestation of the Bogoliubov modes characteristic of systems

with super�uidic properties. A detailed analysis shows that given that Re [ωG (k)] = 0 at k =

kS , and the absence of a singularity at that point, the Goldstone modes physically correspond

to spatially slowly varying twist excitations of the signal and idler phases. Moreover, a

localized phase perturbation will not propagate, but simply relax back down. This confers

a di�usive character to these modes in non-equilibrium situations, such as that encountered

in a microcavity OPO, where polaritons are constantly feeding and exiting the system.

The situation is di�erent in an equilibrium system such as that conformed by a

BEC of atoms, where the corresponding Goldstone modes dispersion goes as Re [ωG (k)] =

cG |k − kS | around the considered state kS , and presents a singularity at k = kS . In this

case an excitation (Goldstone mode) physically correspond to a weakly-damped sound wave
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propagating at the speed of sound cG.[298] In any case, the Bogoliubov-like excitation spec-

trum indicates that the polariton system, under resonant excitation of the LPB, may show

super�uid properties such as movement through an obstacle without dissipation, appearance

of vortices, or Josephson oscillations between two weakly-interacting polariton �uids.

Let us point out that recently, Szymanska and coworkers[272] have found a sim-

ilar di�usive nature of the modes belonging to the spectrum of excitations of a polariton

condensed phase under non-resonant incoherent pumping (this is the situation in the experi-

ments of Kasprzak et al.[133] where a BEC of polaritons has been reported). Therefore, very

similar physics may rule the excitation spectrum of polariton coherent states in microcavities

when they are either created resonantly or non-resonantly.[298, 297]

8.5 Super�uidity of polaritons

The theoretical treatment of the collective excitations of the microcavity polariton

system under resonant excitation of the lower polariton branch has been the subject of

intense study by the groups of Cuiti, Carusotto[42, 49] and Whittaker.[293, 294] Here we

will follow the treatment of Ciuti and Carusotto developed in detail in Refs. [42] and [49].

We will just reproduce and point out the results of their theory that will be useful for the

interpretation of the results shown in Chapter 10. For further details, the reader is directed

to the just mentioned references.

Let us consider the exciton and photon �eld operators Ψ̂x (r), and Ψ̂c (r), respec-

tively, in a situation of coherent pumping with a laser of energy ~ωP and momentum kP .

Within a mean �eld approximation, the time evolution of the exciton and cavity mean �elds

Ψx,c (r) =
〈

Ψ̂x,c (r)
〉
is given by the solution to the Schrödinger equation:

i~
d

dt

 Ψx (r)

Ψc (r)

 =

 0

~FP ei(kPx−iωP t)

+

+

h0 +

 Vx (x) + ~g |Ψx (r)|2 − i
2~γx 0

0 Vc (x)− i
2~γc

 Ψx (r)

Ψc (r)

 , (8.15)

where h0 is the usual exciton-photon interaction Hamiltonian:
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h0 (k) = ~

 ωx (k) ΩR

ΩR ωc (k)

 . (8.16)

~ωx(c) (k) is the in-plane energy dispersion of the excitons (cavity photons), ΩR is the Rabi

frequency associated to the exciton-photon coupling (see Sec. 3.2.2), FP is the amplitude of

the driving pump laser, γx(c) is the homogeneous broadening of the exciton (cavity photon)

mode, Vx (x) and Vc (x) are excitonic and photonic spatial �uctuations produced by interface

and alloy imperfections in the QWs and cavity length of Bragg mirrors, respectively. Finally,

g, which is greater than zero, is a repulsive exciton-exciton contact potential, and the term

that contains it is the source of many of the non-linearities of the system. For instance,

this term results in the renormalization of the polariton branches (blueshift) when many

polaritons are introduced in the system, even under incoherent non-resonant excitation.

Following the Bogoliubov theory of a weakly interacting Bose gas,[174] the spec-

trum of the excitations of the system can be obtained from the eigenvalues of Eq. 8.15 when

linearized. In order to do so it is convenient to de�ne slowly varying �elds (perturbations)

with respect to the pump state:

δφi (r, t) = δΨi (r, t) exp (iωP t) , (8.17)

and a four component displacement vector:

δφ (r, t) = (δφx (r, t) , δφc (r, t) , δφ∗x (r, t) , δφ∗c (r, t)) . (8.18)

Then the equation of motion of δφ (r, t), according to the linearization of Hamiltonian 8.15

when a weak perturbation fd is applied to the system, is:

i
d

dt
δφ (r, t) = L · δφ (r, t) + fd, (8.19)

where:

L =


ωx + 2g |Ψss

x |
2 − ωP − i

2
γx ΩR gΨss 2

x e2ikP x 0

ΩR ωc (−i∇)− ωP − i
2
γc 0 0

−gΨss 2
x e2ikP x 0

(
ωx + 2g |Ψss

x |
2
)
− ωP − i

2
γx −ΩR

0 0 −ΩR −ωc (−i∇) + ωP − i
2
γc

 .

(8.20)

Ψss
x are the stationary state solutions to Eq. 8.15 with Vx (x) = Vc (x) = 0. When Vx (x) =

Vc (x) = 0 the perturbation term fd is zero and the solutions to Eq. 8.19 depict the spectrum
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of collective excitations of the system (Bogoliubov modes). In this case the nature of the

excitations is characterized by the coupling induced by the pump between a generic signal

kS mode and an idler mode, whose wavevector and energy satisfy conditions 8.12 and 8.11.

The introduction of a photonic or excitonic defect in the system via fd in Eq. 8.19

results in the appearance of the well known Rayleigh related scattering in the photon �elds.

In the paper we are following,[49] Ciuti and Carusotto have calculated the dispersion of

excitations, and the momentum (far �eld) and real space (near �eld) Rayleigh scattering

images when a defect is encountered in a resonantly excited microcavity near the bottom of

the LPB. The magnitude |δφc (k)|2 is proportional to the intensity of the Rayleigh scattering
emission. Figures 8.6 and 8.7 show those magnitudes for two di�erent situations of incident

momentum and photon energy of the pump. Let us note that the potentials Vc,x (r) break the

spatial invariance of the system and can excite Bogoliubov modes with momentum di�erent

to kP . However they are static perturbations, and can only excite states with energy equal

to ~ωP (elastic processes).

In the excitation spectra depicted in panel (a) of Figs. 8.6 and 8.7 it is remarkable

that a portion of the dispersion shows a linear shape. This is reminiscent of the linear

Bogoliubov dispersion of excitations of a super�uid given, at small momentum, by2 ω (k) =

vsk, with:

vs =
√

~g
∣∣Ψss

LP

∣∣2 /mLP , (8.21)

where Ψss
LP (r) is the density of lower branch polaritons injected by the pump, and mLP is

their mass (obtained in the low-density linear regime). If a photonic or excitonic defect in

the microcavity moves against the polariton �uid at a relative velocity v lower than vs, no

excitations will be produced in the system and the polariton �uid will remain unperturbed

after passing through the defect. Otherwise, excitations in the �uid are possible and scat-

tering between polaritons causes dissipation. This, condition v < vs plus the requisite that

ωLP (k) > ωP for every k 6= kP , conform the Landau criteria for super�uidity in a polariton

system.

In Chapter 10 we will show experimental results on polariton �uids showing be-

haviors very similar to that depicted in Figs. 8.6 and 8.7.

2See also the discussion of the dispersion of the Goldstone modes in Sec. 8.4
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Figure 8.6: (a) Spectrum of excitations of the pump polariton state, i.e., the eigenenergies
of Eq. 8.19, (b) intensity (arb. units) of the photonic resonant Rayleigh scattering signal
|δφc (k)|2, and (c) near �eld image of the photonic scattered signal (Fourier transform of
|δφc (k)|2), for kP = 0.7µm−1, ~ωP = ~ωLP (kP ) + 0.599 meV, and ~g |Ψss

x |2 = 1 meV.
Note that ~ωLP (kP ) is that of the lower polariton state with kP in the low density linear
regime (no exciton-exciton interaction). This situation corresponds to the Čerenkov regime,
in which a Bogoliubov linear excitations dispersion is present near the pump state but the
relative velocity of the defect [placed in the center of (c)] is higher than vs, producing
scattering in a Čerenkov pattern.
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Figure 8.7: Same as Fig. 8.6, for kP = 0.4µm−1, ~ωP = ~ωLP (kP ) + 0.467 meV, and
~g |Ψss

x |2 = 1 meV. This situation corresponds to the super�uid regime, in which a Bogoli-
ubov linear dispersion of the excitations is present with a singularity at the pump state,
which additionally lies at the bottom of the excitations branch. In this situation the polari-
ton state cannot scatter to any other state as long as the relative velocity of the defect is
below vs, and the Rayleigh signal has collapsed.
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8.6 Final remarks

The next two chapters will show experimental results in GaAs based microcavities

in the strong-coupling regime. In Chapter 9 we will show experiments under non-resonant

excitation, paying particular attention to the dynamics of relaxation of polaritons and the

bottleneck e�ect introduced in Sec. 8.3. In these experiments, polariton condensation e�ects

can not be observed due to the presence of an excited plasma of electrons and holes (created

by the laser excitation) that ionizes excitons, driving the system into the weak-coupling

regime, before the critical density for condensation is attained.

Finally, in Chapter 10 we will probe some properties associated to the condensation

and formation of polariton quantum �uids by resonant excitation of the LPB close to the

bottom of the polariton trap.
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Chapter 9

Dynamics of microcavity polaritons

under non-resonant excitation

9.1 Introduction: CW characterization

The samples used for the studies presented in this chapter are the InGaAs/GaAs/AlGaAs

microcavities grown at the University of She�eld and described in Sec. 4.1.2. The samples

were grown with a cavity wedge so that di�erent exciton cavity detunings can be studied

by changing the position of the excitation spot on the sample. A basic characterization of

the samples was performed in order to determine the Rabi splitting and emission energies.

Figure 9.1(a) shows the k = 0 emission spectra as a function of position along a straight

line on the sample, under low-power, CW non-resonant excitation. The emission from the

LPB and UPB is clearly observed, with the characteristic polariton anticrossing between

the exciton and cavity modes [Fig. 9.1(b)]. Several factors cause the luminescence from the

LPB to be much more intense than that from the UPB. The most important one is the very

fast incoherent relaxation of upper branch polaritons to the lower lying states of the lower

polariton branch. Additionally, at positive detuning [~ωc (0) > ~ωx (0)] the lifetime of the

UPB states is much shorter than that of the LPB, due to the high excitonic component of

the latter. On the other hand, at negative detuning the k = 0 states of the UPB are very

close in energy to the reservoir states of the LPB, and interaction with polaritons from these

states quickly depletes the UPB.

The value of the detuning exciton-cavity at di�erent points along the sample is
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plotted in Fig. 9.1(c). The δ = 0 position can be easily identi�ed as the point of least energy

di�erence between the UPB and LPB, yielding a Rabi splitting 2~ΩR = 6.6 meV. δ can be

obtained from the di�erence between the UPB and LPB energies at k‖ = 0 (EUPB, ELPB

respectively) and is given by the equation:1

|δ| =
√

(EUPB − ELPB)2 − (~ΩR)2 (9.1)

In the remaining of this chapter we will present studies of the emission dynamics

under pulsed excitation for several exciton-cavity detunings. The samples were kept at 5 K,

and the photoluminescence time-resolved set-up employed is the one described in Sec. 4.2.2,

in which a pinhole selected the emission of polaritons at k = 0 (normal to the cavity

surface). Excitation was performed above the �rst re�ectivity minimum of the stop band, in

the continuum of electron-hole states of the GaAs cavity spacer, except in Sec. 9.3, where,

in some of the presented experiments, the excitation is resonant with the UPB close to its

minimum.

9.2 Power dependent dynamics

Figure 9.2(a) shows a streak-camera image of the k = 0 emission of the microcavity

at δ = +7 meV after non-resonant excitation for low laser power (4 mW). Under these

conditions the LPB and UPB modes can be observed. In Fig. 9.2(b) the time evolution

traces of the upper and lower polaritons are shown. The lower polariton branch presents

slow dynamics, characterized by a long rise and decay. In the case of the upper polaritons,

the dynamics are much faster.

The time evolution characteristics can be qualitatively understood considering the

phenomenological model described in Fig. 9.3. Free electron-hole pairs are created by the

non-resonant pulses in the QWs. Analogously to the process described in Sec. 7.3, in less

than a picosecond the electrons and holes achieve thermalized distributions in the QWs.

Simultaneously, polaritons start their formation process {[A] in Fig. 9.3(a)}, populating

both the UPB and the LPB. The cavity lifetime in the samples under study is of the order

of 2 ps. Attending to the Hop�eld coe�cients (Sec. 3.2.2), at detunings close to zero the

short photon escaping time implies that the polariton lifetimes are also very short (∼ 4 ps)

1Equation 9.1 can be derived from Eqs. 3.27-3.28 after some straightforward algebra.
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Figure 9.1: (a) Color map of the k = 0 emission from the InGaAs/GaAs/AlAs microcavity
under non-resonant CW excitation at 5 K. The horizontal axis indicates the position in
millimeters along a straight line parallel to the cavity wedge on the sample The UPB peaks
are indicated by a white solid line; its position in the map is evidenced in a z -logarithmic
scale. The dashed lines depict the energy of the exciton and cavity modes. (b) Energy
of the UPB and LPB peaks extracted from (a); the open points depict the emission from
uncoupled excitons, visible at slightly negative detunings. (c) Detuning as a function of
position on the sample calculated from Eq. 9.1. The minimum energy di�erence takes place
at the position of δ = 0.
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Figure 9.2: (a) Streak camera image of the k = 0 microcavity emission for a detuning of
+7 meV. (b) Time evolution traces of the upper and lower polariton branches, extracted
from (a).

for states close to k = 0, where polaritons have a large excitonic component (∼ 50%).

For this reason, any polariton falling inside the dispersion energy trap escapes very fast

from the system. On the other hand, polaritons above the bottleneck, outside the trap,

posses a very high excitonic component (> 90%) and a weak coupling to light. Additionally,

above a certain momentum, polaritons lie outside the light cone [indicated by a grey line in

Fig. 9.3(a)] and do not couple to light at all.2 Thus, the polariton lifetime is very di�erent

depending strongly on the polariton momentum. Inside the trap the polariton modes are

strongly depleted, while above the bottleneck polaritons have long lifetimes and dynamics

similar to that of excitons, due to their high excitonic component. Moreover, the bottleneck

e�ect results in very slow relaxations from the reservoir3 to the bottom of the trap {[C]

in Fig. 9.3(a)}. Given the very di�erent lifetimes of polaritons inside and outside the trap,

and the bottleneck e�ect, it is straightforward to see that any polariton relaxing from the

2Let us note that the trap region in momentum space, and even the light cone region, are very small
compared to the region of momenta over which thermalized polaritons extend above the bottleneck at the
typical carrier temperatures of the photoluminescence experiments in these systems. An idea of the ratio
between the number of carriers in each region can be obtained from the analysis of Fig. 5.3, where exciton
depletion within the light cone can be compared to the extension of the distribution of excitons in momentum
space at temperatures similar to those in microcavity systems.

3Given that the reservoir polaritons have a very strong excitonic character, and their energy-momentum
dispersion is almost that of excitons, we will refer to them indistinctly as polaritons or as excitons. This is
a nomenclature convention widely used in the literature.
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Figure 9.3: (a) Carrier relaxation in a microcavity in the strong-coupling regime: [A] polari-
ton formation from the photocreated plasma of electrons and holes, [B] polariton relaxation
and thermalization within the reservoir states, [B∗] polariton relaxation from the bottom of
the UPB to the reservoir states, [C] polariton relaxation from the bottleneck to the bottom
of the LPB. The grey line indicates the light cone: polaritons with k‖ greater than that of
the line cannot escape from the cavity due to total internal re�ection. (b) Carrier relax-
ation and light emission in the weak-coupling regime above the threshold for photon lasing
(VCSEL regime). The numbers indicate the leveling of the 4-level lasing system.

reservoir to the trap immediately escapes from the system, and the emission dynamics at

k = 0, for non-resonant excitation, is mainly determined by the polariton dynamics of the

reservoir states close to the bottleneck, as these require the least amount of phonon or

carrier scattering events to relax their energy and momentum.

The situation we have just described about the population distribution in the LPB

can be extended to any detuning, the only di�erence being that at very positive detunings

the LPB lifetime in the trap is increased, and the bottleneck e�ect is reduced. Eventually,

at very positive detuning, the bare exciton dynamics are recovered, but still states close

to k = 0 are signi�cantly depleted as compared to the states outside the light cone [see

Sec. 5.1.2 and Fig. 5.3].

According to the arguments presented in the previous paragraphs, the LPB k =

0 polariton dynamics under non-resonant excitation re�ects the exciton dynamics at the
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reservoir states. In this sense, the long rise time depicted in Fig. 9.2(b) is caused by the

slow exciton formation, while the decay is mainly characterized by the long exciton lifetime.

This interpretation is consistent with calculations of the polariton dynamics at di�erent

temperatures and detunings.[237]

The UPB dynamics can also be explained attending to the sketch of Fig. 9.3(a).

As discussed in the preceding section, the upper branch polaritons are very fast depleted

due to either their high photonic component (positive δ) or to their strong interaction with

and fast relaxation to reservoir lower branch polaritons {[B∗] in Fig. 9.3(a)}.[34, 252] The

large upper polariton linewidth is a manifestation of these interactions.

The very fast rise time of the UPB dynamics depicted in Fig. 9.2(b), at a con-

siderable positive detuning (δ = +7 meV), is a manifestation of the above mentioned fast

depletion channels. The rise and decay UPB-dynamics depicted in Fig. 9.2(b), at a consid-

erable positive detuning (δ = +7 meV), are determined by two factors: (i) at this positive

detuning, the UPB is of highly photonic character, with a very short state lifetime; (ii)

the relaxation channel [B∗] in Fig. 9.3(a) communicates the reservoir states with the UPB.

In this way, the fast rise and slow long time decay of the k = 0 upper branch polaritons

observed in Fig. 9.2(b) are a consequence of the quasi-thermal equilibrium between the reser-

voir states and the UPB: the fast rise is a consequence of the achievement of a polariton

distribution in the reservoir, while the decay re�ects the cooling of that distribution and the

decay of the reservoir population.

In Sec. 8.2 and 8.3 of the preceding chapter, the calculated phase diagram of the

microcavity system was presented. We mentioned that in the case of GaAs-based micro-

cavities at low temperature, when increasing the carrier density the strong coupling is lost

before reaching the critical density for the BEC of polaritons. This situation is explored in

Fig. 9.4, where the emission dynamics of k = 0 polaritons are shown as a function of excita-

tion power for a spot (∼ 100 µm in diameter) on the sample with a detuning very close to zero

(δ = +0.8 meV). At very low power [Fig. 9.4(a)], a narrow emission (∼ 500 µeV) is observed

at the energy of the LPB. Also emission from the UPB can be observed with the appropriate

setting of the z -scale, but it is not shown in this �gure. As the carrier density is increased,

the polariton linewidth increases due to the enhancement of the polariton-polariton and

polariton-carrier interactions.[50, 12, 119] These interactions are also responsible for the

shortening of the rise time as they also reduce the exciton formation time and ease the

relaxation to the bottom of the trap. In Figs. 9.4(d)-(f) the transition from the strong
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to the weak coupling is evidenced. At short times, at these powers (and above), the high

density of free carriers injected by the non-resonant excitation pulse screens the electrons

and holes that form the excitons leading to their ionization and the systems evolves into the

weak-coupling regime, characterized by emission at the energy of the cavity mode. At longer

times, the number of carriers in the system decreases due to recombination. In this way the

screening also decreases and the system goes back to the strong-coupling regime, character-

ized by emission at the energy of the LPB and UPB, as evidenced in Figs. 9.4(d)-(g) at long

times.

Once the strong coupling is lost, the dispersion relations of the energy states of

the system are given by those of the �rst electron and heavy-hole subbands, as depicted in

Fig. 9.3(b). A four level system can be considered, as indicated in the �gure, and population

inversion between levels 3 and 2 is easily achieved as the electron and hole relaxation to the

bottom/top of their bands is very e�cient due to carrier-carrier interaction.[225] In this case

the Bragg mirrors act as very e�cient resonators with a photonic mode very close to the

bandgap, and photon lasing is triggered, with a very low power threshold.[199, 38, 159]

Figures 9.4(f)-(i) show how, as soon as the system reaches the weak-coupling

regime, photon stimulated emission takes place and the microcavity is driven into VCSEL

operation. Due to the stimulated character of the recombination, the light emission is very

fast in this regime. Most available electron-hole pairs at the cavity energy recombine in the

�rst ∼ 50 ps.

This situation of photon lasing is very di�erent to that of a polariton laser (plaser).[121]

Optical emission in a plaser would come from the leakage out of the microcavity of a BEC

of polaritons at the bottom of the momentum trap. As was discussed in Sec. 8.1, due to the

bosonic nature of the condensate, the stimulation process takes place during the relaxation

of reservoir polaritons with large k to k = 0 states at the bottom of the LPB. The condensed

polaritons are in a well de�ned quantum state, and when they leak out of the cavity present

very similar characteristics to those of a conventional photon laser, i.e. monochromaticity,

well de�ned phase, directionality. The fact that the stimulation and emission processes are

decoupled can lead, in principle, to plasing devices without excitation threshold.[121]

Note that in the GaAs based systems we are discussing here, due to the small

exciton binding-energy, and to the aforementioned screening of the excitons, the weak cou-

pling threshold is reached at densities much smaller than those for BEC to take place. In

systems with �stronger� excitons (i.e., with larger binding energy) the weak-coupling excita-
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Figure 9.4: Microcavity luminescence at k = 0 at 5 K after pulsed non-resonant excita-
tion above the �rst minimum of the stop band at di�erent powers: (a) 1 mW, (b) 6 mW,
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(1.4542 eV) and UPB (1.4574 eV).
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tion threshold under non-resonant excitation is much higher,[133] even allowing for plasing

to take place at room temperature, as evidenced in a recent observation in a GaN based

microcavity[46].

Figure 9.4(f) shows that, at short times after excitation, emission from weakly (at

the photon mode) and strongly (at the LPB) coupled modes coexist. This phenomenon can

be observed in experiments at very di�erent detunings. Figure 9.5 shows the emission energy

(green and blue dots) as well as the intensity (red dots) dependence on pulsed-excitation

power at several detunings in the sample. At low excitation density, the microcavity is in the

strong-coupling regime with emission occurring at the LPB and UPB energies, with a linear

dependence of the photoluminescence intensity on excitation density. The light blue areas

depict the transition from the strong to the weak coupling at high densities. Analogously to

the analysis carried on Fig. 9.4, the transition threshold can be identi�ed by the shift of the

emission to the cavity mode states (blue triangles). The appearance of emission at the cavity

mode is accompanied by the onset of a superlinear dependence of the photoluminescence

intensity on excitation power. Such a superlinear behavior is characteristic of lasing systems

right at the threshold density.[75, 233] At higher excitation intensities the linear behavior is

recovered, as hinted in Fig. 9.5(a).

The width of the light blue areas in Fig. 9.5 indicates the excitation power range

over which strongly and weakly coupled modes can be observed. At detunings close to zero,

where the strongly and weakly coupled modes are furthest apart in energy the coexistence

is clearly observed. In this case the coexistence region could probably be extended to higher

densities if a larger dynamic range would have been available in these experiments, as the

photon lasing mode increases non-linearly while the coupled modes increase linearly with

density. Let us also mention that studies in the same system evidence that the coexistence

of strong and weak coupling takes place on emission areas smaller than ∼ 10 µm.[22]

9.3 Polariton relaxation from the UPB in the strong coupling

regime

The k = 0 lower-branch polariton dynamics is mostly determined by the dynamics

of the reservoir polaritons, as it was pointed out in the discussion of the polariton relaxation

channels [Fig. 9.3(a)] and evidenced by the slow dynamics shown in Fig. 9.4(a). In this
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Figure 9.5: Energy of the k = 0 emission of the UPB (green dots), LPB (black dots) and
cavity mode (blue open triangles) �left scales�, and total integrated emission (red dots) �
right scales� as a function of non-resonant pulse power for several values of δ: (a) +8.3 meV,
(b) +5.1 meV, (c) +0.8 meV, (d) -4.1 meV, (e) -8.1 meV. The blue area shows the transition
from the strong to the weak coupling regimes. The dotted lines indicate the energy of the
bare cavity and exciton modes.
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Figure 9.6: (a) PL dynamics of the k = 0 lower branch polaritons in the microcavity under
one pulse excitation (grey dashed lines) and under two consecutive pulses excitation (black
solid line; delay between pulses: 450 ps; power of both pulses: 0.1 mW). (b) Same as (a) for
the PL dynamics of the bare QW excitons in an identical microcavity without top mirror.
In this case the delay between pulses is 400 ps and the power of each pulse is 0.3 mW.

section we will gain insight into this relationship through the results of a two pulses exper-

iment analogous to that described in the experiments of Chapter 7. In those experiments,

two delayed excitation pulses PI and PII reach the sample on the same excitation spot, PII

inducing an ultrafast warming of the exciton population created by PI . Figure 9.6(a) shows

the LPB k = 0 emission under such a con�guration for a spot on the sample at δ = 0. In this

case both pulses excite the sample non-resonantly (above the QW electron-hole continuum)

with the same power (0.1 mW) and a delay between them of 450 ps. Analogously to the

results presented in Chapter 7, a quench of the photoluminescence is observed at the arrival

of the second pulse. PI creates an electron-hole pair population that decays into reservoir

excitons, which eventually relax to the bottom of the polariton dispersion trap giving rise

to the emission shown in Fig. 9.6(a). The arrival of PII induces an ultrafast warming of the

exciton distribution in the reservoir producing an abrupt decrease of the exciton populations

at the bottleneck and a subsequent quench of the k = 0 luminescence.

In order to stress that the physics behind the dip are fully determined by the

redistribution of excitons in the reservoir, we have also performed a similar two pulses

experiment in an identical microcavity sample that has been processed (chemical etching)

in order to remove the top DBR mirror. In this way, the luminescence from the bare QWs

can be accessed. Figure 9.6(b) shows the QW emission under the same non-resonant two
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pulses experiment (in this case with a delay between pulses of 400 ps). The dynamics of

the PL under a single pulse excitation (grey dashed lines) are alike in the microcavity and

the QW, evidencing that they have the same origin. For a similar delay between pulses and

ratio of the powers of PI and PII , the magnitude of the dip is also very similar in both cases,

which is what would be expected from the model described in Sec. 7.3 if the dip is caused

by the redistribution of excitons.

Taking advantage of the model described in Sec. 7.3 and the relation between dip

depth and relative temperature change of the excitonic distribution [Eq. 7.3], we are going

to study the relaxation of resonantly created upper-branch polaritons. In this case the

excitation will no longer be non-resonant above the �rst minimum of the stop band. Here

we will describe two pulses experiments in which polaritons are resonantly injected in an

UPB state close to k = 0. Figure 9.7 shows the k = 0 LPB emission under excitation

with two independent (black lines) and two consecutive (red lines) pulses resonant with

the aforementioned UPB state, at di�erent detunings. The �rst pulse is linearly polarized,

the second one is σ+-polarized, and the σ−-emission is detected. We use this con�guration

for reasons that will be explained below. Control of the polarization of the excitation and

detection paths is performed by use of appropriate combinations of linear polarizers and

quarter waveplates.

In these experiments PI , linearly polarized, resonantly injects polaritons at the

bottom of the UPB (see Fig. 9.7 upper panels). The direct relaxation via phonon emission

to the k ≈ 0 LPB states results in the very fast rise of the PL observed right after the

arrival of PI (black lines in the lower panels of Fig. 9.7).[252] Nonetheless, a signi�cant

portion of polaritons scatter to the reservoir states in the LPB, conforming a thermalized

distribution. Some of these polaritons relax towards k = 0 states where they escape from

the cavity giving rise to the decay observed at later times after the arrival of PI .[34, 252]

When a second delayed pulse reaches the sample, at the same energy and momentum as PI ,

the photocreated upper polaritons relax again to the reservoir states with an excess energy

given by the di�erence between the upper polariton energy and the reservoir energy (bare

excitonic energy), which is indicated by ∆ in Fig. 9.7. The second pulse is σ+ circularly

polarized (injecting spin-up polaritons), while only the σ− circularly polarized emission is

detected (from the escape of spin-down polaritons). In this way the direct relaxation of

the polaritons injected by PII from the UPB to the k = 0 LPB states is disregarded, as

this phonon mediated process does not change the polariton spin. In contrast, the reservoir
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polaritons do �ip their spin via usual exciton spin �ip mechanisms,[63] and any change in

their distribution is re�ected in the σ− PL emission at k = 0. The slow rise observed in

the lower panels of Fig. 9.7 after the arrival of PII re�ects the time required for reservoir

polariton to �ip their spin.

The red line in Fig. 9.7 shows the LPB k = 0 emission when the two consecutive

pulses reach the sample. In Fig. 9.7(d) a dip in the PL can be observed indicating that

the upper polaritons generated by PII very e�ciently relax towards the reservoir states [red

arrows in (c)] changing signi�cantly their distribution. By measuring the relative magnitude

of the dip depth, and making use of Eq. 7.3 we can calculate the temperature increase of the

reservoir polaritons induced by the injection of upper branch polaritons by PII . In the case

of δ = 0 [Fig. 9.7(c)-(d)], the temperature increase is given by Taft = 1.2×Tbef . For a larger
detuning, as that depicted in Fig. 9.7(e)-(f), ∆ is signi�cantly increased, and the carriers

injected by PII more e�ciently warm the exciton reservoir (Taft = 2.1 × Tbef ), inducing a

larger dip. In this case the UPB lies within the electron-hole continuum, and PII injects

electron-hole pairs in the system, which warm the reservoir excitons even more e�ciently

than upper-branch polaritons. Figure 9.7(a)-(b) depicts the case of very negative detuning.

In this case ∆ is very small, and the negligible excess energy of the polaritons injected by

PII results in a negligible warming of the reservoir.

9.4 Polarization dynamics in the weak coupling regime

A subject, within the �eld of microcavity polaritons, that has attracted the atten-

tion of both theoretical and experimental research groups is the issue of the spin dynamics of

polaritons, which can be accessed through the study of the polarization of the light leaking

out of these systems. Let us recall (see Sec. 3.2) that polaritons have the same spin states as

light, with its +1 or −1 helicity oriented along the growth direction of the microcavity. Lin-

ear superpositions of these states give rise to elliptical or linear polarization, and polariton

emission can in principle show any polarization.

The spin-dependent dynamics under resonant excitation of the LPB close to the

magic angle show very complex behavior.[160, 134, 156, 218, 137] Several mechanisms par-

ticipate in the polarization dynamics in this regime: (i) In the linear regime the polariton

states are split into linearly-polarized modes (TE and TM) that act as an e�ective Voigt

magnetic �eld for the circularly polarized polariton states. Let us note that this splitting



186 9.4. POLARIZATION DYNAMICS IN THE WEAK COUPLING REGIME

∆

δ = -5.6 meV ∆= 1.6 meV

0 250 500 750

 

 

PL
 in

te
ns

ity
 (a

rb
. u

ni
ts

)

Time (ps)

e--h+

continuum∆
∆

δ = 0 ∆= 3.4 meV δ = 11 meV ∆= 10 meV

0 250 500 750

 

 

Time (ps)
0 250 500 750

 

 

Time (ps)

(a) (c) (e)

(b) (d) (f)

E
k

Figure 9.7: Upper panels: polariton dispersion (solid lines) at δ = −5.6 meV (a), δ = 0 (b),
δ = +11 meV (c). The blue dashed lines depict the dispersion of the uncoupled excitons
and cavity photons. The short red line indicates the energy of the electron-hole continuum
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each case the power of both pulses is equal. The �rst pulse is linearly polarized, while the
second one is σ+ circularly polarized; only the σ− component of the emission is detected
(see text for details).
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is zero for polariton states at k = 0,but it may be important for polariton states at the

bottleneck.[196] (ii) Due to in plane asymmetries of the QWs or Brag mirrors, a splitting

may arise between the linearly polarized polaritons along the directions of asymmetry, usu-

ally oriented along the crystallographic directions of the heterostructure.[156, 231] (iii) In

the non-linear regime, the renormalization associated to the high occupation of polariton

states of a given polarization, induces a splitting between circularly polarized polariton

states equivalent to an e�ective magnetic �eld in the Faraday geometry. Under the e�ect

of this �eld the polarization of an elliptical polariton state would precess about the growth

direction.[260, 218, 259] (iv) Polariton-polariton scattering shows a strong spin dependence

due to the repulsion between polaritons of the same spin, resulting in the rotation of the

polariton polarization in this type of events.[160, 134]

Under non-resonant excitation the polariton emission also shows non-trivial polar-

ization dynamics,[185, 146] particularly in the regime of BEC. It has been predicted that

the spontaneously condensed polariton state at k = 0 must show linear polarization, and

several experimental evidences of this behavior have been provided.[132, 21] However, non-

negligible degrees of linear polarization have been observed at k = 0 below the condensation

threshold,[147] due to crystallographic anisotropies of the sample.

In this section we will brie�y show experimental results on the polarization dynam-

ics in a di�erent situation in a microcavity: the high-power weak-coupling regime. We will

see that this regime also shows peculiar polarization characteristics, most probably related

to sample asymmetries along the crystal directions of the sample.

In order to access the polarization properties of the system we have employed a

similar experimental con�guration to that used in the previous section, with polarization

optics (quarter-waveplates and linear polarizers) in the excitation and detection arms. In

this way, excitation with linearly or circularly polarized light pulses can be performed, while

the emission can be analyzed into its polarization components.

In the case of linear polarization experiments it is convenient to de�ne the TE and

TM polarization directions. In the TE mode, or transverse electric, the light is polarized

perpendicular to the direction of propagation of polaritons in the plane of the microcavity.

In the TM mode, or transverse magnetic, light is linearly polarized parallel to the to the

propagation direction inside the cavity,

As shown in Fig. 9.8, TE modes can be excited with light linearly perpendicular

to the plane of incidence (green arrow), while TM modes will be excited by light linearly
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Figure 9.8: Excitation of TE and TM polarization modes. The sample surface is parallel
to the quantum well and cavity spacer, and the plane of incidence is that de�ned by the
incoming beam and the normal to the surface. The green arrow indicates the direction of
linear polarization perpendicular to the plane of incidence. The red arrow represents the
linear polarization parallel to the plane of incidence. In this case there is always a component
of the electric �eld parallel to the propagation direction in the cavity (orange arrow).

polarized parallel to that plane (red arrow, orange component parallel to the direction of

propagation inside the cavity).

The orientation of the polarized light and the angle of excitation will set a well

de�ned TE or TM con�gurations. In the experiments shown in this section, the excitation

beam arrives on the sample with an angle of 2.5◦. A degree of linear polarization (℘LIN ) of

the emission can be de�ned as:

℘LIN =
ITM − ITE
ITM + ITE

, (9.2)

where ITM (ITE) indicates the emission intensity linearly polarized parallel to the TM (TE)

direction.

Figure 9.9(a)-(b) depicts the PL intensity of the k = 0 σ+ (σ−) emission [black

(red) line] and the corresponding circular polarization (℘CIR, blue lines), at low [(a); 2 mW]

and high [(b); 45.5 mW] excitation power after the arrival of a σ+ pulse for a detuning of

−4.1 meV. ℘CIR is de�ned by Eq. 6.3. In the low power case (a) the emission arises from

the LPB of the strongly coupled modes, showing no polarization, while at high densities the

system operates in the VCSEL regime and a low value of ℘CIR, constant in time, can be

observed. The situation in a linearly polarization geometry is very di�erent. Figure 9.9(c)-
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Figure 9.9: Degree of circular polarization (left scales, blue lines) and PL intensity for
each circularly polarized component at k = 0 (right scales) under σ+ excitation in the low
power (a) �2 mW, strong coupling, LPB� and high power (b) �45.5 mW, photon lasing�
regimes. (c) and (d), same as (a) and (b) for linearly polarized (TM) excitation. The black
(red) lines denote emission co-(cross-)polarized to the excitation. Note the logarithmic scale
for the PL intensity in the lower panels. The position on the sample corresponds to a
detuning of −4.1 meV
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Figure 9.10: (a) Time- and energy- integrated degree of circular polarization (open triangles)
and total PL intensity (red dots) as a function of the photoexcitation power of σ+ pulses.
(b) Same as (a) for the degree of linear polarization under TM-polarized excitation. The
dotted line depicts the onset of non-linear emission.

(d) shows the PL emission at k = 0 decomposed into its TM and TE components4 for

TM-polarized excitation. Much larger values of linear polarization ℘LIN of the emission are

found, even at low power, and the decay time of the polarization is very long (> 4 ns).

The results at di�erent excitation powers are summarized in Fig. 9.10, where the

power dependence of the time and energy-integrated ℘CIR (a) and ℘LIN (b) as well as

the total PL-intensity are depicted under σ+ and TM excitation, respectively. Under σ+

excitation [Fig. 9.10(a)], only in the regime above the threshold for VCSEL operation (∼
20 mW, characterized by a non-linear increase in the emission intensity, dotted line) a non-

zero value of ℘CIR can be observed, always lower than 0.2. On the other hand, ℘LIN

4At k = 0 the TM and TE components are de�ned with respect to the plane of incidence of the excitation
beam.
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[Fig. 9.10(b)] always shows a high degree, approaching 1 above the VCSEL threshold.

In the experiment shown in Fig. 9.10(b), excitation was kept in a TM con�gura-

tion. However, the plane of linear polarization of the emission is in fact unrelated to the

polarization of excitation. The plane of polarization is found to be pinned to a particular

crystallographic direction of the sample. The polarization plane of the emission remains the

same under TE-, TM- and circularly- polarized excitations, and it rotates when the sample

is rotated. This behavior is very di�erent to that found in optically excited VCSELs at

room temperature. In such conditions, under non-resonant circularly polarized excitation

the VCSEL emission is found to be highly co-polarized with the excitation.[7, 120] Even

under elliptical excitation the emission partially �remembers� the axis orientation of the

polarization ellipsis of the excitation.[109] These e�ects can be well described with the spin-

�ip model developed by San Miguel, Feng and Moloney.[228] According to this model, a

circularly polarized absorbed beam excites three times more electrons of a given spin than

the opposite in the QW (see Fig. 3.3). The spin imbalance is partially retained during the

carrier relaxation and ampli�ed by stimulated emission in the circularly optical transition

associated to the majority spin population. On top of this, the fact that one of the spin

sublevels in the active medium (the QW) is more populated (even reaching saturation limits)

than the other, results in nonlinear optical anisotropy e�ects.[92, 77]

In contrast, electrically pumped VCSELs tend to emit in linearly polarized light

along one of two crystallographic directions (〈011〉 and 〈011̄〉in GaAs based systems) with

no change in the emission spectra between the two polarizations (same fundamental cavity

mode). Polarization bi-stability has been found when changing the injection current within

a given current range,[195, 45] while polarization instabilities correlated with changes in the

spectral pro�le of the emission have been observed.[84]

The results shown in Figs. 9.9 and 9.10 indicate that in the microcavity under

study, pinning to one of the crystallographic axis dominates the polarization properties both

in the strong and in the weak coupling regimes. Additionally, the long decay times of ℘LIN

depicted in Fig. 9.9(b) indicate that linearly polarized states might be the eigenstates of

the system. Let us mention that in many microcavity systems parametric processes[74, 231,

223] or spontaneous polarization[147, 132, 21] are also pinned to particular crystallographic

orientation.

In order to understand whether the polarization pinning originates from anisotropies

in the QW or in the cavity DBRs, angle-resolved experiments have been performed at dif-
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Figure 9.11: (a) Angle dependence of the energy- and time-integrated linear polarization of
the cavity mode emission at high power (42 mW, weak-coupling regime) for TM (blue solid
dots) and TE (red triangles) polarized excitation at δ = −4.1 meV. The open dots depict the
emission energy. (b) Same as (a) for δ = +5.3 meV at high power (43 mW, solid blue dots;
weak coupling, cavity mode emission) and low power (14 mW, open dots; strong coupling,
LPB emission).

ferent detunings. Figure 9.11 shows the degree of linear polarization with respect to the

TM emission at di�erent emission angles. In this case, the TM and TE emission is de�ned

from the plane of observation [TM (TE): linear polarization perpendicular (parallel) to the

plane of observation]. In the particular experimental realization of the experiments shown

in Fig. 9.11, the TM and TE directions coincide with the relevant crystallographic axis of

the sample.

Figure 9.11(a) shows that at high excitation power (42 mW, weak-coupling regime)

and negative detuning (δ = −4.1 meV) the degree of linear polarization is independent from

the polarization of excitation, and presents very strong angular oscillations. The polariza-

tion remains approximately constant for angles of ±2 around k = 0. However, a increasing

the detection angle above that value results in an abrupt switching in the degree of linear

polarization from +0.8 to −0.9. A further increase of the detection angle leads to a mono-

tonic reduction of the degree of polarization. Thus, the polarization plane of the emission

changes from TM to TE in a narrow cone around k = 0.

The case of positive detuning (δ = +5.3 meV) is depicted in Fig. 9.11(b). The

polarization emission pattern at high excitation (43 mW, weak-coupling regime; solid dots)
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is similar to that of δ = −4.1 meV, with a lower absolute magnitude of the polarization.

At low power (14 mW, strong coupling), the emission from the LPB still shows the pattern,

with an even lower value of the polarization. This seems to indicate that the higher the pho-

tonic component of the emitting quasiparticle from the microcavity, the higher polarization

in the emission can be found. Then, the pinning e�ect of the linear polarization should be

attributed to the axial anisotropies in the DBRs. Although the DBRs are made of layers of

quasi lattice-matched materials (GaAs/AlGaAs), it has been shown that in heterostructures

with so many layers (each DBR is composed of about 40 epilayers), strain may develop along

particular crystal directions.[168] The fact that higher values of the linear polarization are

found at negative detuning may be also linked to the fact that at δ = +5.3 meV, the cavity

mode lies well above the continuum of free electrons and holes of the QW. High carrier scat-

tering is present at the energy level from which luminescence is originated [see Fig. 6.3(b)],

somewhat a�ecting the degree of linear polarization imposed by the photonic anisotropy. At

negative detuning, the weak-coupling emission originates from the recombination of the low

energy tail of the electron-hole distribution in the QW, which shows low scattering rates

due to degeneration e�ects [Fig. 6.3(b)].

The physical origin of the unconventional angular polarization distributions de-

picted in Fig. 9.11 is not clear and has not been reported in VCSELs, where PL studies are

limited to the emission parallel to the growth direction. The angular e�ects reported here

might be originated from TE/TM birefringence associated to the photonic anisotropy in the

system.

9.5 Summary

In this chapter we have presented experimental results on the time-resolved PL

in semiconductor microcavities under non-resonant excitation. At low excitation density

the system remains in the strong-coupling regime and the polariton emission at k = 0 is

dominated by the exciton formation and polariton relaxation from the bottleneck states.

The relaxation from upper-branch polaritons to reservoir states has been investigated in a

two pulses experiment. In this experiment, the controlled warming of the reservoir polariton

distribution has been demonstrated.

Going back to the non-resonant excitation con�guration, we have shown how the

microcavity is driven into the weak-coupling regime as the power is increased, where photon
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lasing dominates the emission. In this case we have shown that the emission is linearly polar-

ized along a direction pinned to one of the crystallographic axis of the system. The pinning

arises from anisotropies in the photonic con�nement and might also be responsible for the

abrupt switching between perpendicularly-polarized modes at di�erent emission angles.
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Chapter 10

Polariton quantum hydrodynamics

10.1 Introduction

In the previous chapter we presented experiments under non-resonant excitation in

an InGaAs/GaAs/AlGaAs based microcavity. The emission dynamics in the strong-coupling

regime are well explained by free carriers and polariton relaxation mechanisms, giving rise to

polariton incoherent populations. Even though only the emission from the k = 0 states has

been so far considered, in this incoherent regime polaritons distribute along the polariton

dispersion giving rise to incoherent luminescence from all states within the light cone.

As discussed in detail in Sec. 8.3 and shown in the experimental results of Sec. 9.2,

under highly non-resonant excitation (via photocreation of free electrons and holes) in GaAs

based microcavities it is not possible to reach a quantum condensed phase of polaritons. In

CdTe based microcavities a Bose-Einstein condensed state has been observed by Kasprzak

and coworkers under such excitation conditions,[133] and also in GaAs based microcavities,

by the group of Yamamoto, under direct injection of reservoir polaritons.[71, 161] The

importance of those experiments is that a phase transition from an incoherent state (injected

free electrons and holes in the experiment of Kasprzak, reservoir excitons in the Yamamoto

experiments) to a coherent condensed state of polaritons is observed. Due to the Bose-

Einstein character of the transition, polaritons spontaneously condense in a state that lies

at the bottom of the polariton dispersion, in a macroscopically occupied state with zero

linear momentum.

Very interesting properties distinctive of a condensed phase have been observed

from this zero momentum state, as detailed in Sec. 8.3. In fact, experimental observations
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of spectral and momentum narrowing, spatial coherence and long-range order have been used

as proof for the polariton Bose-Einstein phase transition, However, despite these observations

being clear evidence that polariton BECs can be formed in microcavities, they do not di�er

signi�cantly from what can be found in a pure photonic laser.[17]

A di�erential landmark between a Bose-Einstein condensate of interacting polari-

tons and a condensate of non-interacting photons (a laser), would be the observation of

super�uid properties in the polariton condensate. The observation of these properties would

con�rm the quantum nature of the condensed phase.

As demonstrated in many experiments in atomic condensates, super�uidity may

be evidenced in di�erent ways. Two of the most intuitive are the formation of vortices with

quantized angular momentum,[2] and the interaction with moving point-like potential bar-

riers (�obstacles�).[43] In the latter case, a quantum condensate interacting with an obstacle

traversing it presents very speci�c scattering properties. Some of them were detailed in

Sec. 8.5. If the quantum condensate is in the super�uid regime, the obstacle will traverse

the quantum �uid without causing any scattering [Fig. 8.7]. If the speed of sound of the

quantum �uid is smaller than the velocity of the moving obstacle, scattering takes place

giving rise to a Čerenkov like pattern [Fig. 8.6].[43]

A polariton condensed state with zero momentum, as those created by Kasprzak et

al. and by the group of Yamamoto, is not suitable to study these phenomena. A polariton

quantum state with well de�ned non-zero momentum must be employed so that it can

interact with static obstacles in the sample.1 In this chapter we will experimentally explore

this situation. We will show a novel technique for the creation and observation of polariton

quantum states with a well de�ned and controlled non-zero momentum (Secs. 10.2 and

10.3). Then we will discuss experimental results on the interaction of these quantum �uids

with obstacles of di�erent sizes found in the sample (Sec. 10.4). Some of the phenomena

introduced in the previous paragraph and in Sec. 8.5 will be evidenced in these experiments.

10.2 Making polaritons �ow

The most straightforward way to make polaritons �ow would be by the resonant,

pulsed2 photocreation of polaritons in a state of well de�ned momentum in the LPB. However
1Just by making a Galilean transformation this situation is equivalent to that of a static condensed state

interacting with a moving object.
2A pulsed source is essential if the dynamics of the polariton �uid is to be studied.
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this con�guration presents many di�culties when it comes to the detection of the polariton

movement. First of all, polaritons only live a few picoseconds before escaping the cavity

(the polariton lifetime is on the order of 1-4 ps in most of the available microcavities). The

temporal dynamics of polaritons after a resonant pulsed laser excitation can be resolved de-

tecting photon arrival times from the sample. However, even the best detectors do not allow

for resolution better than 1-2 ps,3 when the polariton population of the excited state has

almost completely disappeared. Additionally, stray light from the resonant laser excitation

is much stronger than the light emitted by the polaritons, hindering the detection of their

movement in the cavity, even a few picoseconds after the arrival of the pulse.

Very few experiments in the literature address the issue of polariton movement.

Freixanet, Sermage and coworkers[90, 253] presented and experimental con�guration in

which polaritons with a well de�ned momentum state were created by resonant pulsed

excitation of the LPB at a given angle of incidence. In order to avoid the aforementioned

di�culties, they made use of a pinhole to block the stray light from the laser. In this way

they restricted the observation to polariton states with di�erent momentum and energy to

those resonantly addressed by the laser. The observed states do not conform polariton �uids

with macroscopic occupations, as they are populated by the incoherent scattering from other

polariton states (mainly from the state excited by the laser).

Another experiment on this issue is that recently presented by Langbein et al.[169]

In this case a well de�ned polariton state is not excited, as the pulsed source simultaneously

populates a plethora of states with all possible in-plane momenta at a given energy in the

LPB. The stray light from the laser is eliminated by use of a confocal setup with a mask of

the excitation spot. In any case, incoherent propagation of the polaritons in a ring departing

from the excitation spot can be observed, with a very fast decay (∼ 4 ps).

In the experiments of Freixanet, Sermage, Langbein and coworkers, besides the

di�culties related to the very fast decay of the polariton populations, the addressed polariton

states present an incoherent nature. Thus, they do not conform a condensed quantum phase

and they are not subject to the super�uidic description of bosonic quantum states.

Here we present a experimental con�guration that allows us to create a polariton

�uid in a well de�ned energy and momentum quantum state while being able to observe its

3An experimental set-up based on the up-conversion technique would provide a resolution below 1 ps.
However, we are interested in the real- and momentum-space time-resolved imaging of the system in order
to observe the polariton �ow, and this can hardly be realized with the up-conversion technique due to its
particular characteristics.
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Figure 10.1: (a) Far �eld PL emission from the investigated microcavity under non-resonant
excitation at δ = 0. In the LPB, a sketch of the TOPO con�guration is presented. The CW
pump and pulsed idler arrive at the sample with angles of 10◦ and 16◦ respectively, giving rise
to a signal state expected at 4◦ from the growth direction (normal to the surface). (b) Far
�eld PL emission under resonant pump and idler excitation in the OPA con�guration (same
con�guration as the TOPO with both pump and idler beams being CW). The laser scattered-
light from the CW pump and idler (indicated by the yellow dots) has been blocked in order
to avoid the bleaching of the detection CCD. The signal state is visible at kx − 0.5 µm−1.
(c) Sketch of the pump and idler laser spots on the sample.

spatial evolution without any of the di�culties related to the decay of the populations and

of the stray light from the laser.

Our experimental con�guration is based on a continuous replenishing of the polari-

ton �uid from a higher-lying state driven coherently by an external CW-laser in a con�g-

uration of a triggered optical-parametric-oscillator (TOPO) in the lower polariton branch.

Figure 10.1(a) shows a sketch of the excitation conditions in this con�guration. The sample

employed for the experiments described in this section is a λ/2-GaAs/AlGaAs microcavity

with a single wide QW in the antinode of the electromagnetic �eld in the center of the cav-

ity. The sample was grown at the Laboratoire de Photonique et de Nanostructures (CNRS,

France). More details about this sample can be found in Sec. 4.1.3. The sketch of the

excitation conditions in Fig. 10.1(a), is plotted on top of the PL dispersion under low power,

non-resonant excitation, at 10 K (temperature at which all experiments in this chapter have
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been done). We will restrict all the experiments shown here to the case of δ = 0 (where

light-matter coupling is strongest).

The way the TOPO works is the following. Under CW pumping, a large polariton

population is created at a LPB state (the �pump� state, P) with energy EP and in-plane

momentum kP . EP can be selected by tuning the laser energy, while the in-plane momentum

kP is established by the angle of incidence of the CW-pump beam on the sample [kP and

incidence angle are related by Eq. 3.15]. Polariton pair-scattering processes are possible to

the signal (S) and the idler states (I), as long as the phase matching conditions 8.11 and

8.12 between pump, signal and idler states are ful�lled:

2EP = ES + EI ,

2kP = kS + kI .

If the pump population is large enough, pair scattering is spontaneously stimulated

to the signal at kS = 0 (i.e., kI = 2 × kP ), which becomes macroscopically occupied in a

well de�ned quantum state4.[267, 239, 293, 51] However, if a polariton population at an idler

state (EI , kI 6= 2× kP ) is created by a CW probe while CW exciting the pump state, pair

scattering processes will be stimulated to a signal state predetermined by Eqs. 8.11-8.12.

Thus, the momentum and energy of a signal-polariton population can be arbitrarily prepared

with the proper selection of pump and idler energies and incidence angles. This con�guration

is called Optical Parametric Ampli�er (OPA),[232] and can be easily achieved for a range

of pump, signal and idler states due to the peculiar dispersion found in semiconductor

microcavities and the strong non-linearities associated to the polariton interaction.

In our experiment, the pump is a CW beam but the probe is a short (2 ps) pulse at

the idler state, which just initializes the system, inducing a population at the signal state.

After the probe pulse has disappeared, the signal state is left macroscopically occupied,

and �nal state stimulation of the pump polaritons to the signal polaritons carries on for

nanoseconds. This novel experimental con�guration, only initialized by the probe pulse,

corresponds to a triggered OPO (TOPO), where the �nal-state stimulation of the pair-

scattering process is provided by the self-sustained high occupancy of the signal and idler

4In this con�guration, known as OPO, scattering to the signal quantum state is stimulated by the high
occupation of the �nal state (signal) and its bosonic character (see Sec. 8.4)
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states and it is fueled by the continuously replenished polariton population in the pump

state (Fig. 10.1).

With the experimental con�guration just described, we can create polariton states

with a well de�ned non-vanishing momentum at an energy di�erent from that of the exci-

tation lasers. By making use of a spectrometer in the detection setup, we can select the

emission from the signal states and �lter out the stray light from the excitation sources.

Additionally, the high occupancy of the signal state (which is an essential precondition for

the TOPO process to be activated) assures that signal polaritons are indeed in a quantum

macroscopically occupied state. Figure 10.1(b) shows an actual time integrated CCD image

of the far �eld PL in the regime of OPA, with CW pump and idler excitations.

In the time resolved experiments, the CW pump is focused on the sample on a

spot of 110µm in diameter, while the pulsed idler is focused with a size of 16µm inside

the pump spot, as depicted in Fig. 10.1(c). Once the TOPO is initialized on the spot of

the sample illuminated by the pulsed laser, the signal polaritons start to move at a velocity

given by their center of mass momentum. In a time given by the polariton lifetime in the

cavity (2-4 ps), polaritons move to a nearby di�erent point in the sample and then leak

out of the cavity. However, the CW pump continues to feed the signal state by the TOPO

mechanism, as long as the signal polaritons move within the pump spot. Once the �uid

reaches the pump-spot edge, the signal dies away. The position of the signal-polariton �uid

is evidenced by the light emitted at the energy of the signal state, which arises from the

photons escaping from that state. In all the experiments presented here (except stated

otherwise), the CW pump will be injected at an angle of 10◦ (corresponding to an in-plane

momentum of ∼ 1.15 µm−1). 5

Let us note that polariton-polariton interactions result in appreciable renormal-

izations (blueshifts) of the LPB when large populations are injected in the system. These

interactions arise from the exciton content of the polaritons and are described by the g

dependent terms in Eq. 8.15. When preparing the pump and idler states in the TOPO, the

band blueshift must be taken into account by �ne adjusting the energy of the CW pump

and pulsed idler so that the phase matching conditions are satis�ed.

5This angle is slightly below the magic angle (12◦, in�exion point of the LPB). In this way, the threshold
for the spontaneous OPO of the pump is increased and the emission of the OPO signal at k = 0, which could
contaminate the emission from the nearby TOPO signal state, is minimized. However, this pump angle is
close enough to the in�exion point so that the phase matching conditions 8.11-8.12 for the TOPO are still
easily achieved.
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Figure 10.2: Time evolution of the TOPO signal at k = 0 after the arrival of the pulsed idler
for pump and idler energies and momenta such that the phase matching conditions result in
a signal at k = 0 (pump incidence angle: 12º). (a) Streak-camera image. (b) Time pro�le,
showing a signal decay-time of 1.1 ns.

The setup used for the detection of the polariton �uids moving across the sample

is shown and explained in detail in Sec. 4.2.3. The employed con�guration allows us to

alternatively form the 2D images of the near-�eld (real space) or far-�eld (momentum space)

emissions on a CCD or on the input slit of a streak camera at a given energy. Therefore,

movies of the real- and momentum-space movement of the polaritons in the sample can be

recorded at a given emission energy with a time resolution of about 8 ps. The total spectral

and spatial resolutions are on the order of 0.2 meV and 4 µm, respectively.

The sustainability in time of the TOPO process can be investigated if the pump and

idler beams are set, following the phase matching conditions 8.11-8.12, to in-plane momenta

and energies such that the signal state appears at kS = 06 (bottom of the LPB). In this

case the signal polaritons state does not move in space and its lifetime can be measured.

Figure 10.2(a) shows a streak-camera image in its usual con�guration (wavelength vs time)

of the signal PL at k = 0. The signal emission is triggered at the arrival of the idler pulse.

The very fast initial decay is caused the disappearance of the idler pulse, whose photon

density sets the initial occupation of the signal states. After the pulsed has disappeared the

signal is fed by the pump polaritons, showing a decay of 1.1 ns [Fig. 10.2(b)]. The factors

6kI = 2× kP and EI = 2× EP − E(k = 0).
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determining this decay are currently under investigation.

10.3 Polariton �ow in the absence of defects

10.3.1 Polariton �ow

Figure 10.3(a) shows several frames of the real-space emission at the energy of the

signal polaritons, in the TOPO con�guration described in the caption of Fig. 10.1(a), after

the arrival of the pulsed idler. Far �eld images at the same emission energy are also displayed

at the same time delays [Fig. 10.3(b)]. In Fig. 10.3, as well as in the rest of the movies

presented in this chapter, the images are obtained by recording the emission with pump and

idler beams impinging upon the sample and subtracting the emission from just the pump

excitation. In this way only the polaritons populated by parametric processes triggered by

the pulsed idler are recorded. It is readily seen that signal polaritons freely move across

the sample without expanding or interacting with the surrounding medium until polaritons

reach the edge of the area excited by the CW pump. In k-space the motion is unperturbed

and the total polariton momentum is conserved, with a value of kp = −0.75 µm−1, without

any appreciable spreading.

A detailed analysis of real-space �lms shows that the polariton �uid moves at a

constant speed. Its group velocity is vg = (1.7 ± 0.4) µm/ps. We can compare this value

with the velocity associated to the observed momentum in the k-space images. The group

velocity and the momentum of the center of mass of the �uid is given by:

vg =
~kp
mp

, (10.1)

where mp is the polariton mass. The polariton mass can be obtained from the measured

dispersion relation of the LPB under non-resonant excitation shown in Fig. 10.1(a): the

bottom of the LPB can be �tted to a parabolic function and the e�ective mass of the

polaritons can be obtained (mp = 1
~2

∂2E
∂k2

p
). For the conditions of δ = 0 considered here a

LPB polariton mass of 1.89× 10−4m0 is obtained.

In this case, with the value of kp measured in Fig. 10.3(b), a polariton group

velocity of vg = (0.5±0.3) µm/ps is obtained. This value is lower, but close to, that directly

measured from the movement in real space. The reason for this discrepancy might be in

the uncertainties associated to the calibration of the momentum space in the CCD images
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Figure 10.3: Spectrally selected observation at the TOPO signal energy of a coherent polari-
ton gas moving at vg = 1.7 µm/ps. The images are real space shots taken at di�erent times
after the probe pulse arrival (t = 0). (b) Reciprocal (momentum) space frames recorded
at the same time delays and energy as (a). The inset displays a 3D view which evidence
the narrowness of the k distribution. The di�usion-less motion and the invariance of the
k-vector are a clear signature that polaritons are in a regime showing quantum coherence.
The CW pump power is 20 mW (10◦), while the pulsed probe power is 110 µW (16◦). Watch
�lm in real space (a), watch �lm in k-space (b).
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from which the polariton mass is obtained [Fig. 10.1(a)]. Nonetheless, other important

considerations should be taken into account. In order to calculate vg from the measured

center of mass momentum of the �uid, we employed the polariton mass from the non-

resonant, low power polariton dispersion. However, the polariton dispersion is subject to

important changes when it is resonantly excited in the LPB. Figure 10.4(a) shows the LPB

dispersion around kx = 0 (ky is kept 0), as obtained in the TOPO regime at short times

after the arrival of the idler pulse, for a spot on the sample and exciton condition similar

but not identical to those used to obtain the dynamics displayed in Fig. 10.3. The emission

is spatially integrated over all the excitation spot, but as shown in Fig. 10.3, the emission

characteristics do not signi�cantly change along the trajectory of the �uid.

To obtain the image shown in Fig. 10.4(a), the detection path in the experiment

was setup in order to form an image of the far-�eld emission on the entrance slit of the streak

camera (which in such con�guration produces kx-momentum space images resolved in time

at a given detection energy). In this case, ky = 0 was selected, and the detection energy

was scanned obtaining a kx vs energy plot at a short time (12 ps) after the arrival of the

pulsed idler. Note that the image is obtained by recording the emission of the TOPO (CW

pump plus pulsed idler) and subtracting the emission caused by the CW pump only. Only

the polaritons populated by parametric processes triggered by the pulsed idler are recorded.

The signal states in Fig. 10.4(a) can be easily identi�ed as a PL peak at negative

values of kx. Due to the �nite energy width of the idler pulse (∼ 2.5 meV), the phase

matching conditions give rise to several signal states, that conform the observed peak in

Fig. 10.4(a). Each of them presents a macroscopic occupation (as this is the condition for

stimulated scattering to those states in the TOPO con�guration), and can be treated as a

polariton �uid in itself. Let us recall that in the real- and momentum-space images shown

here, we select one of these states by energy �ltering.

Figure 10.4(b) shows in black dots the PL peak positions extracted from (a), under

resonant CW-pump (orange arrow) and pulsed-idler excitations. The red dots depict the

LPB dispersion from the same spot on the sample after non-resonant, low-power excita-

tion. Marked di�erences can be appreciated between the two situations. First of all, the

resonantly excited dispersion presents a blueshift in the emission of about 0.75 meV. This

renormalization of the band arises from the strong polariton-polariton interaction in the

system (terms containing g in Eq. 8.15), due to the high density of polaritons injected by

the pump beam. Additionally, the polariton band shows a linearized section close to the
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Figure 10.4: (a) PL intensity as a function of energy and momentum of the emission for
ky = 0, at short time (12 ps) after the arrival of the pulsed laser in the TOPO con�guration.
Note that the image is obtained by recording the emission of the TOPO (CW-pump plus
pulsed-idler) and subtracting the emission caused by the CW pump only. In this way only
the polaritons populated by parametric processes triggered by the pulsed idler are recorded.
The white lines are a linear and parabolic �t as in (b). (b) Black dots: PL-peak positions
extracted from (a). Open points: dispersion under just CW-pump excitation (no idler
pulse). Red dots: LPB dispersion obtained under low-power, non-resonant excitation in the
same spot as that depicted by the black dots. The orange arrow indicates the energy of the
CW-pump, while the green arrow depicts the position of the signal state. The blue line is a
linear �t to the black dots with kx < −0.45 µm−1, while the grey line is a parabolic �t to
the emission at kx > −0.45 µm−1.
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states where the pump is being injected. In the same graph, the open points depict the

measured dispersion in the absence of the idler pulse. In this case the emission does not

show an intensity peak at the energy of the signal states (not shown here), as no TOPO has

been initialized, but the dispersion relation is very similar to that depicted in black solid

dots. This fact indicates that both the overall blueshift and the linearization of the polariton

band, observable through the PL emission, arise from the renormalization induced by the

high density of injected polaritons in the pump state. In fact, considering the pump spot

size, the size of the traveling signal and the power of the emitted PL intensity we estimate

that the density of signal polaritons is at maximum one tenth of that of the pump polaritons.

The dispersion relation shown in Fig. 10.4(b) is very similar to that calculated by

Ciuti and Carusotto[49] and displayed as a solid line in Fig. 8.6(a). This calculated dispersion

actually depicts the spectrum of excitations (δφ, Eq. 8.18) of a polariton �uid coherently

injected by a laser at the pump state, with no pulsed idler. The most important type of

excitations considered by Ciuti and Carusotto when calculating such a spectrum are pair-

polariton scattering events from the pump �uid.[49] This is precisely the kind of excitations

that give rise to the occupation of LPB states in the conditions of Fig. 10.4. In fact, the

signal state in the TOPO regime can be considered a pair-polariton scattering excitation of

the pump state, as depicted in Fig. 10.1(a). For this reason the dispersion obtained from

the PL (Fig. 10.4) and that calculated and shown in Fig. 8.6(a) correspond to the same

physical situation. However, Ciuti and Carusotto treat the pair-polariton excitations as

a �rst-order perturbation to the polariton system, while the signal state triggered by the

pulsed idler may require a full non-perturbative treatment in order to fully understand its

properties.[41] Thus, comparisons between the theory developed by Ciuti and Carusotto and

the experimental results presented here must be done with caution.

With these premises, we can consider the signal state as a polariton �uid moving in

a dispersion mainly renormalized by the large pump population. This situation may explain

the aforementioned discrepancy in the calculation of the velocity of the �uid depicted in

Fig. 10.3. In order to calculate the velocity associated to the signal wavevector shown in

Fig. 10.3(b) we used Eq. 10.1 and the polariton mass obtained from the LPB parabolic

approximation under non-resonant excitation. We have just seen that the signal polariton

�uid �lives� on top of the renormalized dispersion. The signal polariton velocity can then

be directly calculated from the dispersion shown in Fig. 10.4(b):
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vg =
1
~
∂E

∂kp
(10.2)

For kp = −0.75 µm−1 (where the dispersion is linear) we obtain a velocity of vg = (2.6 ±
0.3)µm/ps, very close to the value of (1.7±0.4) µm/ps directly obtained from the real space

�lm in Fig. 10.3(b) under similar (but not identical) conditions to those of Fig. 10.4.

10.3.2 Polariton di�usion

A direct consequence of the signal polaritons moving on top of a linearized section

of the dispersion as that shown in Fig. 10.4 is that the signal polariton wavepacket does not

spread. A wavepacket of non-interacting particles on a parabolic dispersion is subject to

real- and momentum-space expansion due to the e�ects of the uncertainty principle (non-

commutability of space and momentum operators).[52] Under such circumstances, if the

considered wavepacket has a size (FWHM) of ∆0 at t = 0, the time evolution of its Gaussian

width ∆ is given by:[171, 52]

∆ =

√
∆2

0 +
(

2~t
mp∆0

)2

(10.3)

However if the wavepacket lives on a linear dispersion, as is the case of the signal polariton

�uid, no expansion at all is expected,7 neither in real or momentum space.[80] Figure 10.5

depicts in solid dots the Gaussian width, in the y direction, of the signal polariton �uid

shown in Fig. 10.3(a) as it traverses the excitation spot. No apparent di�usion of the

polariton packet is observed. The red solid line displays the time evolution of the width

of the wavepacket, if the polariton �uid would be characterized by a parabolic dispersion

(Eq. 10.3).

A similar behavior is expected in reciprocal (momentum) space. Indeed, Fig. 10.3(b)

shows no apparent di�usion of the well de�ned momentum of the polariton wavepacket.

It is interesting to compare the behavior of a characteristic polariton quantum

�uid as that depicted in Figs. 10.3-10.5, with a polariton packet in the incoherent regime.

7If we take into account the polariton-polariton repulsive interactions, even in a linearized dispersion the
polariton wavepacket should spread in time. However, these interactions are not expected to be apparent
in the time scales considered here. In atomic condensates on the other hand, atoms move in a parabolic
dispersion but present a very large mass. In this case the broadening of the wavepacket given by Eq. 10.3 is
negligible, and the observed expansion of the atomic clouds in millisecond timescales is caused by repulsive
inter-atomic interaction.[103, 97]
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Figure 10.5: Solid dots: Gaussian width of the polariton packet in the y-direction extracted
from the real space images of Fig. 10.3(a). Solid red line: calculated wavepacket di�usion
for a parabolic dispersion [Eq. 10.3]. Blue dashed line: expected wavepacket di�usion in a
linear dispersion.

Figure 10.6 shows the time evolution in real (a) and momentum (b) space at the energy of

the signal polaritons for a low (7 mW) CW pump excitation. The emission from the signal

polaritons is still triggered by the arrival of the pulsed idler. In this case, the PL arises

from the phonon assisted relaxation of the idler polaritons and from lightly induced pair

scattering from the pump to the signal state. However, in this case no occupation greater

than 1 is achieved in the signal state and a quantum �uid is not formed.

In this particular case, if the pump is increased above certain threshold (10 mW)

the TOPO is initiated and a quantum �uid is formed at the signal state.

The real space dynamics are very di�erent to the case of Fig. 10.3. In Fig. 10.6(a)

the polariton packet very slowly moves from the spot where it is created to a nearby site

where it gets localized in a shallow photonic well. In momentum space we can see that a

ring very rapidly forms after the arrival of the pulsed idler due to the inelastic-scattering

origin of the PL at the signal state and also to elastic polariton-polariton scattering within

the signal states. The appearance of the ring is a direct evidence of the signal state not

being in a well de�ned quantum state, but conforming a plethora of incoherent states at

di�erent momentum. Still, for the �rst ∼ 45 ps the �uid has a favored momentum, which

re�ects the slow movement of the ensemble at those early times. When the packet becomes
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Figure 10.6: Real-space (a) and momentum-space (b) images, of an incoherent polariton
�uid, at a detection energy above the bottom of the LPB at di�erent times. The color scales
vary from panel to panel. The images are obtained at low pump power (7 mW, 10◦). The
idler is set at 16◦ at 130 µW. In real space the �uid slowly moves diagonally to the right
and upwards. The white circle at 43 ps depicts the position of the �uid at t = 14 ps. A
t & 45 ps the �uid gets localized in a shallow potential. Watch �lm in real space (a), watch
�lm in k-space (b).
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localized, the momentum fully randomizes resulting in the observed homogeneous ring.

10.3.3 The pump and signal polariton quantum �uids

From the discussion in the previous paragraphs it is important to emphasize that in

the TOPO experimental con�guration we must consider that at least two polariton quantum

�uids coexist in the system. The most largely populated is the polariton �uid in the pump

state. This �uid is coherently driven by the CW laser and, therefore, the phase of its

wavefunction, is externally imposed. Additionally, the large population of this state results

in the renormalization of the of the whole lower polariton band.

The second coexisting quantum polariton �uid is that at the signal state that results

from the TOPO process described above, and lives on the renormalized polariton dispersion

established by the large pump population. One of the most important characteristics of

the signal state is that its phase is not necessarily set by the coherently driven pump state.

As discussed in Sec. 8.4 [Eq. 8.14], once the signal emission is initialized by the pulsed

idler and the OPO regime sets on, the phase of the signal state is unrelated to that of the

pump. This implies that the spectrum of excitations of the signal polariton �uid may be of

a Goldstone-mode nature, and it may show super�uid behavior.[298]

Finally, a polariton �uid at the idler state should also be present as a consequence

of the parametric process associated with the OPO. However, this �uid is subject to very

fast dephasing as it is very close in energy to the reservoir (see Sec. 8.4). Therefore, it will

not be considered here.

In order to explore in detail the nature of the signal (and pump) polariton �uids,

in the next sections we will present results on the interaction of these �uids with potential

barriers of di�erent sizes and shapes. Localized potential barriers are present in the micro-

cavity in the form of photonic or excitonic defects. In the sample under study, which is of

a very high crystalline quality, scattering centers are present with an approximate density

of 0.01 µm−2. In the calculations of Ciuti and Carusotto reported in Refs. [42, 49] (also

introduced in Sec. 8.5) it's shown that the interaction of a polariton �uid with such defects

on the sample may reveal its quantum nature and super�uidic properties, if any. For in-

stance, Figs. 8.6(b)-(c) and 8.7(b)-(c) show calculations of the near- and far-�eld emissions

of a polariton quantum �uid at the pump state interacting with a defect in two di�erent

pump con�gurations.[49]
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10.4 Interaction of the polariton �uids with localized defects

This section shows a menagerie of interaction e�ects between polariton �uids and

potential barriers of di�erent shape and size. Even though the three cases treated here

re�ect quite di�erent situations, the understanding of the behavior of the �uids in each case

provides insights into its quantum nature and properties.

10.4.1 Scattering with a small point-like defect

Figure 10.7(a) shows images obtained in the near �eld of a TOPO polariton-�uid

colliding against a defect positioned in the middle of its trajectory. It is important to realize

that the images re�ect the addition of two di�erent contributions: a) the pump polaritons

(extended in an area of ∼ 8×103 µm2) which constantly feed the signal polariton, and b) the

motion of the signal polaritons by themselves, which pass through the defect. Figure 10.8

illustrates how these two contributions are detected at the signal polariton energy. The

fringes observed around the defect appear due to the local change in density of the pump

polaritons, which is re�ected in the structure of the signal.

The pump polaritons are injected in a coherent state, at high energies, high density

and with high k-vector. In the conditions of Fig. 10.7 the pump polariton state, whose phase

is determined by the CW pump, is well described by the situation depicted in Fig. 8.6,

which shows the calculations of Ciuti and Carusotto for a polariton �uid in the so called

Čerenkov regime.[49] In the conditions of Fig. 10.7 the pump polaritons must have a group

velocity higher than the velocity of sound (vs) (i. e., a Mach number > 1), giving rise, in

the presence of a defect, to very characteristic quantum interferences resembling Čerenkov

waves, observable through the emission of the signal polaritons as depicted in Fig. 10.8.8

The velocity of sound is given by Eq. 8.21, and its value can be estimated from the blueshift

of the polariton dispersion, which is equal to ~g |Ψss
LP |2, and from the measured mass of the

unperturbed polaritons. In this case we �nd vs = 3 µm/ps. Similar shockwaves have been

reported recently for an atomic BEC �owing against a potential barrier at Mach numbers

greater than one,[43]

It is important to note that the visibility of these waves does not imply that the

signal polaritons are also in the Čerenkov regime. On the contrary, the signal polaritons

8The observation of the Čerenkov shockwaves in the pump state does actually reveal the position of the
defect on the sample.
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Figure 10.7: (a) Signal polariton movement in real space at di�erent times in the presence
of a small defect (marked with a white dot in the �rst panel). The observed Čerenkov waves
re�ect the local change in density of the pump polaritons, which are traveling at a supersonic
velocity (see text and Fig. 10.8). (b) Corresponding momentum space images. The color
scales vary from panel to panel. The pump (idler) power is 54 mW (315 µW) and the angle
of incidence is 10◦(16◦).Watch �lm in real space (a), watch �lm in k-space (b).
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Signal polaritons

Pump polaritons

Figure 10.8: Sketch of the TOPO in real space. The observation of the signal polariton-�uid
is represented by the circles running from left to right on the black background. We are able
to detect this motion thanks to the continuous feeding from the pump polaritons which are
represented by the gray plane. The supersonic regime of the pump polaritons is evidenced
by the presence of Čerenkov waves around the defect. The change in density of the pump
polaritons is projected into the signal polaritons which, instead, move through the defect.
The red point shows the position of the defect.
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(which are at lower energy and wavevector) seem to �ow unperturbed when passing through

the defect. In fact, Fig. 10.7(b) shows that the signal polaritons present a very narrow and

well de�ned momentum (evidencing its quantum-state nature) that hardly changes when

passing through the defect (note that the color scale changes for the di�erent images).

The group velocity of the signal polaritons extracted from the �lm depicted in

Fig. 10.7(a) is vg = 0.9 µm/ps.9 This value is lower than the sound velocity calculated

above, vs = 3 µm/ps (i. e. Mach < 1). This is actually one of the Landau criteria

for super�uidity de�ned in Sec. 8.5. Additionally, the fact that both the momentum- and

the real-space shape of the signal polariton �uid do not change signi�cantly when passing

through the defect indicates that the polariton wavepacket does not scatter with the defect

(while the pump polaritons do, as evidenced by the Čerenkov waves). All this evidence could

indicate that the signal state is in fact in the super�uid regime expected for a macroscopically

occupied bosonic state under particular conditions (Fig. 8.7).[42, 49]

The demonstration of the super�uid character of the signal polaritons is not an

easy task. For instance, in the system we are studying, the sound velocity is not clearly

de�ned. In Sec. 8.5 and in Refs. [42, 49] the system is only occupied by pump polaritons.

In this case vs is given by Eq. 8.21 and the �rst Landau criterion for super�uidity is clearly

established (see end of Sec. 8.5) In our case at least two polariton �uids coexist in the

system, with di�erent density, energy and momentum. Moreover, it seems that, to a �rst

approximation, the signal polaritons live on top of a LPB dispersion renormalized by the

pump polaritons. It is not clear then if vs for the signal polaritons would also be given

by Eq. 8.21. Additionally, a careful measurement of the LPB dispersion is required in

order to check if the signal polaritons satisfy the second Landau criterion [ωLP (k) > ωS

for every k 6= kS , as depicted in Fig. 8.7(a)]. The direct measurement of the excitation

spectrum of the signal state would reveal important information on the collective behavior

associated to super�uidity. Wouters and Carusotto[298] predict for a non-triggered OPO,

the appearance of di�usive Goldstone modes in the spectrum of excitation of the signal

state that spontaneously forms close to k = 0. The appearance of Goldstone modes with a

non-zero sound velocity are clear indications of the super�uidity of the signal state. In order

to measure the spectrum of excitation of the signal �uid, an absorption measurement should

be performed in the states close to the signal, as proposed in Ref. [298]. This requires an

9The group velocity of the pump polaritons cannot be directly measured due to the presence of the strong
scattered light from the pump beam, and its CW character, at the energy of those states.
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intricate experimental set up, in particular considering that in our case the signal polaritons

have a non-zero momentum and are constantly moving across the sample.

Apart from these important considerations, the absence of scattering of the signal

polariton quantum �uid when traversing the defect, as observed in Fig. 10.7, and the mea-

sured vg < vs, constitute evidence compatible with the super�uid character of the signal

polaritons.

10.4.2 Scattering with a large defect

In Fig. 10.9(a), a more striking collision is observed as the size of the defect is now

comparable with the dimension of the polariton �uid. The �nite-size traveling polariton-�uid

scatters coherently and elastically on the potential and it is split into two after the collision.

Fig. 10.9(b) shows that before the collision the polariton �uid presents a well de�ned narrow

momentum distribution. The collision splits the momentum distribution into two narrow

and well de�ned states, corresponding to each of the the observed polariton �uids in real

space.

In this case, the splitting of the signal polariton quantum �uid into two, when en-

countering the defect, can be interpreted as consequence of the fact that not enough particles

can compensate for the local reduction of the �uid momentum and allow an unperturbed

motion. Note that the process is dissipationless. This behavior is again compatible with

the super�uid character of the signal state. A normal polariton �uid[90, 169] would dif-

fuse both in real and reciprocal space in this con�guration due to polariton-polariton and

polariton-defect incoherent scattering.

10.4.3 Re�exion on a line defect

Figure 10.10 depicts the real space image of the interaction of a polariton �uid with

a line defect on the sample. The line defect [sketched with a white line in (a)] is located

along one of the crystallographic axis of the sample. In this case the �uid is created with

a higher in-plane momentum (TOPO signal at 5◦), pointing in at t = 0 in a (x, y) = (1, 1)

direction on the plane of the sample.

When the �uid reaches the potential barrier it is partially re�ected and partially

transmitted [frame (d)]. The trajectory of each component is sketched with purple arrows in

frame (a). Let us stress that the observation of a partial re�ection is a direct manifestation
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Figure 10.9: Images of a signal polariton quantum-�uid at di�erent times facing a defect
of size comparable with its own dimension. Under these conditions the polariton �uid is
forced to �feel� the defect which is now breaking the polariton trajectory in real space (a)
and showing the appearance of two independent polariton states with di�erent k -vectors (b).
The pump (idler) power is 39 mW (70 µW) and the angle of incidence is 10◦(16◦). Watch
�lm in real space (a), watch �lm in k-space (b).
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Figure 10.10: Real-space images at the energy of the signal polaritons at di�erent times.
The polariton �uid encounters a line defect in its path, sketched in (a) as a white line. The
initial momentum points in the (x, y) = (1, 1) direction. When the polariton �uid encounters
the line defect its partially re�ected and partially transmitted as indicated by the purple
arrows in (a). In this case TOPO is con�gured with a pulsed idler angle of incidence of 15◦

(80 µW), a pump angle of 10◦ (100 mW), giving rise to a signal at 10◦. The white lines
depict the line defect.Watch �lm in real space.
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of the quantum nature of the signal polariton �uid. A classical object with a well de�ned

velocity facing a potential barrier will either overcome it or not, depending on the kinetic

energy of the object and the height of the barrier. However, a quantum object will always

have a �nite tunnel probability of passing through and a �nite probability of being re�ected.

In our experiment in which millions of pulsed events are recorded, this partial probabilities

are manifested in the observation of both a transmission and a re�ection.

The re�ected beam is stronger than the transmitted one, and it does not seem

to show any internal structure. However the transmitted �uid does show standing density

waves similar to those observed in Fig. 10.7. In this case, the waves do not present a round

shape, but have a straight appearance perpendicular to the direction of motion of the signal

�uid. The waves are standing, that is, the maxima remain at the same point at all times,

as long as they are visible.

The origin of the waves observed in the direction of the transmitted �uid is not

clear. They could still be a manifestation of the pump state which is probably in the

conditions of Čerenkov behavior. Additionally, frames (b) and (c) show that the waves are

present already before the �uid has completely reached the defect, appearing both above

and below the line defect (located at y = 0).

Standing waves are in fact expected in the region of space below the line defect.

Figure 10.11 shows several snapshots of the calculation of Martin, Scott and Fromhold for

the dynamics of a BEC of Na atoms accelerated against a tunnel barrier.[184] In their

calculation the tunnel barrier has a Gaussian pro�le and is formed by a focused laser beam

along a plane (y direction, dashed vertical lines), and the condensate is incident normal

to the barrier at a velocity of 6.3 mm/s−1. For the particular width and height of the

barrier shown in Fig. 10.11, a strong re�ection and a partial transmission of the condensate

is observed. Standing waves form on the �uid in the incoming side (to the left of the barrier)

due to the self interference of the condensate wavefunction. This situation resembles very

much the standing waves observed below the defect line in Fig. 10.10(b)-(c). On the other

hand no standing waves are observed in the calculated transmitted �uid, while they seem

to be present in the polariton case. More experimental work is needed to further clarify the

physics behind this partially transmitted situations, in particular for scattering angles close

to the normal of the defect line where clear self interference of the coherent polariton �uids

should be observed.

Let us �nally point out that partial re�ections of atomic BECs against surfaces
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with a mean incident velocity v̄x��x�x, and is then scat-
tered by the tunnel barrier.

The time-dependent GPE for the system is

i�
�	

�t
= �− �2

2m
� �2

�x2 +
�2

�y2	 + V�x,y� + g�	�2
	 , �2�

where 	�x ,y , t� is the wave function for motion in the x-y
plane at time t�0 and g=4��2a /m where the s-wave scat-
tering length a=2.9 nm.

We determine the initial BEC wave function by solving
Eq. �2� for t�0 using an imaginary time algorithm �17�.
When the initial state contains a vortex we impose the re-
quirement that there is a 2�-phase change in the condensate
wave function around the trap center at �x ,y�= �−�x ,0�,
which corresponds to a quantized angular momentum of −�
about the z axis. The wave function is normalized according
to

� �	�x,y,t��2 dx dy =
N

Lz
, �3�

where Lz is the confinement length in the z direction. We
consider two different rotating BECs with N /Lz=5
�109 m−1 �BEC A� and N /Lz=2.5�1011 m−1 �BEC B�, cor-
responding to peak atom densities of n0=2.1�1019 m−3 and
n0=1.6�1020 m−3, respectively. The density, �	�x ,y , t=0��2,
and phase, 
�x ,y , t=0�, of the initial state of BEC A are
shown in Figs. 1�b� and 1�c�. Having obtained the initial
state of the BEC, we determine its motion by solving the
GPE numerically using the Crank-Nicolson method �18�. We
identify the effect of the initial vortex by comparing the dy-
namics of BECs A and B with their irrotational counterparts
labeled BECs Ai and Bi respectively.

Figure 2 shows the density profile of BEC A after a trap
displacement of 20 �m �v̄x=6.3 mm s−1�. As the BEC im-
pinges upon the Gaussian tunnel barrier, a standing wave
forms between the incoming and reflected matter waves. Fig-
ure 2�b� shows the first stage of the standing wave formation
in which maxima �black� and nodal lines �white� appear at
the leading edge of the atom cloud. In Figs. 2�c� and 2�d� the
standing wave undergoes a � phase shift between the upper
and lower edges of the BEC. This is due to the nonuniform
initial phase of the BEC, shown in Fig. 1�c�. After scattering,
the BEC splits into reflected �x
0� and transmitted �x�0�

(a)

(b)

(c)

x

y
(d)

(e)

(f)20 m�

FIG. 2. Evolution of BEC A: plots of �	�x ,y , t��2 �black repre-
sents high density, white represents zero� for v̄x=6.3 mm s−1 at t
=3 ms �a�, 4 ms �b�, 5 ms �c�, 6 ms �d�, 7 ms �e�, and 8 ms �f�. The
dashed line at x=0 marks the point where the laser potential is
maximal. Coordinate axes are inset and the horizontal bar indicates
scale. Lower plot: phase 
�x ,y , t=8 ms� �white represents 0, black
represents 2�� within the region enclosed by the box in �f�. Arrows
indicate the direction of circulation.
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FIG. 3. Evolution of BEC Ai: plots of �	�x ,y , t��2 �black repre-
sents high density, white represents zero� for v̄x=6.3 mm s−1 at t
=3 ms �a�, 4 ms �b�, 5 ms �c�, 6 ms �d�, 7 ms �e�, and 8 ms �f�. The
dashed line at x=0 marks the point where the laser potential is
maximal. Coordinate axes are inset and the horizontal bar indicates
scale.
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Figure 10.11: Simulation of the time evolution of an atomic Na BEC with a lentil shape
colliding against a tunnel barrier at a velocity of 6.3 mm/s−1in the x direction. The �gure
shows real space snapshots at t = 3 ms (a), 4 ms (c), 5 ms (d), 6 ms (e), 7 ms (f). The
tunnel barrier is created by the optical �eld of a laser. From Ref. [184].

have already been observed. The group of Ketterle at the MIT have reported such kind of

quantum re�ections on Si surfaces under di�erent conditions.[198, 197] The physics behind

the quantum re�ections of atoms on surfaces lies on the Casimir-Polder potential formed

close to the surface. This potential drags the atoms so violently towards the surface that

the result is the re�ection of the atoms away from it.

A deeper understanding of the microscopic shape and origin of the polariton po-

tential barriers found in the microcavities would be required to further extend the analogy

between the atomic and polaritonic case. Nonetheless, very exotic behavior is expected dur-

ing such re�ections, at least in the atomic case. Various �uid excitations, such as solitons

and vortices, are predicted to form depending on the particular conditions of the phase,

shape and velocity of the incoming �uid.[249, 184, 248, 247]

10.5 Summary and future perspectives

In this chapter we have presented an experimental con�guration that allows for

the creation and detection of polariton quantum �uids with a non-zero momentum. The

high pump-polariton density renormalizes the LPB and changes its shape, due to the strong
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polariton interactions in such a coherently driven state. The selection of the phase matching

conditions that rule the TOPO allow for the control of the initial momentum of the �owing

signal polaritons.

In the absence of defects, the signal polaritons move with an unperturbed �ow

across the sample, with a well de�ned and �xed momentum. When defects are present,

di�erent phenomena can be observed. The pump polariton quantum-�uid scatters with the

defect giving rise to Čerenkov-like waves, as the velocity of sound of the pump state is lower

than its group velocity. The observation of these interference waves is a direct indication

of the quantum nature of the polariton �uid. On the other hand, the group velocity of the

signal polaritons might in general be smaller than the sound velocity. If the defect is small in

size, the signal polaritons traverse it without scattering. These observations are compatible

with the description of the signal �uid as a super�uid.

With larger defect sizes, a splitting of the signal quantum �uid, or hints of quantum

re�ections can be observed.

The phenomenology associated to bosonic quantum �uids has just been recently un-

covered in atomic condensates. For instance, in the regime of quantum re�ections, very rich

e�ects have been recently observed[198, 197] and theoretically characterized[184, 249, 246]

in atomic BEC interacting with surfaces. There is plenty of room for the exploration of these

e�ects in semiconductor microcavities, with the advantage of the simple implementation of

barriers and defects of on-demand shapes and sizes by use of lithographic techniques. For

instance, the group of Yamamoto has recently demonstrated that the deposition of thin

metallic strips on top of the upper Bragg mirror creates shallow photonic traps of up to

about 100 µeV in a micrometer scale.[144, 161] However, other high precision lithographic

techniques, like electron beam lithography, might prove to be useful in the manufacture

of deeper barriers. Such experiments, as well as those presented here, probe the quantum

nature of the polariton �uids inside the cavity. All the observed and expected interfer-

ence phenomena, like the Čerenkov waves of Fig. 10.7, take place inside the cavity, and are

directly related to the quantum nature of the polariton �uids.

Other phenomena predicted to appear in atomic condensates, such as the exotic

re�ection of a bosonic vortex with a potential barrier,[184] have not yet been observed but

could be implemented in a semiconductor microcavity. In fact, the creation of vortices in

polariton condensates is not far from realization and should o�er some advantages over

the atomic system. The dynamic (rather than thermal) equilibrium in a semiconductor
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microcavity caused by the constant introduction and scape of polaritons in the system, lifts

the particle-number conservation constriction characteristic of atomic BECs. In this way,

phase-squeezed states (high spatial coherence), or vortices of controlled and well de�ned

phase could be created. Moreover, due to the strong polariton-photon coupling, the phase

and position of the vortices could be controlled by the position on the sample of a light

vortex.

Faraday waves[83] and Josephson oscillations[4, 177, 212] already observed in

atomic condensates are some of the phenomena directly implementable in semiconductor

microcavities, for instance by use of surface acoustic waves[66, 68, 67] or by creating two

nearby-connected polariton condensates. Nonetheless, the �eld of polariton quantum hydro-

dynamics should not restrict itself to follow the achievements of atomic condensates. The

experiments presented here, and the recent publication of landmark experiments on BEC

of polaritons, show that the gap between the two realizations is narrowing. The great ad-

vantage of the polariton system is that it does not require the very sophisticated methods

that include ultrahigh vacuum, very well controlled magnetic traps, and optical tweezers

technology just to create the condensate (at microkelvin temperatures).[172, 103] In semi-

conductor microcavities, condensates and �uids are easily manipulated with the excitation

laser-beams, and are currently created with standard liquid-He cryogenic techniques, at 5-

20 K. Furthermore, wide bandgap systems, such as those based on GaN have already shown

very promising results[46] on the prospective creation of Bose-Einstein polariton condensates

at room temperature.
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Chapter 11

General conclusions

We have presented a cross-study, through di�erent material and optical con�ne-

ments, of the carrier dynamics and many-body physics in bulk and two-dimensional semi-

conductor systems by means of time-resolved spectroscopy. We will now summarize the

main results.

Bulk AlGaAs carrier dynamics

• At low excitation density, the dynamics of the free excitons in AlGaAs epilayers is

strongly dependent on the density of localization centers. A non-monotonous depen-

dence of the rise time on excitation density has been clari�ed.

• A detailed phase diagram of the origin of the PL (exciton vs electron-hole pair recom-

bination), in bulk GaAs has been determined. The Mott transition between the insu-

lating (excitonic) and conducting (plasma) phases is very abrupt, with a well de�ned

critical temperature (49 K) and excitation density (in the range 120−180×1015 cm−3).

Bulk GaAs spin dynamics

• The electron-momentum dependence of the spin �ip-time has been experimentally

determined in a direct-gap semiconductor for the �rst time.

• Under high-density optical pumping, the electron spin-�ip in GaAs is governed by

the Bir-Aronov-Pikus mechanism, and the spin dynamics are strongly a�ected by

Pauli blockade e�ects: the high occupancy of the �nal states frustrates the spin-�ip
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scattering events, resulting in very long spin-�ip times. In fact, for the best of our

knowledge, we have found the longest reported spin-�ip times in undoped GaAs.

Tailoring of the carrier distributions in QWs

• In QWs, we have presented an experimental con�guration that allows for the ultrafast

and controlled tailoring of the carrier distributions in a two delayed pulses experiment.

A �rst pulse excites carriers in the system, while a second pulse induces an ultrafast

warming of the electrons, holes and excitons. The direct consequence of the warming

is the observation of an abrupt quench of the excitonic PL at the arrival of the second

pulse.

• We have presented a model that quantitatively accounts for the measured dip depths

in the two pulses experiment. The magnitude of the dip, is determined by the tem-

perature change of the carriers induced by the second pulse, and can be controlled by

varying its power and delay.

Semiconductor microcavities under non-resonant excitation

• In semiconductor GaAs based microcavities, under non-resonant excitation and low

temperature, the light-emission properties are greatly determined by the excitation

density. At low excitation density, the system is characterized by the polariton res-

onances (strong coupling). However, the PL dynamics are mainly determined by

the slow formation and recombination times of the excitons populating the reservoir.

When the excitation density is increased above a certain threshold, carrier screening

destroys the polaritons driving the system into VCSEL operation (weak coupling). In

this regime the PL dynamics is very fast due to the photon-stimulated recombina-

tion. A detailed map of the strong- to weak-coupling transition density at di�erent

exciton-cavity detunings has been presented.

• Under non-resonant excitation of the microcavity, the polarization dynamics are de-

termined by the crystalline anisotropies of the sample. While the degree of circular

polarization is almost negligible at all investigated excitation densities, a strong linear

polarization dominates the emission even at low power. At high power, when the sys-

tem enters into the photon-lasing regime, the stimulation process drives the emission
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into almost 100% linear polarization.

• The direction of linear polarization is pinned to one of the crystallographic axis of the

sample, and it is independent of the polarization characteristics of the excitation. The

degree of linear polarization of the luminescence has been investigated at di�erent

emission angles and sample detunings. When the emission is angular resolved, the

polarization shows strong oscillations, going from positive to negative values within a

few degrees from the sample normal. The angle-dependent e�ects and the polarization

pinning arise from the crystallographic induced anisotropies of the cavity modes.

Quantum polariton hydrodynamics

• We have presented a novel experimental con�guration that allows for the creation

and detection of quantum polariton �uids with a non-vanishing momentum, under

resonant excitation of the lower polariton branch.. The excitation is performed in a

triggered optical parametric oscillator con�guration, in which a CW pump fuels the

signal polariton state after a pulsed idler has induced the occupation of the signal.

• The quantum �uids move on top of a linearized dispersion showing no di�usion and

at constant velocity. The linearization is caused by the strong polariton-polariton

interaction at the pump state, and resembles the spectrum of excitations of a quantum

bosonic �uid.

• We have presented data on the interaction of polariton �uids with di�erent types of

defects on the sample. The pump polaritons show Čerenkov waves, characteristics

of a bosonic �uid whose group velocity is higher than the velocity of sound. The

signal polaritons present di�erent phenomenology depending on the size and shape

of the defect: splitting into two daughter condensates, partial quantum re�ections or

unperturbed �ow through the defect. All of these observations are compatible with

super�uid behavior.
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Conclusiones generales

Se ha presentado un estudio transversal, a través de diferentes materiales y con�-

namientos ópticos, de la dinámica de portadores y de la física de muchos cuerpos en sistemas

semiconductores volúmicos y bidimensionales, mediante espectroscopia resuelta en tiempo.

Aquí se resumen las conclusiones principales.

Dinámica de portadores en AlGaAs volúmico

• A densidad de excitación baja, la dinámica de los excitones libres en láminas de AlGaAs

depende fuertemente de la densidad de centros de localización. Se han clari�cado los

mecanismos que dan lugar a la observada dependencia no monotónica del tiempo de

subida de los excitones libres con la densidad de excitación.

• Se ha obtenido un detallado diagrama de fases del origen de la fotoluminiscencia

(recombinación de excitones frente a la originada en pares electrón-hueco) en GaAs

volúmico. La transición de Mott entre las fases aislante (excitónica) y conductora

(plasma) es muy abrupta, con una temperatura (49 K) y densidad de excitación (en

el rango 120− 180× 1015 cm−3) críticas bien de�nidas.

Dinámica de espín en GaAs volúmico

• La relación entre el tiempo de volteo de espín y el momento del electrón ha sido

determinada experimentalmente por primera vez en un semiconductor de gap directo.

• A alta densidad de bombeo óptico, el mecanismo de volteo de espín en GaAs es el

Bir-Aronov-Pikus, y la dinámica de espín se ve determinada fuertemente por efectos

de bloqueo de Pauli: la alta ocupación de los estados �nales frusta los eventos de volteo

de espín, dando lugar a tiempos de volteo muy grandes. De hecho, se ha encontrado

el tiempo de volteo de espín en GaAs no dopado más largo publicado hasta la fecha.

Manipulación de las distribuciones de portadores en pozos cuánticos

• En pozos cuánticos se ha mostrado una con�guración experimental basada en dos

pulsos láser retrasados, que permite el control ultrarrápido de las distribuciones de

portadores. En esta con�guracion un primer pulso excita portadores en el sistema,
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mientras que un segundo pulso retrasado induce un calentamiento ultrarrápido de

los electrones, huecos y excitones. La consecuencia directa del calentamiento es la

observación de un abrupto descenso de la intensidad de luz emitida por los excitones

cuando llega el segundo pulso.

• Hemos mostrado un modelo que explica cuantitativamente las caídas de luminiscencia

en el experimento de dos pulsos. La magnitud de la caída está determinada por el

cambio de temperatura de los portadores inducido por el segundo pulso, y puede ser

controlado variando la potencia y retraso de dicho pulso.

Microcavidades semiconductoras bajo excitación no resonante

• En microcavidades semiconductoras basadas en GaAs, bajo excitación no resonante y

a baja temperatura, las propiedades de emisión de luz están fuertemente determinadas

por la densidad de excitación. A densidad de excitación baja, el sistema está caracteri-

zado por las resonancias polaritónicas (acoplamiento fuerte). Sin embargo, la dinámica

de fotoluminiscencia está principalmente determinada por los lentos tiempos de forma-

ción y recombinación de los excitones que pueblan el reservorio. Cuando la densidad

de excitación es incrementada por encima de cierto umbral, el apantallamiento pro-

ducido por los portadores destruye los polaritones, llevando el sistema al régimen de

operación VCSEL (acoplamiento débil). En este régimen la dinámica de fotoluminis-

cencia es muy rápida debido a la recombinación fotoestimulada. Se ha presentado un

mapa detallado de la densidad de excitación para la transición desde la situación de

acoplamiento fuerte a débil, para diferentes energías relativas de exciton y cavidad

(sintonizaciones).

• Bajo excitación no resonante de la microcavidad, la diámica de polarización está de-

terminada por las anisotropías cristalinas de la muestra. Mientras que el grado de

polarización circular de la emisión es prácticamente inapreciable en todas las densi-

dades de excitación estudiadas, una fuerte polarización lineal domina la emisión incluso

a potencia baja. A potencia alta, cuando el sistema entra en el régimen de láser de

fotones, el proceso de estimulación induce polarizaciónes lineales en la emisión de casi

el 100%.

• La dirección de la polarización lineal está �jada por uno de los ejes cristalográ�cos de
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la muestra, y es independiente de las características de la polarización de excitación.

El grado de polarización lineal de la luminiscencia ha sido investigado para diferentes

sintonizaciones. La polarización muestra fuertes oscilaciones en su valor, pasando de

valores positivos a negativos cuando la dirección de emisión es analizada en un rango

de unos pocos grados respecto a la normal a la super�cie. Los efectos dependientes

del ángulo y el �jado de la dirección de polarización se originan en las anisotropías

cristalinas asociadas a los modos de cavidad.

Hidrodinámica cuántica de polaritones

• Se ha presentado una con�guración experimental novedosa que permite la creación y

detección de �uidos cuánticos polaritónicos con un valor del momento distinto de cero,

bajo excitación resonante de la rama polaritónica inferior. La excitación se lleva a

cabo en una con�guración de oscilador paramétrico óptico desencadenado, en el que

un bombeo de onda continua alimenta los polaritones de la señal después de que un

pulso láser haya inducido la ocupación de los estados de la señal.

• Los �uidos cuánticos se mueven sobre una dispersión linearizada, sin mostrar difusión,

y a una velocidad constante. La linearización está causada por la fuerte interacción

polaritón-polaritón en el estado del bombeo, y muestra grandes similaridades con el

espectro de excitación de un �uido cuántico bosónico.

• Se han presentado datos sobre la interacción de �uidos de polaritones con diferentes

tipos de defectos nativos existentes en la muestra. Los polaritones del bombeo mues-

tran ondas de tipo Čerenkov, características de los �uidos bosónicos cuya velocidad de

grupo es mayor que la velocidad del sonido. La señal de polaritones muestra diferentes

efectos dependiendo del tamaño y forma del defecto: división en dos condensados,

re�exiones cuánticas parciales, o movimiento del �uido a través del defecto sin inter-

acción. Todas estas observaciones son compatibles con comportamiento super�uido.
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