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Kardar–Parisi–Zhang universality in a 
one-dimensional polariton condensate

Quentin Fontaine1, Davide Squizzato2,3,4, Florent Baboux1,5, Ivan Amelio6, Aristide Lemaître1, 
Martina Morassi1, Isabelle Sagnes1, Luc Le Gratiet1, Abdelmounaim Harouri1, 
Michiel Wouters7, Iacopo Carusotto6, Alberto Amo8, Maxime Richard9, Anna Minguzzi2, 
Léonie Canet2 ✉, Sylvain Ravets1 & Jacqueline Bloch1 ✉

Revealing universal behaviours is a hallmark of statistical physics. Phenomena such as 
the stochastic growth of crystalline surfaces1 and of interfaces in bacterial colonies2, and 
spin transport in quantum magnets3–6 all belong to the same universality class, despite 
the great plurality of physical mechanisms they involve at the microscopic level. More 
specifically, in all these systems, space–time correlations show power-law scalings 
characterized by universal critical exponents. This universality stems from a common 
underlying effective dynamics governed by the nonlinear stochastic Kardar–Parisi–
Zhang (KPZ) equation7. Recent theoretical works have suggested that this dynamics also 
emerges in the phase of out-of-equilibrium systems showing macroscopic spontaneous 
coherence8–17. Here we experimentally demonstrate that the evolution of the phase in a 
driven-dissipative one-dimensional polariton condensate falls in the KPZ universality 
class. Our demonstration relies on a direct measurement of KPZ space–time scaling 
laws18,19, combined with a theoretical analysis that reveals other key signatures of this 
universality class. Our results highlight fundamental physical differences between 
out-of-equilibrium condensates and their equilibrium counterparts, and open a 
paradigm for exploring universal behaviours in driven open quantum systems.

Universality is a powerful concept in statistical physics that allows the 
description of critical phenomena on the basis of a few fundamental 
ingredients. At thermal equilibrium, models such as the Ising model 
are pivotal in understanding the critical properties of a wide class of 
physical systems. However, non-equilibrium systems lack a complete 
classification of their universal properties. In this context, the Kardar–
Parisi–Zhang (KPZ) equation appears as a quintessential model to 
investigate non-equilibrium phenomena and phase transitions. Here 
we provide an experimental demonstration that one-dimensional (1D) 
out-of-equilibrium condensates belong to the KPZ universality class.

The KPZ equation7 was originally proposed to describe the stochastic 
growth dynamics of an interface height h(r, t):
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where r is the position vector, t the time coordinate, ∇ the gradient 
operator, while ν and λ are model parameters. The first term on the 
right corresponds to a smoothening diffusion, the second term corre-
sponds to a nonlinear contribution leading to critical roughening, and 
η(r, t) is a Gaussian white noise introducing stochasticity. The spatial and 
temporal correlation functions of h(r, t) exhibit power-law behaviours, 
with critical exponents specific to the KPZ universality class7. Currently 

available observations of KPZ dynamics have mainly focused on grow-
ing interfaces in classical systems19–21 and lately in quantum magnets3–6.

Recent theoretical works have predicted that the spatio-temporal 
evolution of the phase of a polariton condensate falls into the KPZ 
universality class8–17. However, unlike an actual interface height, the 
phase is defined periodically between 0 and 2π. This version of the 
KPZ equation is relevant for out-of-equilibrium systems developing 
macroscopic spontaneous coherence (lasers and arrays of coupled 
limit-cycle oscillators22), and also for polar active smectic phases23. 
The compactness of the phase field results in a rich phase diagram 
comprising not only the KPZ phase but also other regimes characterized 
by the proliferation of topological defects22–24. Here we experimentally 
explore the spatio-temporal dynamics of the first-order coherence in a 
1D polariton condensate. We observe the predicted coherence decay, 
and demonstrate the collapse of the data onto the universal KPZ scal-
ing function. Our theoretical analysis shows how the observed 1D KPZ 
physics is resilient to the presence of vortex–antivortex (V–AV) pairs.

One-dimensional polariton condensates
Cavity polaritons are hybrid quasiparticles emerging in semiconduc-
tor cavities from the strong coupling between electronic excitations 
(excitons) in a quantum well and cavity photons25. Polaritons can be 
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created from a gain medium of incoherent excitons (the excitonic 
reservoir) through bosonic stimulated scattering. Owing to photon 
leakage through the mirrors, the polariton dynamics is intrinsically out 
of equilibrium, its steady state being the result of the balance between 
drive, relaxation and losses. Finally, polaritons can be laterally confined 
in lattices26, enabling band-structure engineering.

The 1D polariton condensates at play consist of the macroscopic 
occupation of a given state obtained by incoherently pumping the 
exciton reservoir27,28. Above a critical density, exciton stimulated 
scattering from the reservoir into this state triggers a spontaneous 
U(1) symmetry-breaking of the phase. The condensate and reservoir 
dynamics are described by two coupled equations25:
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Here, x and t are the space and time coordinates, k ħ xˆ = −i ∂/∂  is the 
momentum operator, ψ x t ρ x t( , ) = ( , ) e θ x ti ( , ) the polariton condensate 
field with density ρ(x, t) and phase θ(x, t), E k( )̂ is the polariton disper-
sion, γ k( )̂ is the momentum-dependent decay rate, g is the polariton–
polariton interaction strength and ħ is the reduced Planck constant. 
The exciton reservoir, with density nR(x, t), is pumped at rate P(x). 
Excitons either relax into the polariton condensate by stimulated scat-
tering with rate R or decay following other channels at rate γR. The term 
2gRnR describes the polariton repulsive interactions with reservoir 
excitons (gR being the exciton–exciton interaction strength). It domi-
nates the polariton blueshift close to the threshold, and induces 
dephasing through inhomogeneous spectral broadening29. Finally, 
ξ(x, t) describes the Gaussian noise induced by drive and loss.

Ignoring interactions with the reservoir ( gR = 0), previous theoreti-
cal studies have shown that the condensate phase θ(x, t) follows a KPZ 
equation8–10. The condensate phase profile behaves as a classical inter-
face (Fig. 1a), and develops KPZ spatio-temporal correlations charac-
terized by the phase variance θ x t θ x t θ x tVar(Δ ( , )) = ⟨(Δ ( , ) − Δ ( , ) ) ⟩2  
(where 〈.〉 stands for statistical averaging, and Δθ = θ(x, t) − θ(x, t0), t0 
being a reference time). Here we derive the mapping to the KPZ equa-
tion for gR ≠ 0 and obtain the KPZ parameters in terms of those entering 
equations (2) and (3) (Supplementary Information).

Experimentally probing KPZ correlations requires extended conden-
sates to avoid finite size effects, a condition that was not fulfilled in early 
coherence measurements30,31. This requirement is demanding owing 
to the development of a modulation instability, which fragments the 
condensate into mutually incoherent micrometre-sized puddles32–35. 
Indeed, repulsive condensate–reservoir interactions result in effective 
attractive polariton–polariton interactions within the condensate and 
lead to its destabilization36,37. A solution to tame this instability is to spa-
tially separate the excitonic reservoir from the condensate38, or to use 
negative-mass polaritons in a lattice39. The negative mass changes the 
sign of the effective polariton–polariton interactions, thus restoring the 
condensate stability. Using this negative-mass technique, we generate sta-
ble 1D polariton condensates extending over more than 100 μm (Fig. 1b).

The sample consists of a semiconductor microcavity embedding 
quantum wells (Fig. 1c and Supplementary Information). We use 
nanotechnology processes to fabricate 1D asymmetric Lieb lattices 
of coupled micropillars containing three sites per unit cell (Fig. 1c, 
Methods and Supplementary Information). We incoherently populate 
the excitonic reservoir using a blue-detuned continuous-wave laser 
focused on a single lattice, with an elongated flat-top intensity profile.

The polariton emission analysed in momentum space below the con-
densation threshold (Fig. 2a) shows the lattice band structure emerging 
from the hybridization of the discrete modes confined in each micro-
pillar. Above a power threshold Pth = 50 mW, the emission peaks at the 
top of the negative-mass band (Fig. 2b). This feature, together with 
the nonlinear increase of the emission intensity (Fig. 2c), indicates the 
onset of polariton condensation. The condensate emission intensity in 
real space at power P = 1.1Pth reveals an extended and regular intensity 
profile envelope (Fig. 1b).

KPZ scaling in the condensate coherence decay
We define the first-order correlation evaluated between points sepa-
rated in space by Δx = 2x and delayed by Δt:

g x t
ψ x t ψ x t t

ψ x t ψ x t t
(Δ , Δ ) =
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( , ) (− , + Δ )
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(1) 0 0

0
2
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2

Neglecting density–density and density–phase correlations, we show 
that g x t θ x t(Δ , Δ ) ≈ exp{−Var[Δ (Δ , Δ )]/2}(1)  (Supplementary Informa-
tion). We thus expect KPZ universal scaling to show up as stretched 
exponentials in the coherence decay: g x| (Δ , 0)| ∝(1)  x λexp[−(Δ / ) /2]χ2  
and g t t τ| (0, Δ )| ∝ exp[−(Δ / ) /2]β(1) 2 , where χ and β are the universal KPZ 
critical exponents and λ and τ are two non-universal parameters. In one 
dimension, the ‘roughness’ exponent χ is equal to 1/2 and the ‘growth’ 
exponent β is equal to 1/3 (refs. 18,19). Although χ = 1/2 is common to several 
universality classes for 1D systems (such as Edwards–Wilkinson40), β = 1/3 
is an unambiguous signature of KPZ physics.

The condensate coherence |g(1)| measured by Michelson 
interferometry (Fig. 2d and Methods for details) is reported in Fig. 2e. 
We first focus on the temporal decay of the coherence. To search for 
the growth exponent, we calculate the temporal derivative 
D g t t= −2 ∂ log ( (0, Δ ) ) /∂Δt

(1)  from our dataset. According to KPZ 
theory, this derivative scales as a power law with exponent 2β − 1 = −1/3. 
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Fig. 1 | KPZ physics in the phase dynamics of a 1D polariton condensate.  
a, Snapshots of the condensate phase evolution obtained by numerically 
solving equations (2) and (3). The unwrapped phase evolves over time as a 
growing interface. b, Intensity distribution of the condensate emission 
measured for P/Pth = 1.1. c, Sketch of the lattice together with the excitation 
scheme. The lattice is excited using an elongated flat-top beam. Inset: sketch  
of a micropillar inner structure. A semiconductor optical microcavity is 
enclosed by two distributed Bragg reflectors (DBR). Quantum wells (QWs, red 
layers) are distributed at the anti-nodes of the cavity mode (black line).
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In the inset of Fig. 3a, we identify such scaling throughout the tempo-
ral window 15 ps ≤ Δt ≤ 80 ps. Equivalently, we observe in the main panel 
a linear increase of g t−2 log ( (0, Δ ) )(1)  as a function of Δt2/3 over the 
same window (grey shaded area), which demonstrates a key feature of 
KPZ dynamics. At short timescales, the deviation from KPZ scaling and 
the saturation of |g(1)| are due to an incoherent background (spectrally 
broad photoluminescence from uncondensed states) that hides the 
onset of KPZ fluctuations. For Δt ≥ 80 ps, g t−2 log ( (0, Δ ) )(1)  also 
departs from KPZ scaling and follows a super-linear behaviour that we 
attribute to slow reservoir population fluctuations29. We now perform 
a similar analysis in the spatial domain. The results are shown in Fig. 3b. 
The spatial derivative g x x= −2 ∂log ( (Δ , 0) )/∂Δx

(1)D  exhibits a plateau 
within the spatial window 30 μm ≤ Δx ≤ 60 μm, in agreement with χ = 1/2 
(inset). The roughness exponent χ = 1/2 also shows up in the linear 
increase of g x−2 log ( (Δ , 0) )(1) , over the same window (grey shaded 
area in the main panel). When approaching condensate edges 
(Δx ≥ 60 μm), the coherence decays faster because of enhanced fluc-
tuations at smaller polariton density. Pushing further this data analy-
sis, we fit the coherence decay curves with stretched exponentials and 
deduce experimental values for the scaling exponents: χ = 0.51 ± 0.08exp

 
and β = 0.36 ± 0.11exp

. The uncertainty on βexp allows us to discriminate 
between the different universality classes relevant for our system, as 

the KPZ value β = 1/3 remains the only one lying within the 95% 
confidence interval on βexp (Supplementary Information).

We now search for KPZ signatures over the whole space–time cor-
relation map. We select all data points where 0.57 ≤ |g(1)| ≤ 0.75, the 
range where we evidence KPZ scaling at Δt = 0. This space–time window 
is shown in the bottom inset of Fig. 3c. For this subset of data points, 
we plot in Fig. 3c the value of κ g x t t−2 log ( (Δ , Δ ) )/Δ β(1) 2  as a function 
of the rescaled coordinate y = Δx/Δt2/3, where κ is a normalization factor 
(Supplementary Information). Strikingly, all these data points collapse 
onto the scaling function F = C0FKPZ(y/y0), where FKPZ is the tabulated 
dimensionless KPZ universal scaling function41. We use the 
non-universal constants C0 and y0 as fitting parameters to overlap F 
with the collapsed data points. This result demonstrates that 1D polar-
iton condensates indeed belong to the KPZ universality class. To rein-
force the generality of this conclusion, we performed the same 
measurement and analysis on a different 1D lattice with four sites per 
unit cell. We also found a KPZ space–time window where all data points 
collapse onto the universal scaling curve (Supplementary Information). 
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Fig. 2 | Probing the coherence of 1D polariton condensates. a,b, Momentum- 
resolved emission spectra captured below (P/Pth = 0.5; a) and above (P/Pth = 1.1; 
b) the condensation threshold. The horizontal and vertical axis are the 
polariton wave-vector k and energy E respectively. Above the threshold, the 
emission peaks at the top of the third band, showing polariton condensation in 
a negative-mass state. c, Integrated emission intensity as a function of the 
excitation power. The onset of the intensity nonlinear increase is observed for 
Pth ≈ 50 mW. d, Sketch of the experimental set-up. SLM, spatial light modulator. 
Top inset: flat-top intensity profile Ip of the excitation spot. Bottom inset: the 
interference pattern obtained for P/Pth = 1.13 by overlapping the condensate 
field x t( , )0E  with its mirror symmetric E x t(− , )0  (Δt = 0). The black circles 
indicate the lattice pillars. The resulting intensity pattern exhibits well 
contrasted interference fringes over the whole condensate, indicating extended 
spatial coherence. Ic, condensate intensity. e, Coherence map showing the 
value of |g(1)|, retrieved from the fringe visibility using equation (5), as a function 
of Δx and Δt.
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Fig. 3 | KPZ scaling in the coherence decay of a 1D polariton condensate.  
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experimental data, as a function of Δx. In both panels, the grey area delimits  
the KPZ window. In a (b), the simulated data are shown with an orange line 
(squares). Error bars on the experimental data points are calculated by 
performing a repeatability analysis on the numerical extraction of g(1)(Δx, Δt) 
from the interferograms. The orange-shaded area (orange error bars) in  
a (b) shows the 95% confidence interval on the simulated data. c, Measured 
values of κ g t−2 log( )/Δ(1) 2/3 as a function of y = Δx/Δt2/3, for points within the 
non-hatched region of the coherence map (bottom inset). Top inset: the same 
as in the main panel but for numerical data. In both graphs, the black line 
corresponds to the KPZ scaling function F = C0FKPZ( y/y0), adjusted to the 
experimental data by tuning the values of C0 and y0. Experimental and 
simulated |g(1)| datasets are normalized using κ = 1.13. In all panels, the 
numerical data are averaged over 104 realizations of the noise.
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To complete the picture, we carried out the same analysis at higher 
excitation powers, and found for both lattices that the spatio-temporal 
KPZ window shrinks for increasing P/Pth and eventually disappears 
when P/Pth > 1.2 (Supplementary Information).

Resilience of KPZ physics to space–time vortices
To numerically reproduce these experimental data, we calculate the 
phase evolution of the polariton condensate by numerically solving 
equations (2) and (3). Details about how we set the simulation param-
eters can be found in Methods. It is noted that we neglect the polari-
ton–polariton interaction energy g|ψ|2 and take g = 0 in all simulations. 
As such, this model also applies to spatially extended lasers in the weak 
coupling regime. The calculated ∣ ∣g (1)

num
 data are reported in Fig. 3a,b, 

showing excellent agreement with the experiment. The short- and 
long-time behaviour is reproduced, together with the shrinking of the 
KPZ window when the excitation power is increased (Supplementary 
Information).

We then perform on the numerical data the same analysis as on the 
experimental data. We plot κ g x t t−2 log ( (Δ , Δ ) )/Δ β(1) 2

num
∣ ∣  as a function 

of y, selecting the points for which ∣ ∣g0.57 ≤ ≤ 0.75(1)
num

. The result is 
shown in Fig. 3c (top inset), together with the KPZ scaling function 
F = C0FKPZ(y/y0), using for C0 and y0 the same values as for the experi-
mental data. The simulated data align to the scaling function, thus fully 
validating our model.

To deepen our insight into the phase dynamics, we now analyse its 
stochastic behaviour in the numerical simulations. Figure 4a shows an 
example of a phase map Δθ(x, Δt) corresponding to a given realization 
of the noise (others are shown in Supplementary Information). We 
observe two kinds of phase variation: small-amplitude fluctuations 
and fast (scarce) phase jumps. These jumps are associated with pairs 
of close-by spatio-temporal vortices with opposite circulation (see 
inset), that we name V–AV pairs. To analyse their effect on the phase 
dynamics, we show in Fig. 4b the unwrapped phase temporal evolu-
tion at x = 0 (horizontal line in Fig. 4a). The phase evolution exhibits 
plateaus with small-amplitude phase fluctuations, separated by phase 
jumps of approximately 2π, occurring on a fast timescale (about 1 ps) 
when passing through a V–AV pair. It is noted that for the regime of 
parameters explored here, almost all vortices appear in V–AV pairs. 
For higher noise or stronger interactions, activation of single vortices 
is expected and would lead to other dynamical regimes24.

We now show that small-amplitude phase fluctuations follow KPZ 
scaling laws by computing the phase variance θVar(Δ ). As this quantity 
is extremely sensitive to phase jumps, we filter them out in the calcula-
tion (Methods). The result is plotted in Fig. 4c together with the values 
of g−2log( )(1)

num
∣ ∣  (calculated without filtering the V–AV pairs). Both 

quantities exhibit the KPZ power-law scaling over the same time window 
(grey shaded area), as further illustrated in Fig. 4c (inset) where we plot 
their time derivative. This result definitely confirms that the first-order 
coherence is a good observable to probe the KPZ dynamics of the 
condensate phase, even in the presence of few V–AV pairs.

Another striking signature of KPZ physics lies in the fact that phase 
fluctuations are governed by a probability distribution, which—unlike 
the normal distribution—is skewed and exhibits markedly different 
tails. In Fig. 4d, we show the calculated probability distribution of the 
unwrapped Δθ(0, Δt), computed over all trajectories (thus including 
vortices) for Δt = 50 ps, that is, in the centre of the KPZ window. All 
trajectories that have not crossed any V–AV pair contribute to the first 
peak in the distribution. The second peak corresponds to trajectories 
that have crossed one V–AV pair before reaching Δt = 50 ps and have 
thus undergone one phase jump close to 2π. Strikingly the first two 
peaks are skewed and well reproduced by the Tracy–Widom Gauss-
ian orthogonal ensemble (GOE) distribution associated with the flat 
subclass (Supplementary Information). Cumulating data for various 
Δt, we obtain an agreement with the Tracy–Widom GOE distribution 

over six decades (see Supplementary Information for details on the 
analysis). The third peak corresponds to few realizations showing 
two phase jumps. The lack of statistics prevents precise analysis of 
its shape. Our simulations highlight that V–AV pairs only modify the 
probability distribution by adding replicas of the main peak without 
significantly changing their shape. Moreover, they confirm that in 
the regime where a low density of V–AV pairs stochastically shows 
up, KPZ dynamics is not destroyed but occurs piece-wise in the 
spatio-temporal domain.

To conclude, both our experimental and theoretical analysis prove 
that KPZ scaling laws are present in the decay of the first-order coher-
ence of 1D driven-dissipative polariton condensates. Our findings 
apply to any spatially extended driven open systems subject to gain 
and loss and characterized by a U(1) symmetry-breaking. Our work 
opens many challenges to be addressed in the future. In 1D, although 
our results highlight the striking resilience of KPZ physics to V–AV 
pairs, regimes at higher noise strength or higher nonlinearity remain 
to be explored24. Investigating different KPZ universality subclasses, 
predicted for various geometries of the unwrapped phase profile16, 
is now also within reach,  through engineering the geometry of the 
condensate environment. Beyond 1D, exciton–polariton lattices offer 
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pairs are crossed, resulting in two phase jumps of approximately 2π. The black 
line in b is obtained by filtering all the vortices present in the phase map (a).  
c, g−2 log )(1)  (red line) and θVar(Δ )VF  (symbols) as a function of Δt2/3 for Δx = 0, 
computed over 104 realizations. The orange line is the same as in Fig. 3a. Inset: 
temporal derivative of g−2 log( )(1)  (red line) and θVar(Δ )VF  (symbols) as a 
function of Δt, showing similar behaviour in the KPZ window. d, Probability 
distribution of phase fluctuations obtained at Δt = 50 ps (blue squares) from 
numerical simulations. Our computation involves 3 × 104 realizations of the 
noise. The first (second, third and so on) peak from the left gathers the 
realizations for which no jump (one, two and so on) has occurred before 
Δt = 50 ps. Yellow line: fit of the numerical data by the Tracy–Widom (TW) GOE 
distribution.
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exciting perspectives for the exploration of KPZ physics in 2D, where an 
experimental realization is highly sought after11–16, and the role of topo-
logical defects still actively debated11. An experimental implementation 
involving polariton condensates would enable testing of the different 
models and serve as a general testbed for exploring complex physical 
systems belonging to the KPZ universality class.
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Methods

Experimental details
The sample used in this paper consists of a high-quality-factor 
(Q ≈ 70,000) λ/2 Ga0.05Al0.95As microcavity surrounded by two 
Al0.20Ga0.80As/ Al0.05Ga0.95As distributed Bragg reflectors. Three stacks 
of four 8-nm gallium arsenide (GaAs) quantum wells are embedded in 
this microstructure, at the anti-nodes of the cavity-mode electromag-
netic field, resulting in a 15-meV collective Rabi splitting. The as-grown 
planar cavity is patterned into 1D lattices of coupled micropillars (3 μm 
in diameter), using electron beam lithography and dry etching. In this 
work, we use a 200-μm-long asymmetric Lieb lattice, made of three 
pillars per unit cell with 2.2-μm centre-to-centre separation distance. 
The sample is held at cryogenic temperature (4 K) in a closed-cycle 
cryostation.

We incoherently populate the excitonic reservoir using a 
non-resonant continuous-wave laser at 740 nm (reflectivity mini-
mum of the Bragg mirror). A spatial light modulator enables shap-
ing the excitation spot into a 125-μm-long flat-top beam in the lattice 
direction. It is noted that our experiment is performed under truly 
continuous-wave excitation conditions, that is, without any chopper. 
The polariton emission leaking out through the cavity top mirror is ana-
lysed in space, momentum (along the lattice direction x) and frequency 
with a monochromator coupled to a charge-coupled-device camera.

We retrieve the condensate first-order coherence using Michelson 
interferometry. A two-mirror retro-reflector mounted on a step-motor-
ized translation stage in one of the interferometer arms enables over-
lapping on a charge-coupled-device camera the field x t( , )0E  emitted 
by the condensate at time t0 and position x, with E x t t(− , + Δ )0 , the field 
emitted at t0 + Δt and position −x (Δt is the delay introduced between 
the interferometer arms by translating the retro-reflector). The fringe 
contrast gives a direct visualization of the degree of coherence between 
fields emitted at two points spatially separated by Δx = 2x and delayed 
by Δt. More specifically, |g(1)(Δx, Δt)| is determined from the fringe 
visibility V(Δx, Δt) and from the intensity distributions x t( , )0

2E  and 
E x t t(− , + Δ )0

2 measured separately, using

g x t x t x t t

V x t x t x t t

2 (Δ , Δ ) ( , ) (− , + Δ )

= (Δ , Δ )[ ( , ) + (− , + Δ ) ] .
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To probe the temporal scaling of the condensate coherence, we scan the 
retro-reflector position over ΔL = 5 cm, corresponding to a maximum 
time delay of Δt = 2ΔL/c = 330 ps (c being the speed of light in vaccum). 
During such a scan, we set the camera exposure time to 1 s and acquire 
a series of 250 images.

Integration method and parameters for numerical simulations
To compare our experimental findings to theory, we solved numerically 
the set of equations (2) and (3). The numerical integration of these 
equations is performed using the interaction picture method42,43. The 
idea behind this integration scheme is similar to the interaction pic-
ture in quantum mechanics. We first split equations (2) and (3) into a 
linear, exactly solvable part and a remaining nonlinear part. We then 
solve the linear component in Fourier space and transform it back 
to real space. We transform equations (2) and (3) by moving into the 
interaction picture and integrate the resulting nonlinear equation 
using semi-implicit Runge–Kutta method, with an adaptive time step. 
We take as the initial condition ψ(x, t = 0) = 0, and let the condensate 
grow under the action of the pumped reservoir. The sampling starts at 
t0, long after the condensate has reached its stationary density profile. 
Usually, we perform our simulations using t0 = 10 ns.

Some of the parameters entering the numerical simulations are 
known experimentally. For instance, we use a lattice spacing equal 
to the experimental lattice period a = 4.4 μm. The measurement 

of the polariton dispersion relation E(k) (k being the polariton 
wave-vector) shown in Fig. 2a provides a good estimate of the polariton 
mass m = −3.3 × 10−6 me (me being the electron mass). The k-dependent 
polariton linewidth γ(k) is modelled by the function

γ k γ γ γ
γ k

γ γ
( ) = + ( − ) 1 − exp −

−
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which is compared with the experimental data in Supplementary Fig.  3d 
(blue solid line). The parameter values are γ γ k≡ ( = 0) = 48.5 μeV0,sim

, 
γ γ k k≡ 1/2(∂ ( )/∂ ) = 1.6 × 10 μeV μmk2,sim

2 2
=0

4 −2∣  and γ k γ≡ lim → ∞∞,sim
k( ) = 77 μeV. Furthermore, the energy blueshift at threshold is known 

with good accuracy:

∣g n μ2 ≈ 0.6 meV ≡ , (7)P PR R = thth

where n P γ γ R= / = /R th R 0P P= th
∣  stands for the reservoir density at conden-

sation threshold and Pth = γ0γR/R for the threshold power. Assuming 
that gR does not depend on the pumping power P, we find:

g
μ R

γ
=

1
2

. (8)R
th

0

As the reservoir-induced blueshift 2gRnR is two orders of magnitude 
larger than the polariton-induced blueshift g|ψ|2, we take g = 0 in our 
simulations. To qualitatively reproduce the spatial density profile 
of the condensate in our experiments, we use a spatially dependent 
flat-top pump profile modelled by

P x P
L x σ L x σ

L σ
( ) =

[1 + tanh(( + )/ )] [1 + tanh(( − )/ )]

[1 + tanh( / )]
(9)

0 0

0
2

 where L0 = 80 μm is the length of the pump spot and σ = 9.7 μm is the 
width of its decaying edges. The remaining free parameters in our 
numerical simulations are thus the scattering rate R of excitons into 
the condensate and the reservoir decay rate γR. For those parameters, 
we choose values within some realistic range yielding the best agree-
ment with the measured |g(1)|. All the simulations presented in this paper 
were performed using ħR = 8.8 × 10−4 μm ps−1 and γR = 0.45γ0.

Calculation of the variance of the phase
To calculate θVar(Δ ), we select for each trajectory a 100-ps-wide window 
where the phase undergoes the smallest amount of jumps. When few 
phase jumps remain in the selected window, we filter them out by add-
ing at every vortex location another one of opposite charge (black  line 
in Fig. 4b). It is noted that we discard 5% of the realizations, where vor-
tices proliferate (Supplementary Information). We then calculate the 
phase variance θVar(Δ )VF  over the set of vortex-free (VF) time windows.

Data availability
All datasets generated and analysed during this study are available upon 
request from the corresponding authors. Source data are provided 
with this paper.

Code availability
All codes generated during this study are available upon request from 
the corresponding authors.
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