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The engineering of localized modes in photonic structures is one of the main targets of modern photonics. An efficient
strategy to design these modes is to use the interplay of constructive and destructive interference in periodic photonic
lattices. This mechanism is at the origin of the defect modes in photonic bandgaps, bound states in the continuum, and
compact localized states in flat bands. Here, we show that in lattices of lossy resonators, the addition of external optical
drives with a controlled phase enlarges the possibilities of manipulating interference effects and allows for the design of
novel types of localized modes. Using a honeycomb lattice of coupled micropillars resonantly driven with several laser
spots at energies within its photonic bands, we demonstrate the localization of light in at-will geometries down to a single
site. These localized modes are fully reconfigurable and have the potentiality of enhancing nonlinear effects and of con-
trolling light–matter interactions with single site resolution. © 2022 Optica Publishing Group under the terms of the Optica

Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.452624

1. INTRODUCTION

Engineering the localization of light in dielectric structures is
one of the main targets of modern micro- and nano-photonics.
From a fundamental point of view, the study of localization in
photonic materials has allowed understanding the subtle inter-
play of disorder, periodicity, and quasi-crystalline order [1–3].
Localized modes are useful for enhancing light–matter inter-
actions, increasing the non-linear response of a material, and
storing information in a reduced volume. A very successful strategy
for engineering localized modes in optics is to use lattices of cou-
pled waveguides, coupled resonators, or photonic crystals. In these
periodic structures, localized modes at predefined wavelengths
and spatial locations can be engineered by carefully designing
the bulk eigenmodes or by introducing defects in the bandgaps.
Examples of the first type are the modes localized by disorder
(Anderson localization) in a lattice [1,2], the compact localized
states of a flat band [4–6], the bound states in the continuum (BIC)
[7–10], and localized modes in lattices with gain and loss close
to the parity-time symmetric condition [11]. To the second type
belong the localized modes in the gap separating two photonic
bands when a local potential is added to the otherwise periodic
structure. This is actually the principle of photonic crystal cavities
and of Tamm modes at the surface of a photonic system [12–14].
Recently, the use of bands with non-trivial topology has allowed

the implementation of localized modes at the edges and corners
of photonic lattices of different dimensionalities without the need
of introducing local on-site potentials [15–22]. The edge or cor-
ner modes appear because of the topology of the bulk, with the
important asset being that their existence and optical frequency are
protected from certain types of disorder.

One of the main limitations to the above-mentioned designs
is that the underlying interference mechanism responsible for
localization presents fundamental limits for the localization length,
which is generally larger than a single lattice site. For instance,
compact localized states in flat bands arise from the interference
between at least two lattice sites with non-zero amplitude and
opposite phases [23,24]. Similarly, bound states in the continuum
involve light intensity in several sites [10,25] and localization by
disorder requires multiple scatterers. In all cases, the localized
modes are eigenmodes of the system, whose amplitude distribution
is independent of the external excitation conditions. Another
important limitation is that the modes are localized by design,
that is, the geometry of the dielectric structure sets the location,
shape, and extension of the localized modes. This implies that after
fabrication these properties are hardly adjustable.

In this paper, we demonstrate a method to engineer fully
reconfigurable localized modes in photonic lattices of coupled
resonators, with localization lengths covering several sites as small
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Fig. 1. Localized modes in a driven-dissipative lattice. (a) A one-dimensional lattice with 400 sites resonantly driven by a laser located at a single site at the
energy of the middle of the photonic band, showing propagation of the emitted intensity with a decay length of∼tτ/~ sites, with τ = 10~/t . (b) When two
drives of the same amplitude and phase envelope a single site, the emission is fully localized in the middle site (blue line). Away from the resonance frequency
~ωp = ε0, emission extends over the whole lattice (orange line). The vertical lines mark the position of the pump lasers. (c) Calculated emission intensity in
a squared lattice of 30× 30 sites (zoomed view) driven at the four sites marked in red with a frequency ~ωp = ε0 and identical phases. The lattice sites are
located at the line crossings. (d) When one of the drive lasers is removed, emission spreads over the lattice.

as a single site. To reach this ultimate limit, we take advantage of the
interplay of the coherent drive and dissipation in a lattice of lossy
resonators, a mechanism that had not been previously considered
for engineering localized modes. Indeed, in dissipative lattices
driven at resonance, the amplitude and phase of the external driv-
ing laser provide additional knobs to engineer interference effects.
By choosing the appropriate arrangement of the external drives,
it is possible to implement localized modes at photon energies in
which the passive system (without coherent drive) would present
extended modes. Recently, the interplay of drive and losses has
been used to demonstrate the trapping of light in a single site of
a two coupled pillars system [26]. Here, we demonstrate that the
localized response of a driven-dissipative photonic lattice can be
engineered with virtually any geometry. The concept is reminis-
cent of wavefront shaping techniques employed to obtain a desired
output through a disordered medium [27–29]. The localized
modes demonstrated here in a photonic lattice can be seen as fully
reconfigurable optical cavities defined by properly designing the
external control field. We experimentally illustrate our method
using a honeycomb lattice of coupled micropillars resonantly
driven by several laser spots at energies within the photonic bands
of the structure, resulting in the localization of light on a single
site. Our results can be extended to a variety of mode configura-
tions and to almost any lattice geometry in one, two, and three
dimensions. They demonstrate unprecedented perspectives for the
manipulation of light in photonic structures and, in particular, for
enhancing local light–matter interactions and nonlinear effects
with single-site precision.

2. LOCALIZATION BY DRIVE AND DISSIPATION

To demonstrate the principle of localization by drive and dissipa-
tion, we consider a lattice of coupled photonic resonators. Each of
them is subject to radiative losses to the environment and can be
driven by an external laser (coherent field). The archetypical system
implementing this situation is a lattice of coupled semiconductor
micropillars [30–33], which is the platform we use for the experi-
mental realization. The dynamics of the photon field in a lattice of
coupled micropillars in the tight-binding limit can be described by
the following set of coupled equations [34]:

i~
∂ψm

∂t
= εmψm +

∑
n

tm,nψn − i
~

2τ
ψm + Fme−iωp t . (1)

ψm is the field amplitude at the center of micropillar m, εm = ε0

is the energy of the considered mode in each pillar (assumed to
be identical for all sites), tm,n is the coupling amplitude between
different sites of the lattice, τ is the radiative photon lifetime in
each micropillar, and Fm is the complex amplitude of the resonant
excitation laser at site m with photon energy~ωp .

Equation (1) has a family of localized solutions for specific
configurations of the drive field Fm in the steady state. Figure 1(a)
shows the simplest example of a one-dimensional lattice of cou-
pled resonators with nearest-neighbors hopping amplitude
tm,m+1 = tm,m−1 = t and τ = 10~/t . If a single site M in the mid-
dle of the lattice is pumped by a laser at any frequency within the
photonic band, then the steady state intensity simulated using
Eq. (1) extends over many lattice sites (on the order of tτ/~ for the
particular case of ~ωp = ε0). Remarkably, in the configuration
of Fig. 1(b), in which two sites M − 1 and M + 1 are pumped
with equal phase and amplitude at ~ωp = ε0, the response of the
lattice is almost fully localized at site M, which is surrounded by
the two pumps. The field intensity in the pumped sites is almost
zero, as well as in all lattice sites located out of the region defined
by the two pumps (it tends strictly to zero for long lifetimes, when
~/τ � tm,n). This behavior is reminiscent of the Fabry–Perot
bound states in the continuum based on coupled resonances
[8,10,25].

This kind of localized mode is a general feature of Eq. (1). When
a region of the one-dimensional lattice is delimited by two pump
spots of the same absolute amplitude |F |, it can be shown that in
the limit τ � t there exists a discrete set of photon frequencies of
the driving field for which the photon amplitude is exactly zero at
the pumped sites and different from zero within the region delim-
ited by the pumps (see Supplement 1). Because the pumped sites
have zero amplitude, the pump frequency at which this phenome-
non takes place coincides precisely with the eigenenergies of the
region confined by the pumps as if it was fully detached from the
lattice. In the case of Fig. 1(b), this is the eigenenergy of a single site
decoupled from the rest of the lattice (~ωp = ε0). Simultaneously,
the zero-field amplitude in the pumped sites results, strictly, in
zero amplitude of the photon field outside the confined region

https://doi.org/10.6084/m9.figshare.19678944
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(see Supplement 1 for an analytic proof ). This means that the
presence of the localized mode is independent of the lattice size
out of the confined region. Note that if the frequency of the drive is
shifted from the resonant condition, then the emitted intensity is
distributed over all lattice sites, as demonstrated by the slow decay
of the emission out of the central peak depicted by the orange line
in Fig. 1(b).

The description we have just presented and the corresponding
simulations of Eq. (1) can be directly extended to higher dimen-
sional lattices. Figure 1(c) displays a simulation of a square lattice
with four pumped sites (marked with red circles) of equal ampli-
tude and phase surrounding a single site. An extreme localized
response at~ωp = ε0, down to a single site, is observed with almost
zero amplitude in the pumped sites and in the sites away from the
pumped region. As a counterexample, Fig. 1(d) shows the case
when the pump spots do not fully surround a central site. In this
situation, the real-space distribution of the field does not show any
confined response at~ωp = ε0 or at any other laser energy.

3. EXPERIMENTAL REALIZATION

Semiconductor micropillars are an ideal system for exploring
the concept of localization by drive and dissipation that we have
just introduced. Single micropillars can be laterally etched from
planar microcavities made of two AlGaAs Bragg mirrors embed-
ding a GaAs cavity spacer. In addition, in our structures, a single
InGaAs quantum well is grown at the center of the cavity. At 6 K,
the temperature of the experiments, quantum well excitons are
strongly coupled to the lowest optical mode of the micropillar,

giving rise to exciton-polaritons [34]. However, we work at suffi-
ciently negative photon-exciton detuning for polaritons to have
a 99% photonic content, and all the effects we report here can, in
principle, be observed in structures without excitonic resonances.
Each micropillar confines discrete photonic modes that can be
laterally coupled in the form of a lattice by making the micropillars
overlap. Here, we consider a honeycomb lattice of micropillars of
2.75 µm in diameter and a center-to-center separation of 2.3 µm
[see sketch in Fig. 2(a)]. Angle-resolved photoluminescence with
a non-resonant laser excitation at 1.535 eV in a 2.3 µm spot (full-
width at half-maximum) centered on top of a micropillar reveals
the two lowest energy bands of the structure [Fig. 2(b)]. They dis-
play two Dirac crossings characteristic of honeycomb lattices [30].
The experiments are realized in transmission geometry employing
linearly polarized excitation. No significant polarization splitting
is observed in the studied photonic bands. We fit the measured
bands to a tight-binding model [35] with the nearest-neighbor
hopping t = 328 µeV and the next-nearest neighbor hopping
t ′ =−42 µeV. The emission energy at the Dirac crossings is
E0 = 1.3917 eV (see Supplement 1 for full details about samples
and experimental setup). Real-space measurements of the polari-
ton field with submicron resolution can be achieved by collecting
the light emitted from the sample with a lens of 0.5 numerical aper-
ture. The emitted light from the backside of the lattice is imaged on
a CCD camera.

Under resonant laser excitation, the dynamics of the photon
field in the lattice can be accurately described by Eq. (1), with
the addition of a next-nearest neighbor hopping term [30]. This

Fig. 2. Resonant drive of a honeycomb lattice. (a) The scheme of the honeycomb lattice of the micropillars and of the excitation (top) and emission (bot-
tom) beams. (b) The measured angle-resolved photoluminescence of the lattice showing the energy bands as a function of in-plane momentum ky for kx =

2π/3a , with a = 2.3 µm the center-to-center separation between adjacent micropillars and E0 = 1.3917 eV. White lines represent the tight-binding fit.
(c) The measured emission pattern when driving the pillar marked with a red circle with a laser at ~ωp = E0. The center of each micropillar is located at the
vertices of the grey hexagonal pattern. (d) The same emission pattern when driving three pillars with equal amplitude and phase surrounding a central one,
which shows high emission intensity. The insets in (c) and (d) show simulations in the conditions of the experiment. (e) The optical response when arrang-
ing three times the localization building block shown in (d) to form a staggered triangle. The laser spots in the blue sites have twice the intensity of spots in
the red sites. (f ) and (g) The measured IPR (dots) as a function of the laser frequency with the pump spot configurations of (c) and (d), respectively. The red
lines show the calculated value using the photon lifetime of the cavity. The blue dashed line in (g) accounts for a phase difference of 0.09π between the bot-
tom pump spot and the left one and between the right one and the bottom one. (h) The measured intensity profiles along the dashed lines in (c) and (d).
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description captures the driven-dissipative nature of the micropil-
lar system. Lattices of coupled waveguides and ring resonators are
commonly described by a conservative version of Eq. (1), i.e., with-
out pump and loss terms [16,36,37]. By adding supplementary
waveguides, it is possible to resonantly drive individual sites in
these systems giving access to the physics discussed here. Other
experimental platforms such as lattices of mechanical resonators
are well described by Eq. (1), but they have been mostly studied in
a different context of nonlinear effects with drive extended to all
lattice sites [38].

Figure 2(c) displays the measured intensity when pumping
a single site (red circle) of the honeycomb lattice with a laser at a
frequency ~ωp = E0, the energy of the Dirac crossing in Fig. 2(b).
The field amplitude extends away from the pump spot in a triangu-
lar shape mostly in the sites belonging to the sublattice opposite
to that of the pumped micropillar. Remarkably, the pumped site
shows almost no intensity. This peculiar response is a consequence
of the interference effect at the pumped site between the pump
laser and the eigenmodes of the lower bonding band and the upper
anti-bonding band. This effect was already noticed in the simpler
case of two coupled micropillars pumped at an energy right in
between the bonding and anti-bonding modes [26] and also in a
honeycomb lattice under strain [39]. The field distribution is very
different when three laser spots of the same amplitude and phase
excite the lattice in a triangular geometry surrounding a single site.
This situation is reported in Fig. 2(d) using a spatial light modula-
tor to generate the pump spots. Similar to the simulations for the
square lattice shown in Fig. 1(c), the field distribution is strongly
localized in the micropillar surrounded by the three pump spots,
and no significant emission anywhere else in the lattice is observed
(including the pumped sites) [see Fig. 2(h)]. The measured real-
space patterns are well reproduced by numerically solving Eq. (1)
in the steady-state regime [see insets of Figs. 2(c) and 2(d)]. The
simulations include the next-nearest-neighbors hopping with the
value extracted from the fits to the polariton bands and a polariton
lifetime of τ = 9 ps.

The extreme localized response, down to a single micropillar,
can be quantified by computing the inverse participation ratio
(IPR), IPR=

∑
m |ψm |

4/
∑

m |ψm |
2, which has a value of 1 for

emission fully localized in a single site and 0 for extended modes
in an infinite lattice. Figure 2(g) depicts the measured IPR for the
three laser spots excitation as a function of the laser photon energy
from the bottom to the top of the Dirac bands. The IPR is com-
puted from the emission measured at the center of each micropillar.
The transmitted pattern is highly localized at the energy of the
Dirac point (E0, IPR = 0.35). This photon energy is very close
to the estimated eigenenergy ε0 of the fundamental mode of a
single detached micropillar (E0 = ε0 + 3t ′), and they would both
coincide exactly in the absence of next-nearest-neighbor coupling.
Simulations of Eq. (1) are displayed in red lines and predict a value
of IPR= 0.89 for the measured polariton lifetime. The difference
with the measured value of 0.35 arises from an unintentional hori-
zontal tilt of the incident laser beams, which induces an estimated
phase difference of about 0.09π between the three consecutive
spots. In the limit of negligible losses, simulations show that the
IPR grows asymptotically towards 0.9 (it would be one in the
absence of the next-nearest-neighbors hopping, see Supplement
1). Moreover, localization is highly preserved in the presence of a
mild disorder (see Supplement 1). In contrast, Fig. 2(f ) shows that
for a single spot excitation, the transmitted signal is extended over

several lattice sites for any photon energy resulting in very low IPR
values.

The localized mode with three pumping spots shown in
Fig. 2(d) can now be used as a building block to engineer any pos-
sible intensity pattern in the lattice, just by adding groups of three
laser spots of the same phase at the energy of the Dirac points. An
example is shown in Fig. 2(e) with a staggered triangle of three
emitting sites. To engineer it, we have used three groups of three
excitation spots each. Each group surrounds one of the emitting
pillars. The overall excitation spot distribution is highlighted in
the figure by dashed circles, the blue ones having twice as much
intensity as the red ones.

So far, we have discussed single-site localized modes, which
appear close to the energy of an isolated micropillar. We now
address drive-induced localization in multiple adjacent sites.
In this case, the localization resonances appear at the molecu-
lar eigenenergies of the considered ensemble of sites encircled
by the coherent drives. To explore this situation, we move to a
configuration of pump spots of equal amplitude and phase sur-
rounding completely two adjacent pillars of the honeycomb lattice,
as sketched in red circles in Fig. 3(b). In that configuration, we
would expect a localized mode at the energy of the bonding states
of two coupled isolated sites ~ωp = E0 − t . Figure 3(a) displays
the measured IPR as a function of the laser energy from the bottom
to the top of the photonic bands. A peak of localization appears
at ~ωp = E0 − 0.36 meV, which is very close to the expected
value (the difference arising from the presence of the next-nearest-
neighbor hopping). Spatial localization in a pattern very close to
that of the bonding-like mode is shown in Fig. 3(b). For compari-
son, Fig. 3(c) displays the measured spatial pattern at ~ωp = E0,
showing a significant spread. The origin of the low value of the
measured IPR peak is that the four drive spots do not have the exact
same phase due to a slight misalignment in the experimental setup.
Under perfect alignment conditions, the calculated IPR peak has
a value 0.32, about four times higher than in the experiment [see
Fig. 3(d)]. Localization at the energy of the anti-bonding two-sites
mode of the confined molecule is observed at ~ωp ≈ E0 + t when
the upper two pump spots have a phase difference ofπ with respect
to the two lower pump spots (see Supplement 1).

As demonstrated above, the photon energy at which the local-
ized mode takes place is determined by the eigenenergies of the
optically confined cavities as if they were detached from the lattice.
We will now show that the resonance energy for high localization
can be modified at will, at least in the simplest cases, by adding an
additional pump spot on top of the localized sites. We consider
again the situation with three identical pump spots depicted in
Fig. 2(d), which results in localization at a single site. On top of this
localized site, we add an additional drive of the same frequency as
the surrounding laser spots. Remarkably, the resonance frequency
for the localization is now modified, as shown in the simulations
in Fig. 4(a). The magnitude of the frequency shift is determined
by the relative amplitude of the added spot Fin compared to that of
the surrounding spots Fout. The sign of the shift, towards higher or
lower energies, is set by its phase, 0 or π with respect to the phase
of the surrounding pump spots. For the photon lifetime of our
experiments, the IPR of the localized mode has some variations
with frequency related to the shape of the photon dispersion and
the density of states of the lattice. Figure 4(b) shows that these
variations are smoothed for long photon lifetimes.

Figure 4(c) displays the measured IPR as a function of the laser
frequency when the intensity of the additional central spot is three

https://doi.org/10.6084/m9.figshare.19678944
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(a) (b) (c) (d)

Fig. 3. Localized bonding mode. (a) The measured IPR when four driving spots of nominally the same amplitude and phase demarcate a two-site mol-
ecule. For photon energies above E0 + 0.7 meV, residual scattered light prevents a confident measurement of the IPR. (b) The measured emitted intensity
at the IPR peak [red dashed line in (a)]: ~ωp = E0 − 0.36 meV. The pump spots are drawn in red circles. (c) The measured emission intensity at ~ωp = E0

[blue dashed line in (a)]. (d) The simulated IPR in the case of perfect optical alignment. The inset shows the simulated intensity distribution at ~ωp = E0 −

0.407 meV (corresponding to the dashed line in the main panel).

(a) (c)

(b) (d)

Fig. 4. Modifying the energy of the localized mode. (a) The calculated photon energy of the IPR peak for the four spots configuration shown in the inset.
The vertical axis shows the ratio of intensities of the central pump spot |Fin|

2 to the outer three spots |Fout|
2. The sign represents the relative phase between

the outer and the inner spots: positive means the same phase, and negative phase means a phase difference of π . (b) The calculated value of the IPR maxi-
mum when its energy is peaked at the value indicated in the horizontal axis for two values of the photon lifetime in the resonators. (c) The measured IPR
(dots) when scanning the laser frequency in the configuration of the inset in (a) for |Fin|

2
= 3× |Fout|

2 [green dot in (a)]. The red line is the calculated IPR
using the photon lifetime of the lattice and equal phase for the four spots. The blue line includes a phase difference of 0.05π for one of the outer spots.
(d) The real-space emission measured at the energy of the IPR peak (E − E0 = 0.69 meV).

times larger than that of the surrounding spots and, nominally, the
same phase. The IPR peak is shifted from E0 to E0 + 0.69 meV.
Figure 4(d) shows a highly localized emission at a single site at that
photon energy.

4. DISCUSSION

We have demonstrated that the combination of the resonant drive
and dissipation in the lattices of the coupled photonic resonators
can be advantageously used to design highly localized emission pat-
terns in a reconfigurable manner with high flexibility. Alternatively,
to the comprehensive design scheme we have presented here,

reverse engineering can be directly employed by solving Eq. (1)
in the steady regime for the excitation fields Fm after imposing a
desired shape and frequency of the photon field in the lattice. These
features can be directly transposed to other photonic systems, such
as lattices of superconducting microwave cavities [40], resonators
with spectral synthetic dimensions [41,42], (opto)mechanical
lattices [43] and, more generally, to fluid wave systems [44]. They
could be used to locally enhance nonlinear effects, for instance,
in polariton lattices with high exciton content and for the control
of light–matter interactions that require single-site excitation in a
dense matrix. This is the case when the resonator cavity contains
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single photon emitters whose emission properties may vary from
site to site [45].

Interestingly, the kind of localized modes observed here are
analogous to the localized emission patterns expected from quan-
tum emitters in photonic lattices discussed in Refs. [46–49]. In our
realization, the role of the quantum emitter coupled to the lattice is
played by the resonant pump spots. Beyond localized modes, those
theoretical works have shown the possibility of engineering highly
directional responses in the lattice and that the decay dynamics
can be strongly modified by the photonic density of states. These
promising ideas could be directly transposed to the configuration
discussed in our work in a purely photonic realization [50] and
enlarge the possibilities of manipulating light–matter interactions
in lattices of resonators.
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35. F. Mangussi, M. Milićević, I. Sagnes, L. Le Gratiet, A. Harouri, A.
Lemaître, J. Bloch, A. Amo, and G. Usaj, “Multi-orbital tight bind-
ing model for cavity-polariton lattices,” J. Phys. Condens. Matter 32,
315402 (2020).

36. A. Szameit and S. Nolte, “Discrete optics in femtosecond-laser-written
photonic structures,” J. Phys. B 43, 163001 (2010).

37. S. Afzal, T. J. Zimmerling, Y. Ren, D. Perron, and V. Van, “Realization
of anomalous Floquet insulators in strongly coupled nanophotonic
lattices,” Phys. Rev. Lett. 124, 253601 (2020).

38. M. Sato, B. E. Hubbard, and A. J. Sievers, “Colloquium: Nonlinear
energy localization and its manipulation in micromechanical oscillator
arrays,” Rev. Mod. Phys. 78, 137–157 (2006).
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