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Abstract

Microcavity polaritons are mixed light-matter quasi-particles, result of the strong coupling

between a photon confined in a Fabry-Perot cavity and an exciton confined in a quantum well.

Their non-linearities and their propagation velocity, near the speed of light, make them an

ideal system for the study of the physics of gases of interacting bosons, at the edge between

non-linear optics and the physics of cold atoms.

This PhD thesis is dedicated to the study one-dimensional polariton gases in semiconductor

microcavities. Thanks to the control on the etching of the microstructures, a full engineering

of the 1D potential has been obtained and several geometries have been investigated.

We have studied the propagation of polaritons inside photonic wires and we evidenced strong

reduction of the backscattering against disorder driven by interparticle interactions.

Polariton condensation has been investigated in a 1-dimensional periodic potential. We have

shown how repulsive interactions create localized states inside the energy gap. The nature of

these states depends on the relative strength between interparticle interactions and the

interactions with the excitonic reservoir. In a time resolved-experiment we have shown the

dynamical transition from a regime dominated by interactions with the reservoir to a regime

where self-interactions give rise to the formation of gap solitons.

Additionally, the potential induced by the interactions with the reservoir allowed us to

combine an energy gradient with the periodic lattice. In this configuration, we have observed

polaritons Bloch oscillations. Thanks to the potential engineering, we have also implemented a

Fibonacci quasi-periodic potential. In this configuration, we have observed the fractal

character of the polariton spectrum.

Finally, we present a polariton interferometer. The optical control of the phase of the polariton

flow allows controlling the intensity and the polarization of the beam transmitted through the

device. These results reveal the potential of polaritonic microstructures in the implementation

of an integrated platform to create and control coherent polariton fluxes.
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Résumé

Les polaritons des microcavité sont des quasi-particules mixtes lumière-matière, issue du

couplage fort entre le mode optique d’une cavité Fabry-Pérot et un exciton confiné dans un

puits quantique. Leurs propriétés d’interaction et leur vitesse proche de la vitesse de la lumière,

font des polaritons un système idéal pour l’étude de la physique des gaz de bosons en interaction,

à la frontière entre l’optique non-linéaire et la physique des condensats d’atomes froids.

Cette thèse est consacrée à l’étude de gaz de polaritons dans des microcavités semiconductrices

unidimensionnelles. Gràce au contrôle de la gravure de microstructures, plusieurs géométries

ont été étudiées et une ingénierie du potentiel 1D a été possible.

Nous avons analysé la propagation des condensats de polaritons dans des fils photoniques et nous

avons mis en évidence une forte réduction de la diffusion par le désordre due aux interactions

entre ces quasi-particules.

La condensation dans un potentiel périodique unidimensionnel a également été explorée. Nous

avons montré comment les interactions répulsives génèrent des états localisés dans la bande

d’énergies interdites. La nature de ces états dépend de la force des interactions entre particules

par rapport à celle des interactions avec le reservoir excitonique. Dans une expérience dynamique

nous avons montré la transition d’un régime dominé par le réservoir à un régime où se forment

des solitons de gap. De plus, le profil du potentiel induit par les interactions avec le réservoir nous

a permis de superposer un gradient d’énergie au réseau périodique. Dans cette configuration,

nous avons mis en evidence les oscillations de Bloch de polaritons.

Grâce à l’ingénierie du potentiel, nous avons aussi réalisé un potentiel quasi-périodique de type

Fibonacci au sein duquel nous avons observé le caractère fractal du spectre polaritonique.

Enfin, nous présentons un interféromètre à polaritons. Le contrôle optique de la phase d’un

flux de particules nous permet de mâıtriser l’intensité et la polarisation du faisceau à la sortie

de l’interféromètre. L’ensemble de ces résultats montrent le potentiel des microstructures à

polaritons pour réaliser une plateforme tout intégrée dans lesquels sont géérés et manipulés des

flux cohérents de polaritons.
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Introduction

Confinement of light and particles played a crucial role in modern physics, and the control on

such confinement often provides an additional manipulation tool for experimentalists to control

and manipulate physical systems. A remarkable example is provided both by the solid state

physics and by optics, in particular when coming to semiconductors.

The progress in the epitaxial growth allows nowadays the control over semiconductor structures

up to the single atomic layer. This gives the possibility to confine the electronic wavefunction

of electrons down to two (quantum well), one(quantum wire) or even zero (Quantum dots)

dimensions. Light can also be confined down to small dimensions (typically of the order of the

wavelength), inside cavities of different shapes (planar cavity, micropillars microdisc, photonic

crystal cavity), forcing photons to undergoes up to hundreds of millions of reflections before

escaping. This possibility of confining both light and electronic excitations made semiconductors

an ideal system to study light matter-interaction.

Light matter interaction is not an intrinsic characteristic of the material used but can be

artificially controlled. In 1964 Purcell proposed to alter the spontaneous rate of a dipole by

modifying its electromagnetic environment[1]. This general idea has been extensively exploited

in the optical range. For instance,the Purcell effect has been applied to study single quantum dots

embedded in microcavities [2] and allows producing bright sources of single and indistinguishable

photons[3], possible building block for quantum cryptography and quantum computation[4].

If the light matter coupling is strong enough, the emission of light can become reversible.

Indeed the photon can be reabsorbed and re-emitted several times before escaping the cavity,

thus undergoing several Rabi Oscillations. This regime is known as strong coupling and has

been first observed for a set of atoms in a high finesse microcavity [5, 6].

In 1992 , C. Weisbusch obtained the strong coupling regime between excitons confined in a

quantum well(QW) and photons confined in a microcavity[7] . The reflectivity spectra revealed

the formation of new eigenstates named cavity polaritons, mixed light-matter quasiparticles.

Since then, the research on cavity polaritons has seen a fast development, taking advantage of

the peculiarities of such quasi-particles.

Soon after their discovery, it has been foreseen that under a critical density, polaritons obey

bosonic statistics and due to their low effective mass, they are ideal candidates to study bosonic

effects in solid state. This bosonic behaviours has been first evidenced in the beginning of

2000, by the generation of parametric oscillations and amplification under resonant excitation

[8, 9, 10].

Under non resonant excitation, the bosonic stimulation of the relaxation towards a

particular state, together with the spontaneous buildup of coherence, was proposed by

11
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Imamoglu in 1996[11]: the effect, initially named boser, is now frequently addressed as

polariton lasing or polariton condensation.

Nowadays, polariton condensates has been observed in several semiconductor systems,CdTe

[12] , GaAs [13, 14, 15], ,GaN [16] and Zn0 [17], from liquid Helium temperature up to room

temperature.

Furthermore, polaritons revealed themselves as an ideal system to investigate the

hydrodynamic of quantum fluids[18]. The optical control of their momentum, density, phase

and spin allowed the observation of superfluid motion[19] and the generation of topological

defect like solitons[20, 21, 22] and vortices[23, 24] , approaching the physics investigated in the

field of cold atoms. Moreover, their intrinsically out of equilibrium nature[25, 11], due to the

energy losses via photon escaping, provides an additional feature, that marks the difference of

such system from a more traditional atomic condensate.

They also present enhanced non-linearities which are responsible for the observation of

four-wave mixing processes[26],and bistability or and multistability regime[27]. Promising

configuration for optoelectronic devices have also been implemented, such as switches[28],

transistors[29, 30], resonant tunneling diodes[31], and numerous proposals have been

formulated in this direction[32, 33, 34, 35].

In the context of control of polaritons and manipulation of their flow, the confinement of

polaritons in lower dimensions present a powerful tool.

In the recent years at the Laboratorie de Photonique et Nanostructure, low dimension polaritons

have been widely investigated, thanks to a state-of the-art fabrication technique. Condensation

of 0D polaritons was demonstrated in single micropillar by Daniele Bajoni [15], together with

clear effects of non linearities in squared or coupled pillars in the works of Lydie Ferrier and

Marco Abbarchi [36, 37]. Polaritons in one-dimension have been studied by the previous PhD of

the group, Esther Wertz ,who demonstrated polarition condensation and coherent propagation

in wire microcavities[38, 39].

In the present thesis we used these high quality microstructures developped at LPN, to

investigate the physical properties of polaritons in various one-dimensional geometries.

Engineering the shape of 1D cavities, we address a large variety of fundamental physical

problems, ranging from polariton scattering by disorder, condensation in a periodic potential,

up to the fractal energy spectrum of polaritons in a quasi-periodic structure. Finally we

describe a new polariton device, where the phase of a coherent polariton flow is controlled

optically within interferometers.

The structure of the present manuscript is the following.

A general introduction on quantum well excitons and cavity photons is provided in the first

chapter together with the description of the basic properties of cavity polaritons.

The second chapter is dedicated to the description of the structure of the cavity samples

used in the different experiments described in the manuscript. Their optical characterization is

used to illustrate some essential properties of cavity polaritons. In the second part of the

chapter we give a brief presentation of the setup used in our experiments.
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In the third chapter polariton propagation in one-dimensional structures is addressed.

We first give an overview of the state of the art experiments on polariton propagation. We

particularly focus on the case of non-resonant excitation and on the results obtained at LPN,

just before my arrival in the group, by Esther Wertz in wire microcavities.

We then investigate the scattering of a polariton flow with disorder naturally present along a

microwire, by analyzing the signal corresponding to backscattered polaritons. A quenching of

the backscattering is observed when increasing the polariton density. In collaboration with the

group of Guillaume Malpuech in Clermont-Ferrand, we propose an interpretation of this effect

based on parametric processes.

The overall subject of the fourth chapter is the study of polaritons in modulated potential.

The first part is dedicated to polaritons in periodic potentials, obtained using a wire microcavity

with a periodically modulated lateral dimension. Here the modified polariton dispersion, in

which forbidden energy gaps appear, will allow studying several effects of localization. With the

theoretical support from the group of G. Malpuech, we investigate the role of the interactions

between polaritons and with excitons in the reservoir, and analyze the nature of the localized

states in terms of defect states or bound gap solitons.

In the second part of the chapter, we study polaritons in the presence of a periodic modulation

combined with an energy gradient obtained either by adequate shaping of the 1D microcavity

profile or exploiting the blueshift induced by the reservoir. The observation of Wannier-Stark

ladders and Bloch oscillations will be discussed.

The last part of the fourth chapter is devoted to quasi-periodic structures. A potential

landscape reproducing the Fibonacci sequence is expected to give rise to a fractal energy

spectrum. We will show evidences of the fractal structure of the polariton spectrum inside

such a potential and a direct visualization of the corresponding wave-functions. This works is

the result of a collaboration with Eric Akkerman and Evgeni Gurevich from the Technion

Israel Institute of Technology, in Haifa, Israel.

The fifth chapter presents the implementation of polariton interferometers and their control

by optical means. Such structures are used to demonstrate the possibility of inducing a phase-

shift of a polariton flow via the interaction with an excitonic population. Such effect is first

demonstrated in a Sagnac interferometer and then applied to a Mach-Zehnder interferometer in

order to control either the intensity or the polarization of the outcoming beam.

In the conclusion, we give an overview of the results obtained within this work and present

all the perspectives that are now envisaged using microstructured microcavities operating in the

strong coupling regime.
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Chapter 1

Introduction to microcavity

polaritons

In this first chapter we will introduce microcavity polaritons, mixed exciton-photon quasi-

particles. We describe at first their two building blocks: the exciton confined in a Quantum Well

(QW) and the photon in a microcavity. Then we illustrate the concept of strong coupling and

the polaritons as resulting eigenstates of the system. Their main features will be introduced,

especially focusing on their bosonic character and on the interaction properties they present.

1.1 QW excitons

Semiconductors are key material for todays technology. The main characteristic that make

them so interesting is that their band structure presents an energy gap between the last

completely occupied band and the first empty one. The ground state of the system is thus

characterized by a full electronic band named valence band and an empty one, the conduction

band.

In semiconductors, the width of this energy gap is such that it can be easily overtaken by

applying a voltage or by optical excitation. Electrons can be promoted to the conduction bands,

and the resulting lack of charges in the valence band is represented by holes.

In this first section of the chapter we will discuss the first excited state of a semiconductor.

In the absence of coulomb interactions, such first excited state is given by a single electron

at the bottom of the conduction band and a single hole at the top of the valence band. But

the interaction between the excited electron and all the remaining charges in the valence band

results in a picture in which electrons and holes undergo Coulomb attraction: the ground state

of the system is at a lower energy and consists in a bound state named exciton.

1.1.1 Bulk excitons

In a bulk semiconductor, each electronic band can be approximated by a parabola in the

proximity of its maximum or minimum. The electrons in such band can be considered as a free

particle with an effective mass directly related to the curvature of the parabola[40]. We consider

a direct gap semiconductor, in which the bottom and top of respectively conduction and valence

15



1.1 QW excitons 1. Introduction to microcavity polaritons

band correspond to zero momentum k = 0. We also choose to note both the effective mass for

electron m∗e and hole m∗h positive. Their dispersion relation can thus be written as:

Ec(k) = Eg +
~2k

2m∗e
(1.1)

Ev(k) = − ~2k

2m∗h
(1.2)

where Eg is the width of the energy gap and the extreme of the valence band is conventionally

set to 0.

As discussed more in detail in 4.2.1, in each band electrons and holes can propagate and

their wavefunction can be written respectively in the Bloch form [41] as φe(~r) = ei
~k·~rue(~r) and

φh(~r) = ei
~k·~ruh(~r). The functions u’s are invariant for a translation of a crystal period.

Considering light excitation, in which a photon arrives with energy higher than the bandgap,

there’s a finite probability of absorption and creation of an electron-hole pair. For conservation of

energy and momentum in the absorption process, electron and hole will have opposite momenta,

since the photon wavevector can be neglected. If the incident photon has an energy lower than

the gap Eg, we observe discrete resonances inside the gap that corresponds to electron hole pair

interacting via Couloumb attraction. These bound electrons-holes pairs are named excitons and

represent the eigenstates of the following hamiltonian that describes the system:

HΨ(re, rh) =

[
p2
e

2me
+ Eg +

p2
h

2m∗h
− e2

ε | re − rh |

]
Ψ(re, rh) = EΨ(re, rh) (1.3)

where re ,rh and pe,ph are respectively the position and momentum vector of electron and hole in

the crystal and the value of the dielectric constant ε contains the screening effect of the Coulomb

interaction due to all the other electrons in the valence band. The eigenstates can be written in

the form:

Ψ(~re, ~rh) = u∗h(~rh)ue(~re)Ψ ~K(~r, ~R) (1.4)

The function Ψ ~K(~r, ~R) is the envelope function, in which ~r = ~re − ~rh and ~R =
~rem∗e+ ~rhm

∗
h

m∗e+m∗h

represent the internal and the center of mass motion of the exciton. Considering ~K the

wavevector of the center of mass, one can show that Ψ ~K = ei
~K·~Rφ(~r) where φ is the solution of

the equation of an hydrogen-like atom.

Thus the eigenvalues of the exciton are the followings:

E =
~2K2

2M
+ Eg − Enb (1.5)

with Enb the exciton binding energy, that depends on the quantum number n following the

relation:

Enb =
R0

n2
(1.6)

where R0 = µe2

2ε2~2 is called effective Rydberg constant.
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The lowest energy exciton wavefunction is the n = 1 (1s) state, that reads:

Φ(r) =
1

√
πaB

e−r/aB (1.7)

with aB = ~2ε
µe2

the exciton Bohr radius, that characterizes the spatial extension of the exciton.

Typically excitons are studied in two limit cases; in ionic crystalz they are characterized by

strong attraction, and the electrons and holes are strongly coupled and localized in the same

crystal cell (Frenkel excitons[42]); in most of the semiconductors the interaction is well

screened and spread over several crystal cells (Wannier-Mott excitons[43]). In GaAs, for

example, the heavy hole exciton, the one formed by an electron and a heavy hole, has a Bohr

radius aB of around 11 nm and and a binding energy of 4 meV . Due to such a low binding

energy they require cryogenic temperatures to be observed.

1.1.2 Confinement of excitons in QWs

Confinement strongly modifies the energy configuration of excitons and has also an important

impact on the light-matter interactions [44]. Excitons can be confined along one (quantum well),

two (quantum wire) or three (quantum dot) dimensions. We discuss the case of quantum wells,

where excitons are free to move in a plane.

Such confining structures are obtained by inserting a thin layer (typically few nm) of a

semiconductor between two thicker layers of another semiconductor of larger band gap. The

resulting potential profile along the growth direction z is schematically represented in figure 1.1,

while the potential is constant along x and y directions.

Figure 1.1: Schematic of the unidimensional confining potential created by a QW structure.

Red dashed lines represent the energy of confined levels for electron and holes.

Neglecting the Coulomb interaction, the resulting wavefunctions for electrons and holes are

plane wave in the x-y plane, of wavevector k||, multiplied by the envelope functions χ(z), labelled

with the index n an m,that label the confined state in the z direction [45]. Considering the

interaction, the wavefunction of the bound electron-hole pair can be rewritten as:
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Ψ(~re, ~rh) =
C√
S
ei

~K||· ~R||χne (ze)χ
m
h (zh)φ(~ρ) (1.8)

with ~ρ = ~re − ~rh is the in-plane relative position, and ~R|| and ~K|| respectively the position and

the wavevector of the center of mass.

The eigenenergies of the resulting excitons are:

E2D
exc = Eg + Ecn + Ehm +

~2K2
||

2(m∗e,|| +m∗h,||)
− R∗

(n− 1
2)2

(1.9)

where Ecn + Ehm are the confinement energies of the electron and hole in the quantum well.

To n = 1 corresponds the following solution for the hydrogenoid wavefunction:

φ(ρ) = e−
√
ρ2+(z2

e−z2
h)/a∗B with a∗B the Bohr radius for the QW ewciton. Its values is decreased

of a factor 2 with respect to the the bulk case a∗B = aB/2, and for a GaAs QW is around 5 nm.

The confinement increases the overlap between the particle wavefunctions with respect to the

bulk, and thus the exciton binding energy is strongly enhanced.

Excitons as composite bosons

The exciton, made of two fermionic quasi-particles, behaves as a boson for low particle

density. Indeed the creation of an exciton results in a low occupation of each fermionic state of

electrons and holes. Consequently, a large number of excitons can be created without feeling

the effect of the Pauli exclusion principle. Nevertheless, when strongly increasing the

excitations in the system two effects must be taken into account: the screening of the

Coulombian interaction and, mainly, the effect of electronic phase space occupation[46, 47].

Both brings to the destruction of the excitonic state and to the generation of electron hole

plasma.

An indication of the density corresponding to this transition can be given by estimating the

behaviour of the commutator of the operator B̂k, representing the annihilation of an exciton

[46, 47]. Its average value can be written as 〈
[
B̂k, B̂

†
k

]
〉 ≈ 1−O(n·(a∗B)2), with n exciton density.

The operator B̂k behaves as a bosonic operator until the particle density verifies n� 1/(a∗B)2.

This limits is known as Mott density. For GaAs QWs this values corresponds approximately to

a density of 1011 excitons per cm2[48, 49].

1.1.3 Light-matter interaction

We have already mentioned that the promotion of an electron from valence to conduction

band or viceversa can happen in a radiative process via the absorption or emission of a photon.

The process has some selection rules and in the following lines we will introduce the conserved

quantity in the transition, with a specific attention to the 2D confined exciton case.

In the dipolar approximation,the Hamiltonian of the exciton photon coupling becomes:

H ≈ − e

m0

~A · ~p (1.10)
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with ~A the vector potential and ~p the momentum operator of an electro of charge −e and mass

m0. The absorption of a photon is proportional to the matrix element 〈 ~K| ~p · ~A |0〉 where |0〉 is

the ground state and | ~K〉 the excitonic state.

The vector potential has the form ~A = ~εAei~q·~r. Therefore,we obtain:

〈 ~K| ~p · ~A |0〉 =
∑
~

ke, ~kh

〈 ~K|~ke, ~kh〉 〈~ke, ~kh|~p · ~A|0〉 ∝ δ( ~K − ~q||)φ(0)| 〈uc|~ε · ~p|uv〉 |
∣∣∣∣∫ ξmh (z)ξn∗e dz

∣∣∣∣
(1.11)

where φ(0) =
∑

~k
〈 ~K|~k, ~K − ~k〉, the function uc, uv Ψ,ξh and ξe are the envelope function

already defined above, and where we considered consider qzz � 1 on the spatial extension of

the functions ξ.

According to equation 1.11, the coupling of the exciton with the electromagnetic field is

determined by the matrix element 〈uc|~p|uv〉 and by overlap integral
∫
ξh(z)ξ∗edz.

From the previous expression, the following transtition rules can be extracted:

• the in-plane wavevector must be conserved in the transition, that means that the exciton

will couple only with photon of the same in-plane wavevector q||. But all the values of

kz are possible. This condition, combined with the energy conservation, defines the light

cone inside which an exciton can couple with the electromagnetic field: | ~K| ≤ ncE2D
exc

~c

• For an infinite QW the overlap integral is not zero only in the case of m = n, while for a

finite but symmetric quantum well, the transition rule imposes simply that m and n have

the same parity.

• angular momentum must be conserved in the transition (〈uc|~ε · ~p |uv〉 6= 0 ) and this

condition imposes some restriction on the polarization: the angular moment of the exciton

couple is J = se + sh with se = ±1/2 and sh = ±3/2. Only the exciton with J = ±1 are

coupled with light. The others are named dark excitons.

• The energy also must be conserved in the transition. The energy of a photon is given by
~ck
n . This means that excitons with |K||| > krad, where krad satisfies ~ckrad

n = EX(K|| =

0) + ~2K2

2M , are states not coupled with light.

• An additional selection rules appears when considering also the spin degree of freedom.

The angular momentum of the exciton is given by J = se + sh. Considering heavy hole

excitons, se = ±1/2 and sh = ±3/2 are the spin of electron and holes and so for the

exciton J = ±1 or J = ±2. Since the projection of the angular moment of a photon can

be ±1, the state with J = 2 they are not coupled to light and are named ”dark excitons”

[50].

We can define a variable called oscillator strength f , that characterizes the intensity of the

coupling to light, given by [51]:

f

A
=

2

m0E
| φ(0) |2| 〈uc|~ε · ~p |uv〉 |2 〈χn,e|χm,h〉 (1.12)

The oscillateur strength results directly proportional to the absorption probability of a

photon going through a QW.
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1.2 Photons in microcavities

In this section we will describe the confinement of a photon inside a microcavity structure.

The requirement of such a cavity is to have, at the same time, a small effective volume, in order

to have a higher electric field created by each single photon, and a long lifetime of the photons

inside the cavity, in order to minimize the losses due to the coupling to the free space modes.

This conditions can be translated in the requirement of a high reflectivity mirror structure in

the spectral range of emission of the QW. For such a purpose, metallic mirrors are not good

candidate, because the high absorption coefficient of metals brings to a reflectivity smaller than

95% in the infrared spectral range in which we are interested in.

On the contrary, interferential semiconductor mirrors have many advantages: at first they can be

epitaxially grown during the same process and with the same mechanism than the quantum wells

and then they have losses due to absorption that are negligible, and this brings to a reflectance

coefficient near 100 %.

In order to explain the principle and introduce the essential parameters of a Bragg mirrors cavity,

we will first discuss the simple case of a Fabry-Perot cavity. Then we focus on interference

phenomena on which the Bragg mirrors are based on and then conclude with the description of

a complete semiconductor microcavity.

1.2.1 The Fabry-Perot cavity

In fig. 1.2 we report the scheme of a Fabry Perot resonator. Let’s consider two parallel

mirrors described by their values of reflectivity and transmission coefficient,respectively, r1, r2

and t1, t2.

Figure 1.2: Fabry Perot cavity’s scheme with metallic mirrors. Figure extracted from [52]

They define a cavity of width Lcav, with ncav its refractive index. For instance, we will

consider r1, r2, t1, t2 , complex numbers and ncav > nair. Then we consider a progressive
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monochromatic plane wave, incident on the surface of the cavity with an angle α. The angle of

propagation inside the cavity will be: nairsin(α) = ncavsin(θ)⇒ θ = sin−1
(
nair
ncav

sin(α)
)

.

We take the incident wave with a transverse polarisation (TE), that means that the electric

field is perpendicular to the plane of the figure 1.2. In a single round trip inside the cavity, the

wave gains a phase of φ = 2π(ncavLcavcosθ)/λ.

The transmitted wave will be the sum of all the waves reflected and transmitted by the

mirrors.We will note the incident electric field with the complex variable Ei and the

transmitted one with Et and then we can write:

Et = Eit1e
iφt2+Eit1e

iφ
(
r2e

iφr1e
iφ
)
. . . Eit1e

iφ
(
r2e

iφr1e
iφ
)n
t2+. . .⇒ Et = Eit1t2e

iφ

(
1

1− r1r2e2iφ

)
(1.13)

If one notes the total phase shift φtot = 2φ, the transmission coefficient becomes:

T =

∣∣∣∣EtEi
∣∣∣∣2 =

(t1t2)2

1 + (r1r2)2 − 2r1r2cos(φtot)
(1.14)

φtot = 2φ = 2
E

~c
ncavLcavcosθ (1.15)

The reflectance coefficient R will be R = 1−T , since there’s no absorption in the mirrors or

diffusion at the interface. In fig. 1.3 we report an example of the values of R as a function of

the phase shift in a round trip in the cavity.

Some considerations can be done. For some given values of φtot, a constructive interference

Figure 1.3: Reflectance of a Fabry perot cavity as a function of a phaseshift in a round trip of

the cavity. Figure extracted from [53].

phenomenum results into an abrupt decrease of the reflectivity: the value is almost zero for

φtot = S × 2π. Each integer value of S determines a particular cavity mode. In the simpler case

of normal incidence, the mode are given by the relation ncavLcav = Sλ/2. In the case of S = 1

the cavity is a λ/2 cavity, the smallest cavity at a given resonance.
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In a more general way, we can consider that each reflexion brings to a phase shift, such

that the reflectivity coefficient r becomes complex by a multiplication by a phase shift factor

r ⇒ reiφ, where obviously the phase shift is energy dependent. In this case, the resonance

conditions reads:

φtot(E) = 2φ(E) + φ1(E) + φ2(E) = S × 2π (1.16)

We will use these equations later, discussing the dielectric mirror structure.

In the case of normal incidence we can define two quantities, ∆E and δE, respectively the

interval between two modes, named free spectral range, and the full width at half-maximum

FWHM of the reflectance minimum. For negligible losses in the cavity(r1r2 = 1− ε with ε� 1),

they are given by:

∆E =
π~c

ncavLcav
δE =

~c
ncavLcav

1− r1r2√
r1r2

(1.17)

Two interesting quantity useful to characterize the optical quality of a cavity are the finesse

F and the quality factor Q, defined by:

F =
∆E

δE
=

π
√
r1r2

1− r1r2
(1.18)

Q =
E

δE
=
sπ
√
r1r2

1− r1r2
(1.19)

The quantity ~Q
E gives the cavity photon lifetime τcav, and similarly, the finesse F is the

number of reflection that the photon makes before escaping the cavity.

The finesse parameter is simply related to the characteristic of the mirrors, while the quality

factor is proportional to the cavity width and depends on S, that means that it depends on the

cavity mode we are considering.

We now take an incident plane wave with an angle of incidence α 6= 0 and let us represents its

wavevector as ~k = ( ~k||, kz). Passing from outside (nair) to inside (ncav), the parallel component

will be constant while kz will change. We know that kcav = ncavkair = ncavE
~c and so, imposing

the resonance condition for the mode S, we get:

φtot = Sπ (1.20)

2kzcav = Lcav = Sπ (1.21)

Lcav

√(
ncavE

~c

)2

− k2
|| = Sπ (1.22)

and finally we get,in the approximation of small incidence angle (k|| � kz)

E(k||) =

√
E2
S +

(
~c
ncav

k||

)2

≈ ES +
~2k2
||c

2

2n2
cavES

(1.23)

Thus the cavity mode presents a parabolic dispersion, defined by an effective mass, mph = n2
cavES

c2
.

The vertical confinement of the photons gives a finite mass for the photon in-plane motion.
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1.2.2 Bragg mirrors

A Bragg mirror is a periodic arrangement of dielectric layers with different refractive index

n1, n2 and width L1, L2, such that n1L1 = n2L2. As we have already said, the advantage of

cavity made of semiconductor interfaces is that, when used in a energy range below the band

gap Eg and so below the absorption edge, their residual absorption due to the penetration of

the electric field in the layers is low.

With an argument similar to the previous one used for the Fabry Perot cavity, one can show

that, for a given wavelength λBragg, the periodic structure will present an enhanced reflectivity

for normal incidence when the optical thickness (ni × L) of each layer is equal to λBragg/4.

In the case of a large number of layers N and normal incidence (such that 1 − R << 1) the

reflectivity at λbragg = 2πc
ωBragg

is given by:

R(λBragg) ≈ 1− 4
nout
nsub

(
n1

n2

)2N

(1.24)

with nout the optical index of the external medium, nsub the one of the substrate (in our case

GaAs). The reflectivity increases with the number of mirrors and with the index contrast

between layers. A typical reflectivity curve of 20 pairs Bragg mirror as a function of the

normalized frequency ω/ωBragg is shown in fig. 1.4.

Figure 1.4: Reflectivity and phase shift versus normalized frequency for a 20 pairs Bragg mirror

structure, n1=3, n2=3,6. Calculation from ref.[44]

The region of high reflectivity, centered symmetrically around ωBragg, is called stop band.

In addition the phase of the reflectivity coefficient r changes with the frequency, and in the stop

band is given by the expression:

φ(ω) ≈ nsubLDBR
c

(ω − ωBragg) (1.25)
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where LDBR is the penetration depth of the electric field inside the mirrors and is given by:

LDBR =
λ

2

n1n2

nsub(n2 − n1)
(1.26)

1.2.3 Bragg mirror microcavity

We now consider a complete microcavity obtained by the insertion of a layer, in between

two Bragg mirrors. This layer is always a semiconductor layer, of width Lcav and index ncav. A

typical exemple of the resulting reflectivity spectrum is shown in figure 1.5. One actually obtain

a Fabry Perot cavity with a spectral region of high reflectivity, and with a sharp minimum at

the wavelength of the cavity mode.

Figure 1.5: Top: Example of reflectivity curve of a Bragg mirror microcavity. The structure

consists in a top and bottom mirror with 15 and 21 pairs of GaAs/AlAs, while the cavity layer

consists of 240 nm of GaAs. Bottom: Electric field intensity distribution for a wavelength of

841 nm, corresponding to the reflectivity deep. Figure extracted from [54].

The electric field intensity distribution corresponding to the wavelength of the reflectivity

deep is also shown in figure 1.5. The mode presents a maximum of the intensity at the center

of the cavity layer, but since the electric field penetrates the Bragg mirrors, one can define an

effective length Leff = Lcav + 2LDBR and the cavity mode energy is given by the constructive

interference condition:

(
ω2

c2
n2
cav − k2

||

)1/2

Lcav = Sπ. (1.27)

with S = 1, 2, 3....

The dispersion of the cavity mode will finally results: Ecav = ~c
ncav

√
k2
z + k2

||.
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1.3 Microcavity polaritons

We have presented the two building block of a microcavity structure. Both the QWs and the

cavity play an analogous role respectively on exciton and photon by breaking the translational

symmetry on the z axis and imposing a confinement that discretize the energetic and photonic

levels. We now discuss the case in which the cavity mode is in spectral resonance with the

excitonic 1s transition. In the cavity, photons can strongly interact with excitons and, if the

resonances are sharp enough, the regime of strong coupling can be achieved, in which excitons

and photons are no more the eigenstates of the microcavity but they are replaced by half light

half-matter quasiparticles, microcavity polaritons.

1.3.1 Weak and strong coupling

A two or more level system such as an atom, can be excited to an excited state and then

relax via the emission of a photon. This emission can take place in two regime [55, 56]:

• weak coupling: the photon emitted has negligible probabilty of being reabsorbed by the

same medium( irreversible process). The regime is also called perturbative, because the

electromagnetic field appears in the Hamiltonian as a pertubative term w ∝ ~p · ~A and the

first order development gives the spontaneous emission rate (Fermi golden rule),

Γ =
2π

~
| 〈Ψ0|w |Ψ1〉 |2 ρ(Eph) (1.28)

where ρ(Eph) is the photon density of states and |Ψ0〉 and |Ψ1〉 the ground and excited

state . In this regime the excitation will be dissipated and the population of excited atoms

will decay exponentially.

By acting on the electromagnetic environment, and so on the electromagnetic density of

states, one can modifies the transition probability given by the Fermi Golden rule: this is

the Purcell effect [1] , that consists in an increase or a decrease of the emission

probability modifying the density of optical modes.[57, 58].

• strong coupling: its is also called non perturbative regime, and corresponds to the case

in which the photon emitted can be recaptured and reexcite the medium. In this regime

excitation is coherently shifting back and forth between the medium and the mode of the

electromagnetic field. These Rabi oscillations are dumped by the decoherence present in

the system. Energy is therefore dissipated with a time comparable with the coherence

time of the uncoupled states. In the spectral domain, Rabi oscillations are revealed by

an energy splitting Ω, called Rabi splitting or normal mode splitting, and the anticrossing

behaviour of the coupled states.

The conditions for achieving the strong coupling regime can be expressed more formally

from a semi-classical description of two coupled Lorentz oscillator[44]. By defining the coupling

strength between the two oscillator, the cavity photon and the QW exciton g ∝
√

fosc
SLeff

, the
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Rabi splitting Ω results in:

Ω = 2

√
g2 − (γC − γX)2

4
(1.29)

where γC and γX are respectively the linewidth of the excitonic and photonic resonances. With

g � γC − γX , Ω is purely imaginary, the energy of the system is quickly dissipated, and we are

indeed in the weak coupling regime. In the opposite case, with g � γC − γX , Ω the dissipation

is sufficiently slow to allow to the energy to be transfered coherently between the oscillators,

realizing the strong coupling regime.

The first theoretical discussion of the strong coupling regime in solid state system was

made by Hopfield in 1958[59], in which he recognized how, due to translation invariance

symmetry in a bulk material, the elementary excitations are mixed exciton-photon states,

called polaritons. Polariton luminescence in bulk was observed experimentally in different

materials [60, 61, 62], and the polariton dispersion was characterized by polariton-phonon

inelastic (Brillouin) scattering [63, 64].

The strong coupling regime was largely explored also in the field of atoms in a cavity, with

the theoretical work of Jaymes and Cumming [65], and experimental observation of self induced

Rabi oscillations [5] in the group of Serge Haroche , and normal mode splitting [6] int the group

of J. Kimble.

In 1992 Claude Weisbuch and collaborators put in evidence the strong coupling regime

in a semiconductor microcavity containing QWs and discovered cavity polaritons[7]. In these

structures there’s a break of the translation symmetry along the z axis (the growth axis). The

invariance for translation on the layer plane results in the coupling of an exciton of wavevector

k|| with photons of the same in plane vector. Besides, the confinement of the photon on the

third direction, induced by the cavity, fixes the third component of its wavector. The result is

a one-to-one coupling between exciton in the QW and photon in the cavity.

1.3.2 Quantum mechanical description of the polaritons states

The excitons and the photons inside the cavity constitute a system of two bosonic

oscillators coupled through light matter interaction. A quantum mechanical approach, based

on the formalism of the second quantization theory, can provide an intuitive visualization of

the underlying physics[54]. We introduce the bosonic creation and annihilation operator of a

photon of eigenvector k||, â
†
k||
, âk|| and of an exciton, B̂†k|| , B̂k|| . The hamiltonian of the system

will be:

H =
∑
k||

Ec(k||)â
†
k||
âk|| +

∑
k||

EX(k||)B̂
†
k||
B̂k|| +

∑
k||

~ΩR

(
â†k||B̂k|| + âk||B̂

†
k||

)
(1.30)

where the last term represents the coupling between all the oscillators with the same k||, with

the quantity ~ΩR that represent the interaction strength.

The previous Hamiltonian can be rewritten as :

H(k||) =

(
Ec(k||) ~ΩR

~ΩR EX(k||)

)
(1.31)
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and can be easily diagonalized in a basis that will be named the polariton basis, in which the

creation and annihilation operators are:

p̂(k||) = Xk||B̂k|| + Ck|| âk|| (1.32)

q̂(k||) = −Ck||B̂k|| +Xk|| âk|| (1.33)

The two kinds of polaritons created will be called respectively lower and upper polariton

(LP, UP), while Xk|| and Ck|| are the Hopfield coefficients in the linear combination of exciton

and photon states that defines polaritons.

The Hamiltonian in this basis is diagonal and can be simply written as:

H =
∑
k||

ELP (k||)p̂
†
k||
p̂k|| +

∑
k||

EUP (k||)q̂
†
k||
q̂k|| (1.34)

with eigenergies given by:

ELP (k||) =
Ec(k||) + EX(k||)

2
− 1

2

√
4~2Ω2

R +
(
Ec(k||)− EX(k||)

)2
(1.35)

EUP (k||) =
Ec(k||) + EX(k||)

2
+

1

2

√
4~2Ω2

R +
(
Ec(k||)− EX(k||)

)2
(1.36)

Figure 1.6: Up:Polariton bands and exciton and cavity mode dispersion for several detunings.

Ω = 15 meV ; Down:Exciton (X) and photonic (C) corresponding Hopfield coefficients for the

low polariton band

We define the detuning δ as the energy difference between exciton and photon mode at

k|| = 0, δ = Ec(k|| = 0)− EX(k|| = 0).

In fig 1.6 we report the in-plane polariton dispersions curve for 3 different values of δ.
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The Hopfield coefficients are given by:

Xk|| =
1√
2

1 +
Ec(k||)− EX(k||)√

4~2Ω2
R +

(
Ec(k||)− EX(k||)

)2
1/2

(1.37)

Ck|| =
1√
2

1−
Ec(k||)− EX(k||)√

4~2Ω2
R +

(
Ec(k||)− EX(k||)

)2
1/2

(1.38)

These coefficients represent the relative excitonic and photonic fraction of the polariton state.

We can define a LP mass extracted from the curvature of the dispersion, approximated as

parabolic around k|| = 0:

ELP ≈ ELP (k|| = 0) +
~k2
||

2mLP
(1.39)

where the mass is given by the following relation:

1

mLP
=

Xk||

mX∗
+
Ck||
mph

(1.40)

with m∗X the exciton in-plane effective mass. Since m∗X � mph, the polariton mass can be

approximated by mLP ≈ mph
Ck||

, and so of the order of the photon mass, around 10−5me.

Also the polariton lifetime can be expressed as a function of the Hopfield coeffient [66]. For

the lower branch, its values is given by:

1

τLP
=
Xk||

τX
+
Ck||
τph

(1.41)

The lifetime of photons, normally from few ps up to around 30 ps, is much lower than τX ,

typically hundreds of picoseconds, (representing the decoherence induced by the coupling with

the excitonic reservoir [66, 67]) and therefore, for detuning δ not too far from zero, we can

simplify the expression with τLP ≈
τph
Ck||

.

Polariton momentum and measure of the dispersion

The finite polariton lifetime results in dissipation of energy via photon emission from the

top of the cavity. The photon escaping the cavity has both the same in-plane wavevector and

same energy than the polariton that it comes from (see fig. 1.7). Therefore, the angle of

emission θ of the photon can be mapped to the value of the polariton in-plane momentum as

sin(θ) = k||~c/E(k||).
Thanks to this relation, the imaging of the far field of the emission spectrally resolved allows

a direct visualization of the polariton branches, as reported in figure 1.7.
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Figure 1.7: Left: Scheme of the photon emission outside the cavity. Figure extracted from [68].

Center and right: Spectral and angular resolved emission from a microcavity at two different

detuning (δ = −3meV (center) and δ = −6meV ). Both upper and lower polariton branches are

detected. Figures extracted from [52].

Polariton pseudospin

The one to one correspondance between excitons and photons coupled in the polaritons state

affects also the total angular moment of the resulting quasiparticles.

We have already discussed how only heavy hole excitons with total angualar momentum J =

1 are coupled with light. Considering the quantization axis z,the growth axis, this corresponds to

the two excitonic state ↑=
(
Jzh = 3

2 , J
z
c = −1

2

)
and ↓=

(
Jzh = 3

2 , J
z
c = +1

2

)
. At normal incidence,

photon right-circularly polarized (σ+)will excite the exciton state ↑, and a left-circular polarized

one (σ+), the exciton ↓. In-plane projections of the angular momentum can instead be excited

with linearly polarized photons.

In the presence of strong coupling, this momentum conservation produces a direct

correspondence between the photon polarization and polariton total angular momentum. Since

only two possible values are possible, ±1, for the polariton angular momentum, it corresponds

to a 2-level system that can be described as a 1/2 pseudospin.

The mixed nature of such pseudospin allows it to interact with both an external magnetic

field or with the an effective field induced by a polarization splitting of the polariton modes

[69, 70]. By resolving the polarization of the emitted photons, the pseudospin dynamics can be

observed, as discussed in chapter 5.

1.3.3 Polaritons as interacting bosons

Few years after the observation of the strong coupling in semiconductor microcavities,

polaritons started to be seen as good candidates for the observation of bosonic effects in

semiconductor materials[11]. As composite bosons, they are expected to obey the bosons

statistic, at least for low densities. Consequently, when the occupation factor of a state

increases above one, an effect of bosonic stimulation of the relaxation towards such state is

expected. The bosonic nature of polaritons was evidenced at first in experiments involving
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resonant excitation of the lower polariton bands, triggering parametric oscillation (OPO) and

parametric amplification(OPA)[8, 9, 10].

With respect to bare excitons, polaritons present a trap close to k|| = 0, in which the density of

states is 104 times lower than for a bare excitonic state. Under non resonant excitation,

Imamoglu, in 1996, foreseen that this low effective mass could be favorable for the spontaneous

build-up of a highly coherent population in the trap via bosonic stimulation of the polariton

relaxation[11]. The signature of such condensation process would be a strong non linear

increase of the emission together with the appearance of spontaneous coherence. This new

lasing mechanism, without population inversion, was first named boser, and later polariton

laser or polariton quasi-condensate.

From the experimental point of view, the achievement of this regime requires a mechanism

of relaxation towards the lower part of the polariton band, in order to reach the occupation

factor of 1 necessary to trigger the bosonic stimulation [71].

A non-resonant excitation indeed consists in pumping the system around 100 meV above the

polariton bands, with an energy corresponding to the first reflectivity deep of the Bragg mirrors,

in the high energy edge of the stop band.

Figure 1.8: Sketch of the polariton relaxation towards the bottom of the LP branch. Carriers are

created at high energy by a non resonant pump. They partially thermalize via interaction with

phonons. Then competition between acoustic phonon scattering and dissipation could prevent

the system to reach thermalization towards the bottom of the LP branch. Figure extracted from

[49].

The laser generates free carriers in the QWs, that relaxes via emission of optical and acoustic

phonons towards the flat excitonic region of the polariton dispersion, as shown in the picture

1.8. A thermalized excitonic reservoir is then created [72, 54]. The relaxation from the reservoir

toward the bottom of the polariton branch via acoustic phonon emission is very inefficient.

Indeed because phonon dispersion is very flat as compared to the polariton dispersion, only

relaxation with emission of very small energy phonons allows conserving both energy and in-
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plane wavevector. As a result, polaritons undergo a relaxation bottleneck[73, 74]. The system

is therefore in strongly non equilibrium, the high k-vector state forms the excitonic reservoir in

which the population accumulates while the population in the bottom of the band is fixed by the

competition between the relaxation from the reservoir to such state and the polariton lifetime.

The dynamic of relaxation has been shown to be accelerated by several factors: interaction

with free electrons[75, 76], the rise of temperature[77] and also thanks to polariton-polariton

scattering [78]. The latter suggested that by increasing the excitation density, relaxation could

indeed be accelerated, but at the same time, excitons density needs to remain below the Mott

density, to prevent the transition to the weak coupling regime.

The first experimental observation of polariton lasing was obtained at first by Le si Dang[79]

and then confirmed by the works of Jacek Kasprzak in a CdTe cavity [12]. Thanks to the strong

binding energy of CdTe-excitons (giving a Mott density ten times higher than GaAs) and a

more efficient phonon-mediated relaxation (with respect to GaAs), the authors measured strong

non-linear emission from the k=0 state of the lower polariton branch, together with a strong

increase of the spatial and temporal coherence. Few years later, the use of materials with even

higher exciton binding energy, such as GaN [16, 80]and more recently, ZnO [17], allowed the

observation of polariton condensation also at room temperature.

In GaAs cavity, the relaxation bottleneck represented a major obstacle against polariton

condensation. Indeed, Raphael Butté, in 2002, showed that, increasing the pumping power for

a 6 InGaAs-QWs GaAs microcavity, the system enters the weak coupling regime and photon

laser is observed[49].

Different approaches have been developed to overcome the bottleneck and to optimize the

relaxation process in GasAs based samples.

In the group of Yamamoto in Stanford, the successful approach consisted in pumping the

cavity in resonance with the excitonic reservoir, decreasing the density of free charges that

contributes to bleach excitonic transition[81].

The group of David Snoke managed to increase the efficiency of the particle relaxation by

inducing, via some strain, a potential trap in real space and so to observe strong non linear

emission from polariton states[14].

The approach followed at the LPN, in the group of Jacqueline Bloch, consisted in the coupling

of a high number of QWs with a cavity of a higher quality factor. The use of 12 QWs allowed

to increase the Rabi splitting and the total number of excitons in the cavity, enhancing the

relaxation efficiency. On the other hand, a nominal quality factor up to 30000 allowed to

increase the photon lifetime to more than 10 ps.

Before my arrival in the group, Daniele Bajoni in 2008 showed polariton condensation in

the discrete modes of a micropillar [15], while Esther Wertz in 2009 demonstrated polariton

condensation at the k = 0 state of a planar cavity[38]. Later on, different geometries have

been investigated, such as coupled micropillars [82], or wire microcavities [39, 83]. The results

obtained in 1D will be described in details in chapter 3.
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Figure 1.9: Left:Mesures on 6µm GaAs micropillar cavity(12 QWs, Q ≈ 12000). Integrated

intensity and measured occupancy as a function of the excitation power. Figure extracted from

[15]. Right: Mesures on planar GaAs cavity (12 QWs, Q ≈ 12000). Emission intensity as a

function of angle and energy measured below and above the condensation threshold power (Pth)

for polariton condensation. A macroscopic occupation of the bottom of the band is achieved.

Figure extracted from [38]

Polaritons interactions

The Hamiltonian describing polariton states presented in 1.34 is valuable only for low particle

density. When increasing the excitation power and so reaching large occupation of the lower

polariton bands, we cannot neglect the inner structure of excitons in terms of composite bosons

anymore. We already mention the Mott density limit, corresponding to the disappearance of

a well defined excitonic bound state. But even before such upper limit, we can reach a regime

where the Coulomb interaction between the excitonic part of polaritons must be taken into

account .

Indeed in section 1.3.2 we introduced the polaritons states as the eigenmodes of the linear

part of the Hamiltonian. A more complete expression can be obtained by taking into account

the expansion of the Coulomb Hamiltonian at the second order in the exciton density[84]. The

resulting additional term in the Hamiltonianc can be expressed, thanks to Bose operators B̂†k|| ,

creator of a 1s exciton; as1:

HXX =
1

2

∑
k,k′,q

V XX
q B̂†k+qB̂k′−qB̂

†
kB̂k′ (1.42)

The coefficient V XX
q doesn’t have a simple expression in the general case, since it includes all

the complex effect of interaction and charges exchange (being the dominant term the one of

1In the present treatment we do not discus the Hamiltonian term representing the saturation of the excitonic

transition with the increase of the optical density, that contribute with a positive term to the interaction constant.

The reader can find a detailed discussion of this term in reference [46].
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inter-excitons exchange of carriers.) Nevertheless, in the limit of low wave-vector (q · a∗B � 1,

with a∗B the exciton Bohr Radius ), we can write it as [85]:

V XX
0 =

6e2a∗2Dexc

εA
(1.43)

with ε the dielectric constant of the material and A the quantification area (the surface of the

QW).

This interaction term in the Hamiltonian can be written also using the polariton operators

introduced in 1.32 and 1.33. Neglecting any coupling with the reservoir, that we will reintroduce

later, and with the upper polariton branch, such term becomes:

Hpol−pol =
1

2

∑
k,k′,q

V pol−pol
k,k′,q p̂†k+qp̂

†
k′−qp̂kp̂k′ (1.44)

with V pol−pol
k,k′,q = V XX

0 Xk+qXk′Xk′−qXk is the interaction constant normalized on the polaritons

excitonic fractions.

In conclusion, the resulting Hamiltonian represents a system of quasi particle interacting

via an effective pair potential. The interaction constant is positive, representing repulsive

interactions. In literature the interaction constant is generally indicated with g or α1, and can

be estimated around g ≈ 2− 9µeV · µm2 for GaAs polariton [36].

We finally remark that polariton-polariton interactions present a spin dependence. The

discussed constant g or α1 represent interactions between polaritons of the same spin. The

interaction constant for polariton of opposite spin α2 is theoretically estimated as negative

(α2 < 0) and in modulus much lower than α1 (|α2 < 0|) [86]. But the debate on the effective

value of such opposite spin interaction constant is still open [87, 27, 88, 89].

Gross-Pitaevskii equation

In the field of quantum gases of matter particles, a classical partial differential equation for

the superfluid order parameter was written by Gross[90] and Pitaevskii [91] to describe

quantum vortices in liquid helium in the mean field approximation[18]. Indeed, in a condensate

phase, the macroscopic fraction of particles that populate the condensate mode behaves in a

collective way and the quantum atomic matter field behaves as a classical field [92], expressed

with Ψ(r, t) , following the Gross-Pitaevskii equation (GPE) that reads:

i~δtΨ = − ~2

2m
∇2Ψ + Vext(r)Ψ +

4π~2a

m
|Ψ|2Ψ (1.45)

with a the inter-particle scattering length.

Such equation is largely used in the field of cold atom physics and in non-linear optics as well,

since it is formally identical to a Maxwell equation for a non linear media[93].

The application of such approach to describe a coherent polariton state requires some

corrections . The peculiarities of the polariton system is their dissipative nature. A polariton
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population is intrinsically out-of-equilibrium, the system dissipates energy via the photon

escaping the cavity and a steady state can only be achieved by continuously replenishing from

an external pump [94].

Considering the situation of non resonant pumping, the refilling of the polariton state is

provided by the relaxation from the excitonic reservoir. The reservoir itself is then pumped by

an external optical excitation. The resulting equation will be defined as a modified GPE or, due

to the similarities with the Ginsburg-Landau equation used in the field of non linear dynamical

system[95], as complex Ginzburg-Landau equation. Such equation reads[94]:

i~δtΨ =

[
− ~2∇2

2mLP
+
i

2
[R(nR)− γ] + g|Ψ2|+ 2gRnR + Vext

]
Ψ (1.46)

The term −iγ represents the losses due to the finite particle lifetime τLP = 1/γ, while the

term iR(nR) represents the pumping of the polariton states, corresponding to the process of

relaxation from the reservoir of excitons, which population is expressed by the function nR(r, t).

The evolution of the reservoir population can be expressed in a simple phenomenological

model with the following rate equation:

δtnR = P (r, t)− γRnR −R(nR)|Ψ(r)|2 (1.47)

P (r, t) describes the intensity and the spatial profile of the optical non resonant pump. The

population decreases in time due to the finite exciton lifetime, τX = 1/γR typically of the order

of hundreds of ps. But also the stimulated relaxation process plays an important role, and is

represented by the term R(nR)|Ψ(r)|2, in which the relaxation rate is proportion to the spatial

overlap between the condensate and the reservoir. Additionally we notice that in 1.46,

together with the polariton-polariton interaction terms, also the repulsive interaction between

polaritons and the exciton in the reservoir population is taken into account, with gR > 0

interaction constant. This term also will contribute to an overall renormalization of the

polariton energies. The last term, Vext represents any possible external potential:it can be a

random potential due to the disorder (as discussed in chapter 3),to a controlled barrier [31, 96]

obtained for example by the etching of the microcavity (as discussed in chapter 2), or with an

optically induced potential [97, 30]. It can also represents a constant acceleration and a

periodic or quasi-periodic potential(as discussed in chapter 4).

Until now we mainly discussed the configuration of non resonant pumping. But we already

mention other possible approaches to populate the polariton states. By properly adjusting the

pump term in eq. 1.46, the condition of coherent resonant driving of the polariton population

can also be treated[18]. The resulting GPE equation assumes the form:

i~δtΨ = − ~2∇2

2mLP
Ψ− iγ

2
Ψ + g|Ψ2|Ψ + VextΨ + FP (1.48)

where the pumping of the system now consists of an external incident radiation represented by

the term FP . This pumping configuration will allow to control the polariton density by the

pump power, and thanks to the one to one correspondance between the injected photon and

the created polariton , also the energy, the wave-vector and the polariton pseudospin can be

controlled.



Chapter 2

Samples and experimental setup

In this chapter we present the samples studied during this thesis. The planar cavity structure

will be presented first. Then we describe the microstructures obtained by dry etching. The

resulting one-dimensional polariton states are introduced.

The second part of the chapter is dedicated to a presentation of the experimental setup and a

brief description of its main components.

2.1 The samples

The cavity structure

The cavities investigated during this thesis are GaAs/AlAs cavity realized by Aristide

Lemaitre and coworkers in the clean room of the LPN.

Two cavities have been studied. The results presented in chapter 3 are obtained on the same

sample cavity investigated also during the PhD of Esther Wertz (code 73J125)[38]. All the rest

of the presented results (corresponding to chapter chapter 4 and 5), have been obtained on a

cavity grown during my PhD (code ABR66), which structure is reported on figure 2.2. ).

Both the sample consists in a λ/2 cavity of Ga0.05Al0.95As,with λ the nominal resonant

wavelength, 780 nm. The active region consists of 12 GaAs QWs of 7nm width. 4 of them

are placed in the center of the cavity, corresponding to the maximum of the electromagnetic

field. The other 8, divided in group of four, are placed on the first of the antinode of the

electromagnetic field, inside the Bragg mirrors (as shown in figure 2.1).

The Bragg mirrors consist of a periodic sequence of layers of optical width λ/4 and

composition Ga0.05Al0.95As and Ga0.8Al0.2As.

For the cavity investigated during E.Wertz PhD (code 73J125), the lower mirrors, on the

side of the substrate, has 30 pairs, the upper one, 26, and the nominal quality factor results

Q ≈ 30000.

In the more recent cavity (code ABR66), subject of the characterization presented in the

following paragraphs of this chapter, the lower mirrors, on the side of the substrate, has 40 pairs,

the upper one, 28. Differently from the previous cavity, in which the reflectivity of the top and

bottom mirror were identical, here he reflectivity of the lower mirror is higher with respect to

the upper one, and this a-symmetrization allows to minimize the photon losses on the substrate

35
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Figure 2.1: Scheme of the cavity sample . The red lines represent the QWs while the blue lines

represents the electric field spatial distribution for the wavelength corresponding to the cavity

mode.

side. The high number of pairs allows to increase the quality factor of the cavity and so the

photon lifetime inside it. The nominal quality factor is Q ≈ 70000.

The high number of Quantum wells used increases the Rabi splitting between the upper and

lower polaritons bands up to Ω = 15 meV , making the strong coupling more robust and, at the

same time, it allows to introduce a high number of polaritons in the system keeping low the

density of excitons in each well.

2.1.1 Optical characterization

The planar cavity

The as-grown wafer is first characterized by reflectivity measurements performed at room

temperature. A scan of the whole circular wafer, of radius around 5cm is obtained by Fourier

Transform Infrared Spectroscospy (FTIR) and a map of the energy of the cavity mode is

extracted. The energy of the cavity varies all over the surface, due to the stop of the rotation

of the wafer during the growth. This scan allows identifying the region of the sample where an

exciton-photon detuning around zero is expected at low temperature.

The wafer is so clived along the crystallographic axis selecting a region of around 1cm2,

small enough to be pasted on the cryostat’s cold finger and be observed at liquid Helium

temperature.

In figure 2.3 we show two examples of polariton dispersion measured at two location of a

planar cavity sample. They are obtained by detecting the photoluminiscence at 10 K with both
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Figure 2.2: Structure of the sample ABR66. It corresponds to the cavity structure used to

obtained the results presented in chapters 4 and 5).
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spectral and angular resolution. Probing different locations on the sample, both the energy

of the excitonic resonance and of the cavity mode change. As a result, the energy of the

polaritons states change together with their dispersion. The fitting of the measured dispersion

allows extracting the cavity and exciton energy Ek
||=0
c and Ek

||=0
X and thus the exciton photon

detuning δ.

Figure 2.3: Left: Two polariton dispersion collected in two different region of the sample. The

fit of the LP curve is obtained by applying 1.35 with ΩR = 15meV . (The extracted detuning

are δ = −7.2meV (left panel ), and δ = −1meV (central panel)). Right: A colormap of the LP

energy at k|| = 0, results of a scan of the sample surface. The fitting of the local dispersion

also to extract also the local values of the excitonic and photonic resonances and deduce their

gradient (|gradEc| ≈= 4.5meV , |gradEc| ≈= 1.4meV )

The linewidth of the polariton emission, selected for k = 0, is measured Γ = 160µeV for the

wire in the central panel of figure 2.3, with detuning δ almost zero.

For low wavevector, the broadening is mainly given by the photonic component and at

zero detuning such linewidth is twice the linewidth of the cavity mode. For the present case,

the measured linewidth would correspond to a cavity quality factor of around Q = 20000,

corresponding to a photon lifetime around 8 ps. But the linewidth can also be strongly influenced

by inhomogeneous broadening [98, 99], mainly given by the fluctuation of width and composition

of the QWs. To measure the polariton lifetime, more sophisticated method are required. The

method we used is based on the observation of the spatial decay of the signal intensity along

polariton propagation. Indeed, given a certain group velocity of propagation vg, the expected

intensity profile for a 1 dimensional propagation would be, I = I0e
−x/x0 , with x0 = vg · τ

propagation length.

In figure 2.4, we report the spatially resolved emission of a microcavity excited by a 2µm

non resonant spot in the x = y = 0 point. The excitation is above threshold, and therefore

polaritons, as better discussed in 3.2.2, propagates with a given wavevector k and a corresponding

group velocity vg. Here the propagation is radial, and the decrease in the intensity along the

propagation will be given by : I = I0
r e
−r/r0 with r0 = vg · τ . In order to take into account the

intensity decrease with 1/r and also to average the effect of some inhomogeneity of the spatial

distribution (given probably by few point-like defects along the propagation), we integrated the

signal inside a given angle, as indicated in the figure. The resulting emission intensity as a

function of the distance from the spot is plotted on the graph of figure 2.4 . An exponential

fit allows extracting the value of r0 ≈ 120 µm. Given a propagation speed of vg = 2.9µm/ps,
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Figure 2.4: Left: Emission from radially progating polaritons. The excitation spot is placed at

x=y=0. Right: Integrated emission inside the spherical angle α = 10o shown in the right panel,

as a function of the distance from the excitation spot. The red line is an exponential fit, giving

a decay length of r0 ≈ 120.

this gives a polariton lifetime of 41 ps. Taking into account of the detuning δ = −6meV in this

region of the sample, we deduce a photon lifetime of τph ≈ 27ps. This value corresponds to a

cavity quality factor of Q ≈ 65000, in quite good agreement with the nominal calculated value

Q ≈ 70000.

2.1.2 One-dimensional microstructures

In this work we confine polaritons in one-dimensional microstructures. They are fabricated

at the LPN by Isabelle Sagnes starting from the planar cavity using electron-beam lithography

and dry etching.

A wide range of one dimensional structures has been realized and will be presented in the

manuscript. In figure 2.5 we show a Scanning Electron Microscope image of the resulting sample

surface after etching of some one-dimensional micro-structure.

Figure 2.5: Scanning electron microscope image of a microcavity sample surface after etching of

several 1 dimensional microstructures.
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Polaritons in microwires

We now consider the case of a microcavity wire. The etching confines the optical lateral

mode on a further lateral direction and the resulting optical modes are given by:

Ec(k||) =

√
E2
C0 +

(
~c
ncav

)2 [(π(jx + 1)

Lx

)
+ k2

y

]
(2.1)

with jx = 0, 1, 2... and Lx the width of the wire.

The confinement of excitons, is not affected by the etching, since the lateral size is several

order of magnitude larger than the Bohr radius a∗B.

In the strong coupling regime, the 1s excitons undergo a coupling not with one but with

several discrete optical modes, and the matrix that describes the coupling (2.2) becomes:

H(k||) =

(
Ejxc (ky) ~ΩR

~ΩR EX

)
(2.2)

This brings to the generation of several polariton subbands: the first three polaritons

subbands are visible in the far field emission of a 3.5µm wide wire, shown in figure2.6.

Figure 2.6: Far field emission from a 3.5µmwide wire (logaritmic color scale). Figure extracted

from [52]

In the figure we also notice another difference with respect to the emission from a planar

microcavity. We observe a broad emission coming from excitons in the reservoir. This emission

arises from in-plane exciton emission refracted on the side walls and redirected toward normal

incidence. This emission gives an indication of the energy of the excitonic resonance. The large

bandwidth of this emission is probably due to a strain relaxation near the edges.

The measured polariton linewidth at k = 0 and zero detuning is also around 150µm, as in

the planar sample.
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Polaritons lifetime inside microstructures will be evaluated in several way along this thesis,

and also further independent measurements of the lifetime in the same sample have been

performed in the group on similar microstructures [31, 100]. The resulting values τpol has been

always estimated in the 30-45 ps range.

We conclude that the optical properties of the wire cavities are very similar to the as-grown

planar cavity, indicating they have been preserved even after the etching process.

Polarization splitting

In the planar cavity, a polarization dependence of the penetration depth of the optical

mode inside the DBRs induces a weak birefringence of the cavity[101]. This results in a

splitting between the two linearly polarized optical modes, named Transversal Electric (TE)

and Transversal Magnetic (TM). This splitting depends on the incident angle: it is zero at

normal incidence and increases quadratically with the photonic in-plane wave-vector k||. The

strong coupling with the exciton results although into two split LP bands, as shown in the left

panel of figure 2.7. The polariton states inherit this polarization splitting from their photon

part, as shown in the left panel of fig.1.8. The polarization splitting increases with k|| up to a

maximum and then, for large angle (not shown), decreases because of the decrease of the

photonic Hopfield coefficient[101].

In the case of one-dimensional microcavity structure, the polarization splitting presents a

non-zero value at k|| = 0.

Figure 2.7: Left: Polariton dispersion from a planar cavity. The TE-TM splitting appears for

high in-plane wavevector. Right: The sub-bands of a photonic wire are split in linearly polarized

sub-bands, parallel and perpendicular to the wire axis.

In the right panel of figure 2.7, we plot the complete band structure for a 3µm wide micro-

cavity wire. We indeed observe how each polariton subbands, corresponding to different order

of confinement, are splitted in polarization parallel to the wire (lower energy) or perpendicular
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(higher energy). The reported wire has a splitting at k = 0 of the order of 0, 6meV for the first

mode (j=1) and around 0, 9meV for the second order (j=2).

The origin of this splitting is still not perfectly understood and has been well discussed in

the thesis of Carole Diederichs[102] and more recently, of Vincenzo Ardizzone [103], in the group

of Jerome Tignon at the LPA in Paris.

It has been shown that for a photonic wire, the boundary conditions imposed to the

electromagnetic field at the interface between air and semiconductor could result in a

polarization splitting also at ky = 0 [104]. But this effect seems to be negligible in our systems.

Some strain relaxation due to the etching could also induce a splitting of the excitonic

mode[105]. But considering the lattice parameter mismatch for our quantum well, this effect is

expected to be much smaller than 100µeV .

Our experimental observations evidenced the following behaviour:

• the splitting increases with the photon exciton detuning δ;

• the splitting increases also with the order j of the confined mode, corresponding to

polaritons more and more excitonic.

• the orientation of the microwire with respect to the crystallographic axis strongly influences

the value of the splitting.

The increase of the splitting with the excitonic component and the influence of the orientation

of the structures suggest that the excitonic component must have a key role in the generation

of the splitting and the dependence on the orientation of the structure is a signature of the

probable role of strain.

A possible interpretation to explain such high values of splitting can relies on previous

work of Balili and coworker on a strain induced polariton trap[106]. According to this work,

the presence of strain could generate a splitting in the excitonic state but also could bring the

energy of light and heavy hole near to each other. The mixing between heavy and light

excitons will results in a variation of the oscillator strength for the two polarization and so to

an enhancement of the splitting. In this framework, the resulting splitting would be a result of

a combination between excitonic and photonic contribution.

In chapter 5, we will describe more in detail the effect of such polarization splittings on the

precession of the polariton pseudospin.

2.2 Experimental setup

We now briefly resume the main characteristics of the micro-photoluminescence setup used

in the present work. A scheme of such setup is reported on figure 2.8.

2.2.1 The cryostat

All the reported results are performed at a temperature of 10 K. The sample is therefore

pasted on the cold Finger of a ST-500 Janis Cryostat mounted on a translational stage. The
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Figure 2.8: Scheme of the experimental setup.

thermal conduction is assured by the use of a vacuum grease(Apiezon N Grease). A constant

flow of Liquid Helium is set in order to maintain the cold finger at a temperature T=10 K. The

chamber is maintained at a high vacuum, at a pressure between 10−5 and 10−6 Torr, thanks to

the use of a Turbo Molecular Vacuum Pump.

2.2.2 Excitation

Three different laser sources has been used to obtain the reported results.

• A CW Ti:Sapphire monomode laser (Matisse-Spectra Physics). The emission is

continuously tunable in the spectral range of 690-900 nm.

• A pulsed Ti:Sapphire laser (Tsunami-Spectra Physics). The emission is tunable in the

spectral range of 700nm − 1µm. The delivered pulsed width is 1.4 ps with a repetition

rate of 82 MHz. This laser will be used in the time resolved measurements.

• In the experience requiring a second excitation non resonant spot (λ ≈ 730nm), together

with a resonant one (λ ≈ 780nm), a CW compact Ti:Sapphire laser (Solstis-M-Squared)

with emission tunable in the spectral range of 700nm− 1µm has been used.

The sample is excited at normal incidence. In the case of non resonant excitation the laser

is set at around 730 nm, corresponding to the first reflectivity deep of the Bragg mirrors in the

presented cavity.

The laser hit a 50/50 cube and the reflected beam is focused on the sample by a

microscope objective of large numerical aperture (N.A. = 0.55) and focal distance f1 = 4mm.

The resulting size of the spot is around 2µm. Additionally spherical or cylindrical lenses have

been used to increase or reshape the size of the spot in some of the presented experiment. The

microscope objective is mounted on translation piezoelectric stage, allowing to place the spot
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with micrometric precision. This is essential for properly control the excitation of the

micro-structure .

2.2.3 Detection

The emitted signal is collected with the microscope objective,collimated by lens L1 and then

sent through one of the optical path schematically represented in figure 2.9, allowing the imaging

of both real and reciprocal space.

Figure 2.9: Scheme of the optical path for the imaging of real and Fourier space.

The collected signal is focused on the slit of a Spectrometer and then either imaged via a

CCD camera, cooled with liquid Nitrogen, or with a Streak Camera (see next paragraph).

The one dimensional microstructure are properly aligned with their main axis parallel to the

fenditure objective. To change their inclination, during an experiment, a Dove prism has been

placed along the optical path.

A 2D imaging of both Real or Fourier plane was possibly obtained by focusing a fraction of

the total signal on an additional CCD camera. This camera were also used to image the surface

sample under white light illumination and detect and distinguish the micro-structures.

Eventually,interference filters were placed in front of this camera to get rid of the non-

resonant laser signal.

2.2.4 Time resolved measurements: the Streak camera

Time resolved experiment were realized with used of a pulsed Tsunami laser and a

Hamamatsu Streak Camera.
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Figure 2.10: Scheme of the operation of the Hamamatsu Streak Camera.

The principles of operation of such a streak camera is depicted in Figure 2.10.

The collected signal hitting the photo-cathode excites photoelectrons inside the streak tube.

These photoelectrons are accelerated and they travel inside the tube through a region in which

there is an electric field whose strength varies in time (region between the electrodes). Early

photons create photoelectrons that encounter a field that deviates them upwards. Photoelectrons

created by later arriving photons suffer an eletric field that deflect them in a different vertical

direction (downwards). In this way, the vertical direction behind the electrodes acquires a

meaning of time evolution, while the horizontal axis can represent either a position of the

sample or an angle of emission. After the electrodes a multichannel plate multiplies the number

of electrons impinging upon it. Finally, the amplified photoelectrons hit a phosphor screen

whose light is recorded by a CCD. In the CCD the vertical direction means time while the

horizontal direction has the same meaning as the horizontal dimension of the light arriving at the

photocathode, which can be wavelength or spatial dimension (real space or momentum space).

In this configuration the 1 dimensional structures have their main axis aligned horizontally. The

streak camera has also been coupled with a spectrometer in order to detect the time evolution

of the emitted signal. In this case, the horizantal axis of the Streak CCD camera corresponds

to the energy scale. The detected signal correspond to the region of the sample selected by the

thin slit of the spectrometer. By varying the selected point on the sample surface a complete

map of time space and energy of the emission is obtained.

The sweeping-voltage frequency that deviates the electrons is synchronized with the

repetition rate of the excitation laser via a fast photodiode. In this way, millions of identical

measurements (one per excitation pulse) can be performed and signals can be obtained even in

low-emission intensity conditions. The largest time window of the streak camera has a size of

2100 ps with a resolution of about 30 ps. However the resolution can be improved below 10 ps

by operating the camera in a regime with a smaller time window.
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Chapter 3

Polaritons propagation and

interaction with defects

3.1 Introduction

The possibility of making polaritons propagating over large distances opens a wide range of

possibilities: as photons, polaritons can propagate in a coherent way and with a propagation

speed near the speed of light; but with them they bring non linearities orders of magnitudes

stronger than other purely photonics systems [9, 107], making possible, for example, the

propagation of non linear bistable front in an optical circuit [34, 29]. At the same time, their

velocity, their density and also and the potential in which they move in can be optically

controlled. Additionally,the escape of the photons from the cavity gives a direct and easy way

of detecting the behavior of the system, making a moving polariton gas an ideal playground for

investigating non-linear quantum hydrodynamic [18] on one side, and on the other hand to

monitor and implement non linearity-based optical devices[31, 28].

In this chapter we will first give a brief overview of the state of the art on polariton

propagation. We will discuss and illustrate different excitation techniques, resonant, OPO, and

non-resonant excitation, since all of them or the mechanism on which they are based will play

a role in the rest of the manuscript.

We will particularly focus on the case of non resonant excitation, presenting results obtained

at LPN just before my arrival in the group.

Starting from these results, we then focus on the propagation of polariton gas along a

microwires. In this context we will present our observations of the suppression of

backscattering by disorder in wires-microcavity. We will discuss why an interpretation in terms

of superfluidity is not applicable, and we will propose and illustrate a mechanism for a

backscattering quenching based on the onset of spontaneous parametric processes.

47
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3.2 Polariton propagation

Requirements and limitations for observing moving polaritons

The observation of a ballistic propagation of polaritons required the overcoming of several

limitations.

The growing process of both QWs and the Bragg mirrors can introduce rugosity on the QWs

layers, and at interfaces of the cavity and mirrors’s layers. These will result in the generation of

local variation of the energy of the polaritonic states. Such fluctuations, if comparable with the

polariton kinetic energy, can represent potential wells or barrier forbidding a ballistic motion

for polaritons. Such defects, , turned to be helpful to trigger the nucleation of topological defect

such vortex and solitons in CdTe[23, 24] and GaAs[21, 20] cavities, but most of the time resulted

in uncontrolled spatial inhomogeneity of the polariton density and excluded the possibility of

observing free propagation[12].

Furthermore a second intrinsic limitations is imposed by the finite polariton lifetime. Up to

recent years, the photon lifetime in the cavity has been limited to few ps[108]. Besides the high

propagating polariton speed of typically 2µm/ps , this short lifetime forbids the observation of

polariton only few microns away from the excitation region. Nowadays, cavity quality factor

reached values near Q = 105, corresponding to polaritons lifetime longer than 50 ps[109, 110].

GaAs based cavities have presented up to now the best system to study polariton

propagation. Propagation lengths longer than 40 µm were observed in cavities grown at LPN,

as discussed more in details in this chapter [39]. Analogous propagation lengths have been

obtained more recently also in GaAs based cavity grown in the group of Pavlos Savvidis in

Crethe. In such samples it has been observed phase-locking between polaritons states

generated by laser spots 80µm far away[111], or polariton spin precession measured up to

hundreds of µm away from the excitation[109]. Lately, the group by David Snoke in Pittsburgh

University reported high Q factor cavity where polariton signal were detected 1 mm away from

the pump [112]. Additionally, it’s worth mentioning that first evidences of polariton

propagation has also been obtained and recently presented for Zn0 based microcavity[113].

3.2.1 Excitation techniques

An additional and essential requirements for studying polariton propagation is an efficient

technique for injecting polaritons with a controlled wave-vector.

Several experimental approaches have been used at this purpose.

Resonant excitation

A resonant excitation of the polariton states allow to properly control the propagation

velocity of the excited particles. This is due to the one-to-one correspondence between the

in-plane k|| component of the wavevector of exciting photons from the pump laser and the

generated polaritons. It was in this configuration, that Thomas Freixanet and collaborators

performed the first studies on cavity polaritons propagation in 2000 [108]: polaritons were

injected by pumping resonantly the lower branch with a well defined incident angle. The group
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velocity of the wavepacket was measured in time resolved experiments, as shown in figure 3.1,

and the dependence of the velocity on the exciton photon detuning was extracted.

Figure 3.1: Left: Measure of polariton group velocity under pulsed resonant excitation. The

incident angle of the excitation laser imposes the k-wavevector of the injected polaritons.

Different group velocity are observed by varying the detuning δ. Figures extracted from [108].

Right: Observation of radial polariton propagation under resonant excitation. The laser spot,

in the center of the figure,is blocked to do not blur the polariton signal.Figure extracted from

[114]

Propagation have been also investigated by Wolfgang Langbein [114]. In this experiment the

laser spot was only few microns wide and consequently broad in k space. The selection of the

polariton state was so given not by the incidence angle but by solely the pumping laser energy.

The possibility of controlling also the initial polarization of the polariton states, allowed W.

Langbein to obtain the first evidence of Optical Spin Hall effect[70] in terms of polarization

beats observed along the propagation.

We will use an analogous approach for generating polaritons in the interferometer structure

discussed in chapter 5.

Triggered OPO

The resonant excitation appears as the most straightforward way to make polaritons flow.

But this configuration can presents many difficulties when it comes to the detection of the

polariton movement. The energy and polarization of the signal will indeed be the same and so

the detection risk to be saturated by the excitation laser signal. In the experiment of Freixanet

and Sermage mentioned above, the laser signal was cutted by spatial or angular selection.

An alternative technique to overcome this limitation was developed by A.Amo and D. aniel

Sanvitto in the group of Luis Vina in Madrid[115]. The technique is based on optical parametric

oscillations (OPO).

Parametric oscillators are non linear resonators in which a coherent pump wave is converted

into coherent signal and idler waves of different frequency. In optics, let’s consider a non linear
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media, presenting χ3 non linearities pumped with a laser wave ωp and inserted in a resonator.

A frequency conversion can takes place respecting the energy conservation ωs + ωi = ωp. This

process is strongly enhanced when signal , pump or idler (ore more than one of them) are

resonant with an optical cavity mode. For micro-cavities in the strong coupling regime, the non

linearities provided by excitons has been shown to allow a pair scattering, especially under a

resonant excitation at energy EP of the polariton dispersion[9, 10, 116, 117]. Such process must

obey the energy and momentum conservation rules, also called phase matching condition:

2EP = ES + EI (3.1)

2~kP = ~kS + ~kI (3.2)

Given the shape of the polariton dispersion, such conditions are more easily satisfied when

pumping at the inflection point of the LP dispersion,also named magic angle. It provides

several pairs of point that satisfy 3.1 and 3.2. It has been shown that increasing the excitation

power at the magic angle, a high occupation of the k = 0 signal state was achieved (see figure

3.2) . The high population in such state further stimulates the scattering process as a result of

the bosonic stimulation. Thanks to a second probe laser placed at the energy of the idler state,

an optical parametric amplification was achieved, and high gain, up to 70, was obtained,

signature of the bosonic stimulation effects[9, 118, 107].

This effect was exploited later in an experiment of D. Sanvitto and A. Amo to make polaritons

flow. The combination of a continuous pumped laser at the magic angle with a probe laser

populating the idler state (see figure 3.2) allowed to trigger the optical parametric oscillations

(TOPO) and achieve a high coherent population of a signal state with a non-zero wave-vector.

Additionally, the population corresponding to the signal state was continuously replenished by

the CW pump laser, extended over tens of microns (also shown in figure 3.2). This configuration

allowed to observe polariton propagating of a polariton wavepacket against a point like defect,

to extract signature of a superfluid motion[115], and more recently was used in the generation

of polariton Bright Solitons[22].

3.2.2 Propagation under non resonant excitation

In the following paragraph we discuss more in details another approach for generating a

highly populated and coherent flow of polaritons, by using non resonant excitation, based on

exploitation of the coexistence of polaritons and excitons in the reservoir.

This approach was developed just before my arrival in the group of J.Bloch. It was the subject

of the Phd Work of Esther Wertz, who investigated polaritons in 1D photonic structures.

Condensation regime: real and reciprocal space

In the first chapter we discussed how the bosonic nature of polaritons and their interaction

properties allow them to condensate and to obtain a macroscopically occupied single state.

Condensation takes place at the k = 0 state of the polariton branch. In such a case, polaritons

don’t possess any kinetic energy and they will necessary stay in the pumping region. This
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Figure 3.2: Left: PL spectra of a resonantly excited GaAs-based microcavity at the magic angle

with a CW laser power above the threshold for stimulated OPO operation. High occupation of

the k = 0 state is obtained. Figure extracted from [118]. Right: Excitation of propagating

polariton via TOPO. A cw pump at the magic angle, together with a pulsed probe laser,

generates a propagating signal that is replenished by the pump over several microns. Figures

extracted from [119].

description is valuable for the case in which the excitation spot extends homogeneously over a

large region of the cavity, that was the case corresponding to figure 1.9.

The behaviour changes drastically in the case of small spot excitation. Let’s consider the case

of a 1 dimensional microcavity as described in chapter 2, excited with a non resonant spot

with a diameter of 2 µm. For low excitation power, the whole lower polariton branch is

incoherently populated with polaritons of several k-vectors. By increasing the excitation

density and observing the total emission as a function of power,(fig 3.4) a condensation

threshold Pth can be identified, corresponding to a strong non linear increase in the intensity,

accompanied by a spectral narrowing of the emission.

The corresponding real space image shows the formation of a polariton condensate extending

over hundreds of microns (figure 3.3).

By looking at the angle and energy resolved emission above threshold (fig. 3.4) we observe

how the emission comes from k = 0 in the spot region, confirming how condensation takes place

in such a state. But away from the excitation region, polaritons acquire a kinetic energy and a

finite k vector.

The role of the excitonic reservoir

To explain this effect we remark how in the spot region, in the case of non resonant excitation,

an excitonic reservoir is created. The repulsive interaction between polaritons and exciton of the

reservoir results in a renormalization of the polariton dispersion with a local shift Eb towards

the blue of the polariton branch (see figure 3.4 ). The high effective mass of excitons in the

reservoir forbids their diffusion over large distances, and consequently the renormalization of the

band is no more present outside the spot region. This interaction potential induce an effective

force accelerating polariton outside the excitation region. Their potential energy Eb is converted
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Figure 3.3: Real space emission energetically resolved coming from a microwire excited with a

2µm non resonant laser spot. The condensate is created at y = 0µm and then spreads all over

the wire. The contrast of the high energy part of the image is increased to put in evidence

the signal coming from the excitonic reservoir, that remains localized in the excitation region.

Figure extracted from [39].

in kinetic energy and so polaritons acquire a wave-vector k =
√

(2mpEb)/~, as predicted by M.

Wouters in [120]. The motion out of the excitation area will be ballistic, allowing the polariton

condensate to extend all over the microwire (see figure 3.3).

In figure 3.3 we notice also a signal at the energy of the excitonic transition, collected due

to photons emitted by excitonic recombination that escape from the edge of the wire. The

localization of this emission confirms the low diffusion rate of the reservoir and its localization

in the excitation region.

By varying the excitation power, above threshold, the population of the condensate and

of the reservoir changes and so does the local blueshift Eb due to interactions. As it will be

illustrated in more details later, this will give us a tool to control the k vector of the propagating

polaritons and so the corresponding group velocity of the condensate.

Such local blueshift induced by the reservoir will be later on used in the manuscript not

only for putting polaritons in motion but as an optical tool to reshape, from the outside, the

potential in which polariton moves and so to accelerate, to slow or to trap them.

Coherent propagation

The propagation of polaritons has also been demonstrated to be coherent over long

distances,thanks to an experimental configuration analogous to a Young slit experiment.

As schematized in figure 3.5, one can select two different points over the wire with two

micrometric slits. The emission coming from these points interferes and the interference

pattern is focused on a CCD. The onset and the maintenance of the coherence all over the wire

length were put in evidence (as visible in the graph of fig.3.5).

This coherent propagation will be further exploited in the polariton interferometer presented



3. Polaritons propagation and interaction with defects 53

Figure 3.4: Far field emission coming from different region of a microwire. The shifted polariton

dispersion is indicated on top of the images to put in evidence the local blueshift of the dispersion

curve. Figure extracted from [39].

in chapter 5.

Figure 3.5: Left:Scheme of the double slit experiment for the coherence measurements:

interferences between two different point of the wire at distance a are detected.Right: Results

of the g(1) measurements as a function of the distance a between the two point for different

excitation powers. Figures extracted from ref. [39].
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3.3 1D propagation

against random disorder

We have presented how the resonant excitation allowed to generate a coherent polariton flow.

We have also discussed how the k space imaging spatially selected presented in 3.4 gives a clear

indication of the effect of acceleration from the excitation region towards the side of the wire.

We now better observe the two panels corresponding to far field emission from the two sides of

the spot.

In those images, one should remark that all the emission belongs to polariton with a well

defined wavevector, corresponding to polariton moving away from the spot, but no additional

components are observed. It seems that polariton propagates ballistically without undergoing

any scattering. One indeed could expect that some imperfection on the sample could generate

some defects elastically reflecting polaritons. Such disorder could be either too weak or we are in

presence of a mechanism that reduces the backscattering probability. To answer such question,

we better investigated the far field emission of polariton along their propagation.

3.3.1 Observation of backscattered polaritons

Let’s now consider the following experimental configuration, represented in figure 3.6. A 200

µm wire is excited non resonantly with a tightly focused laser spot positioned near one of its

edges. Polaritons are then generated in the spot region and propagate far from it, as sketched

in figure 3.6.

By a proper positioning of a mask on the optical path of the collected signal, it is possible

to imagine the reciprocal space emission of a selected region of the wire and focus it onto the

slits of the spectrometer.

Here we select a region of the wire 30µm long, placed 100µm away from the excitation

spot. In figure 3.6 we plot the real space emission coming from this region corresponding to an

excitation laser power below condensation threshold. The polariton dispersion in the spot region

is homogeneously populated by an incoherent population. Polaritons with a positive wavevector

travels towards the right and reach the observation region. Here, the emission is dominated by

polaritons with positive k vectors, populating the right side of the dispersion. But a weaker

signals is also collected on the left side of the dispersion, corresponding to contrapropagating

polaritons.

One can quantify the relative amount of contrapropagating polaritons by estimating the

ratio between the backpropagating polariton signal I(−k) and the forward propagating ones

I(+k). This quantity is evaluated for several energies and plotted in the graph of figure 3.6.

The value of this ratio below threshold strongly varies from wire to wire, and from the region

of wire observed: it depends on the detail of the disordered potential.

The wire reported in the figure is among the one where highest values of backscattering

signal were observed. Nevertheless, expect for extremely low kinetic energy (Ek < 0.2meV )1,

we observe how this quantity is low, never higher than 20 %, confirming the high quality of the

1The investigation of the propagation of polaritons at low kinetic energy Ek < 0.2meV is an ongoing activity

in the group. Preliminary evidences of effects related to the Anderson localization have been obtained.
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Figure 3.6: Top: Scheme of the experiment: the microwire is excited with a 2 µm non resonant

laser spot near its left edge while the probed region is 100 µm away. Bottom left: Normalized

far field emission of the polariton gas collected from the probed region for an excitation below

threshold (P =≈ 0.2Pth). The signal from the negative k-vectors side of the dispersion has been

enhanced of a factor 5. Bottom right: The backscattering ratio I(−k)/I(+k) evaluated from

the left panel, for different values of polariton kinetic energy.

wire. Additionally, we notice how this values does not significantly depends on the polariton

energy, as shown in the right panel of figure 3.6

Let’s discuss the possible origin of such a signal.

• The large mass of excitons, (10000 times that of polariton), limits their diffusion

length[121]. As also confirmed by the spatial profile of the free excitons signal shown in

fig.3.3, excitons have a diffusion limited to few microns from the excitation spot.

Therefore,in the observed region, at 100 µm from the spot, we can exclude any feeding of

the polaritons state from an excitonic reservoir.

• One can consider the possibility that polaritons could pass through the observed region

and undergo a reflection against the other edge of the wire and then come back

generating some negative wavevector signal. This contribution can be estimated

considering the distance between the observed region and the edge of the wire (around

100µm), a polariton propagation speed of around 2.4µm/ps and a polariton lifetime of

16 ps [52]. The continuous escape of photons during propagation is responsible for an

exponential decay of the population. The given parameters result in a reduction of a

factor around 200 between the incoming signal and the signal coming back after a

reflection against the edge. The observed contrapropagating signal, of the order of 10%

the incident one, cannot be explained by this effect.

• Additionally, one can consider a possible influence of interaction with phonons during

polariton propagation. But also this hypothesis can be excluded by considering the time

scale characteristic of such interaction, of the order of hundreds of ps [73, 54] , much longer

than the overall polariton lifetime itself.
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We finally attribute this contra-propagating signal to a scattering undergone by polariton

against a random disorder potential along the wire. The origin of this disorder can be attributed

mainly to weak strain accumulated during the growth of the mirrors and also to the non-

intentional rugosity that is formed on the walls of the wires during the lithography and etching

process.

The variability of the backscattered signal observed from wire to wire supports the

interpretation of such signal as the result of the interaction with a random potential in the

sample. But at the same time, these large variations complicates the identification of its

nature, either photonic either excitonic [122, 123, 124, 125]. The regular spatial density profiles

observed on the wire and the low value of the backscattered ratio, never more than 20%,

suggests this disorder to be weak: the theoretical simulation described in the next section,

reproduces the backscattering ratio at low power considering a disorder strength around 0,1 -

0,4 meV.

Power dependence of the backscattering signal

Let’s now study the effect of the increase of the excitation power and with this, of the

polariton density.

Results in figure 3.7 corresponds to the same experimental configuration of figure 3.6 on a slight

different wire.

In the upper left graph of the figure, we plot the overall signal collected in the selected region:

we can clearly identify a non linear increase of the total emission, signature of the condensation

process, and consequently of a higher local polariton density.

In the four lower panels of figure 3.7, we show the reciprocal space emission coming from the

observed region. The images are plotted in logarithmic color scale, in order to better visualize

the negative k vector side of the dispersion.

In these panels we observe that, increasing the excitation density above threshold,the incident

condensate acquires a well defined wave-vector, as discussed in 3.2.2. But by observing the

negative k values part of the dispersion corresponding to backscattered signal, a decrease of the

backscattered intensity is visible with the increase of the polariton density.

Such a reduction is quantified by plotting the ratio of the backscattered I(−k) to the incident

polariton signal I(+k) measured at the energy of the maximum peak signal, as a function of

the total polariton density in the probed region. In figure 3.8, we report the value of such ratio.

It starts from a value of around 10% below threshold and then is reduced up to a factor of 20

increasing the polariton density 2.

Together with this reduction, we observe how the increase of the power also bring to an

increase of the reservoir potential in the spot region, and so the kinetic energy and the k vector

of the generated condensate. This values are represented in the panel b of figure 3.7, where we

observe how they follow the polariton dispersion. This increase continues until the propagating

condensate reaches the inflection point of the polariton branch. Furtherly increasing the power,

we observe the appearance of several coexisting highly occupied states, at different energies and

k-vectors, that we named “relaxed” condensates.

2The residual signal with negative k values is probably generated mostly by the reflection of polaritons against

the edge of the wire, as discussed in 3.3.1
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Figure 3.7: Up Left: Emitted intensity in the probed region as a function of excitation power; the

red line indicates the condensation threshold. The experimental configuration is the same than

figure 3.6. Up right: Energy and momentum of the polariton condensates at different excitation

powers, below (black squared points) and above (red round points) the onset for parametric

instabilities. The solid line shows the polariton dispersion and the inset the corresponding values

of the group velocity. Bottom: Normalized far field emission of the polariton gas collected from

the probed region for different excitation power (Logarithmic color scale)

Our interpretation of this energy relaxation effect is based on the onset of a parametric instability

process, giving rise to parametric oscillation effect, in analogy to what discussed in section 3.2.1

for resonant pumping of the magic angle.

In our case, the OPO is spontaneously triggered when a sufficient population is accumulated

in the condensate and when such a condensate approches the favorable inflection point of the

dispersion. The idler signal, expected at high energy, near the excitonic reservoir, is not visible

in the spectra: as in previous OPO experiment, its intensity is expected to be much weaker than

the ”signal” one due to both the worst outcoupling of highly excitonic polariton state, and the

faster scattering of those polaritons towards higher energy and larger momentum states [118].

The absence of an idler emission is, anyway, still a point not completely understood.

We also mention that a possible contribution to the energy relaxation has been proposed in ref.

[126] to come also from interaction with the excitonic reservoir.

A better visualization of the resulting condensate energies is given in figure 3.9, where the

integrated emission spectra for 3 powers above threshold are reported. The appearance of several

equidistant energy peaks is visible for the highest power. But also at lower power, few additional
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Figure 3.8: Black squares indicates the ratio of the backscattered [I(k)] to the incident polariton

signal [I(+k)] in the probed region measured at the energy of the peak signal,extracted from the

experiment illustrated in figure 3.7, and plotted as a function of the integrated polariton signal

in the observed region. The red circles represents the result of a numerical simulation described

later in 3.3.2.

energy peaks are observable. Such equally spaced lines are consistent with parametric processes

as will be further detailed later.

Figure 3.9: Emission spectra for several excitation power corresponding to the panels of fig.3.7.

The flashes in the first panel indicates the early appearance of energetically equidistant peak,

signature of parametric processes. These peaks become more and more pronounced at higher

power.

3.3.2 Theoretical interpretation: onset of parametric scattering

The observed reduction of the backscattered signal when increasing the particle density

strongly suggests that polariton-polariton interaction may be involved.

Superfluidity VS supersonic motion

In the framework of interacting bosons, one of the most spectacular features characterizing

such systems is a phase transition towards a superfluid state. Superfluidity was originally



3. Polaritons propagation and interaction with defects 59

observed in liquid helium [127] [128], and then deeply investigated in atomic Bose Einstein

condensates [129]. It manifests itself with a vanishing viscosity of the fluid up to a complete

frictionless and dissipative-less motion in presence of defects. Such phase transition was first

predicted and then observed for 2-dimensional polaritons. In a proposition by Carusotto and

Ciuti [130], the Bogoliubov treatement was applied to the polariton excitation spectrum. In

this framework, the effect of repulsive interparticle interactions is the renormalization of the

band dispersion, as shown in the figure 3.10.

Figure 3.10: Top left panels: Polariton dispersion renormalized by interparticle interaction;

on the left a low density regime corresponds to supersonic motion, in which, for the indicated

energy, states for elastic scattering are available. On the right the subsonic and superfluid regime

is represented, where elastic scattering is not possible anymore. Bottom left panels: Density

distribution of a 2D polariton fluid flowing against a point like defect. In the supersonic condition

backscattered signal generates Cerenkov interference patter, while the flow is unaffected in the

subsonic regime. Right: Ratio of the scattered polaritons over the incident ones as a function

of the excitation power. All figures are extracted from ref [19].

If we consider an impurity as an elastic scattering center, we observe how, sufficiently re-

normalizing towards higher energy the polariton bands via the itneraction energy, one can reach

a regime in which no more states are available for scattering. This corresponds to a transition

from a Cerenkov regime, to a superfluid one, where the fluid presents no diffusion against the

barrier and flows unaffected.

The transition points is given by the Landau criterion[131]: given a certain density of

interacting particles n in the condensate, one can define a speed of sound in the system as

vs =
√
gn/m (3.3)

where g is the interaction constant. The Landau criterion states that a superfluid transition can

take place only for fluid velocity lower than the speed of sound.

This transition was experimentally demonstrated by Alberto Amo, in an experiment

performed in the Laboratoire Kastler Brossel in Paris [19], in which the disappearance of

Cerenkov wave was observed together with the collapse of the signal in the Raleigh scattering
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circle moving from supersonic to subsonic propagation (as summarized in the figure 3.10).

Let’s now analyze the experimental situation presents in our wire. In 1D dimensional

system a phase transition at finite temperature cannot rigourosly exist[132]. This general

dogma has been shown to drop in the presence of interaction[133] and it has also been shown

that repulsions between particles can lead to an enhancement of transmission of a bosonic

particle flow through 1D channel[134].

Even in non-equilibrium system, the Landau-Criterion remains an intuitive picture to identify

superfluid-like phases [94, 25].

In our experimental configuration, the propagation speed of the polariton flow is around

2.4µm/ps, that corresponds to a kinetic energy of around 2 − 3meV above the k = 0 state

(fig. 3.7). In order to satisfy the Landau criterion, the interparticle interaction energy required

should be of the order of such a kinetic energy.

In the observed region, after 100µm of propagation from the spot, the polariton occupation

factor can be estimated at maximum value of 5 · 102,that corresponds to an interaction energy

lower than 0, 1meV [36].

Additionally, we can notice that, if the interaction energy would have been comparable with

the kinetic energy, we should have observed a conversion from potential to kinetic energy during

the propagation of the polariton condensate due to the decrease of its density .

This has not been revealed by careful analysis of the far field at different location along the wire.

Indeed, if we follow the propagation of the condensate in different point along the wire, what

we observe is essentially a constant velocity and a constant k-vector propagation.

We can conclude that the motion in the considered experiment is in the supersonic regime

and therefore we can exclude any superfluid effect.

In the following section, we will propose an alternative mechanism, based on parametric

processes, to explains the experimental suppression of backscattering.

Interacting particles in a 1D disordered potential

Let’s consider a quantum particle in a 1D disordered potential landscape of characteristic

strength V0.

Even for kinetic energy higher than V0, a quantum particle incoming against a potential

barrier can either be reflected or be transmitted. In the case of a disorder potential, that can be

considered as a random distribution of barriers, the initial wavepacket will split on each potential

barrier, into a transmitted part and a reflected part , and interference between them can take

place.

This phenomenon results in the well known Anderson localization[135]. In a pure 1D

system with non interacting particles in a random potential, all single-particle eigenfunctions

are localized, decaying exponentially in space.

Such a configuration has been realized experimentally using a quasi one-dimensional non

interacting atomic gas, for which a disordered potential consisting of a speckle pattern was

created optically.In the group of Alain Aspect [136] in 2008 (and with a bichromatic potential

at LENS in Florence [137]) it has been observed that at short times the wavepacket spreads as
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expected, but later on a steady states is formed, and the wavepacket acquires a characteristic

exponential shape, with a certain localization length, and the diffusion is suppressed.

But in the case of interacting particles, the situation can drastically changes. Even if disorder

can induce localization, repulsive interactions have the opposite effect of delocalization. A

transition between localized and extended regime driven by interactions has been both

predicted theoretically[133] and observed experimentally in atomic condensate at rest [138],

due to an effect based on the spread of the single site localized wavefunctions and hopping of

particles between adjacent sites.

It’s in this framework that, in collaboration with the group of G. Malpuech in Clermont

Ferrand, we propose a possible mechanism to explain the backscattering reduction observed.

We consider the irregular sequence of potential barriers as a lattice in the framework of tight

binding model, in which the energy of each site is random, and there’s an hopping constant J

between sites.

We take for example two sites of energy E1 and E2. If their energy difference is smaller than

the hoping matrix element between two states J (|E1 −E2| < J), a particle can jump from one

site to the other with probability P, rapidly decreasing with the energy difference. The

probability of making N jumps is then given by PN , that gives an exponential distribution

around the starting site. Let’s now extend this picture to a many body situation, in presence

of interactions.

Figure 3.11: Schematic representation of the disorder potential showing the spatial extension of

localized states (horizontal bars) while the flashes represent the two particle hopping process.

Interaction can shift the on site energy and so increase the probability of energy match and

so of the hopping. In other word, if sufficiently high density of particles gets trapped in the

localized sites, a screening of disorder can be achieved.

Secondly, we can include the possibility of a two body process by the onset of an OPO on-site

scattering that could populate virtually any site.

The energy conservation for such a two body process (represented schematically in fig 3.11) can

be written as : E1 + E1 ⇒ (E1 − ∆) + (E1 + ∆), where 2∆ is the energy difference between

signal and idler in the parametric process. The condition for hopping then becomes the following:

E1 ±∆−E2 < J , where ∆ that can take any values, increasing the hopping probabilities. One

should expect that, dealing with a two body-process, such probability would increase non linearly

with the particle density. Furthermore, in analogy to the triggered OPO process, a macroscopic



3.3 1D propagation
against random disorder 3. Polaritons propagation and interaction with defects

occupation of one or several extended propagating states, can trigger and stimulate the hopping

from localized states to such states. This would lower, in ratio, the negative k vector emission

coming from localized states and backscattering events.

The 1D character of the system,with respect to the planar case, can enhance the influence of

such a phenomena since the reduction of available scattering channels strongly enhances the

interference effects.

The low value of backscattering measured in the experiment in the linear regime, suggests the

presence of a weak disorder potential, that we can estimate between 0,1 and 0,4 meV thanks to

the simulation that will be shown in the next paragraph. Therefore, the kinetic energy in the

experiment is much stronger than the localization energy, and the effect of screening of disorder

by highly populated localized states is expected to be weaker than that of parametric processes

that, by themselves, tend to suppress localization in favour of propagation. Additionally, strong

particle localization would result in bright intensity spots in the real space emission along the

propagation, not observed in the experiment.

The experimental energy spectra of figure 3.9 confirm the appearance of several highly

occupied propagating states.

Already at 1.4Pth, small shoulders next to the main condensate peak appear (see flashes in

the central panel of fig. 3.9). This power corresponds to an emission intensity of around 105

(see fig. 3.7),and to backscattering ratio that starts to decrease (fig. 3.8). These shoulders

evolve into more marked peaks at higher excitation power, and the spectral equidistance

between them is a good indication of their origin from parametric processes and that the

hopping stimulated toward such propagating states could thus reduce the backscattering

signal.

Numerical simulations

In order to support this interpretation, a numerical simulation has been performed in the

group of Guillaume Malpuech in Clermont Ferrand. The propagation of a polariton flow through

a disorder potential made out of a series of point like defects (δ-functions) has been simulated.

. The system is described by two Schröedinger equations representing the evolution of the

photonic and excitonic field, coupled via light matter interaction. The lifetime of the particles is

taken into account introducing a lifetime for photons and excitons of τph = 15ps and τex = 400ps.

The disorder is represented by a δ-peaks potential term acting on the photonic field. The

height and the density of the peaks are chosen as a fitting parameter in order to reproduce the

experimental backscattering ratio at low particle density. One example of the disorder used is

represented in figure 3.12.

The results of the simulations of the momenta distribution of the propagating condensate

are reported in figure 3.12.

To simulate the experimental conditions for excitation below threshold, the system has been

pumped with a pulsed excitation, large in energy and k, resulting in a distribution of positive

momenta similar to the experimental one. In this situation, we observe a backscattered signal

which intensity is used to calibrate the potential in accord with the experiment.

To simulate the situation above threshold the pumping is cw with a well defined energy

and k-vector. In this case we observe how the backscattered signal decreases with increasing the
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Figure 3.12: Left: Example of a disorder potential used in the model. Right panels: simulation

of the polariton far field emission in the disordered potential with increasing polariton density.

The backscattered signal progressively decreases. The upper left squared region in the last

panel shows a magnification of the lower squared area, putting in evidence the appearance new

frequencies, signature of the onset of parametric processes.

polariton density. Moreover, at higher density (right panel of fig 3.12), although the pump is kept

monochromatic,we notice the appearance of new frequencies, signature of the onset of parametric

processes. The density dependence of the backscattering ratio is plotted together with the

experimental data, in figure 3.8. The reported results are the average over 50 different disorder

realizations, in order to avoid any effect due to some specific random disorder distribution.

The theoretical points reproduce the observed reduction of the backscattered ratio. This good

agreement with the experimental results gives strong evidences of the role of parametric processes

on the observed experimental backscattering reduction.

3.4 Conclusion

This chapter has been dedicated to the discussion of polariton propagation. The state of

the art have been discussed introducing the main experimental configurations used to study a

polariton flow, especially focusing on the case of non resonant excitation. Starting from the

experiments of Esther Wertz on coherent propagation along microwire, we have focused our

attention on the interaction of polaritons with random disorder along the wire. We have shown

a strong reduction of the backscattering signal with the increase of the particle density, reaching

an almost frictionless polariton propagation in a supersonic regime. We finally propose and

illustrate a mechanism for explanation for a backscattering quenching based on the onset of

spontaneous parametric processes. These results have been the subject of an article published

in Physical Review Letters in 2012 [139]. They are very promising, since they show the possibility

of ballistic propagation in a quasi-friction less way in photonic circuits.
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Chapter 4

Polaritons in a 1D modulated

potentials

4.1 Introduction

In this chapter we explore the possibility of shaping a one dimensional potential for polaritons

thanks to the etching of some specific 1D structures.

The first part of the chapter will be dedicated to the study of polaritons in a periodic

potential, obtained thanks to a microcavity wire with a periodically modulated lateral dimension.

The modified polariton dispersion, in which forbidden energy gaps appear, allows to study several

effects related to localization. The interplay between the blueshift induced by the reservoir and

interparticle interactions induces the appearance of localized state inside the energy gap. We

will show the condensation and localization of polaritons in gap states and the spontaneous

formation of defect states and gap solitons.

In the second part we study polaritons in the presence of a potential energy gradient combined

with a periodic modulation. This configuration has been obtained either by properly shaping

the 1D microcavity profile or by exploiting the blueshift induced by the excitonic reservoir. The

appeareance of Wannier-Stark states and Bloch oscillations will be discussed.

In the last section we will consider polaritons in a quasi-periodic potential. Barrier and

potential wells are ordered in a way that reproduces the Fibonacci sequence. The luminescence

from these structures will give direct informations on the density of states, a direct

visualization of the polariton wavefunctions and will show evidences of the Cantor-like

character of the spectrum.

4.2 Particles in a periodic potential:

general introduction

The behavior of a particle in a periodic potential has been the subject of a multitude of

studies, initially focused on the investigation of electrons in a solid[40]. The first results belongs

to the advent of quantum mechanics and corresponds to the work of F. Bloch, who, in 1929,

published a paper in which he described the eigenstates of such a systems [41]. The main results

65
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of the work is today known as Bloch Theorem. In this section we will summarize the key

concept related to this theorem and will describe few properties of the particle dispersion and

wavefunctions in a periodic medium.

4.2.1 The Bloch Theorem

Let’s consider a 1 dimensional Hamiltonian for a particle of mass m in a periodic potential

V (x) of period P :

Ĥ =
p̂2

2m
+ V (x̂) with V (x+ P ) = V (x). (4.1)

If we consider the translation operator T̂P such that T̂PΨ(x) = Ψ(x + P ), it appears clearly

that [Ĥ, T̂P ] = 0. The two operators have a common base of eigenstates. Since TP is a unitary

operator, we can write its eigenvalues as eiθ and define θ = Pk, where k is

calledquasi-momentum[140]. The Bloch theorem states that the eigenstates of the

Hamiltonian above can so be written as:

Ψk(x) = eikxuk(x) (4.2)

where uk(x) is a periodic function of period P that must satisfy the Schröedinger equation:

Ĥkuk(x) = E(k)uq(x) with Ĥk =
(p̂+ ~k)2

2m
+ V (x̂). (4.3)

This equation allows, for each k, a discrete number of solutions, that we will label with the index

n. Furthermore, from 4.2, it appears clearly that such solutions are periodic in the space of the

quasi-momentum k, with a period 2π/P . The values of k can be chosen inside an interval of

limits −π/P and π/P , named first Brillouin zone (BZ).

The resulting eigenenergies for several values of the index n can be summarized in a family

of periodic functions En(k), of period 2π/P . The information contained in these function is

referred as the band structure of the lattice. For each n, the function En(k) represents a set of

states that composes the n-th energy band. Each of these functions will have an upper and

lower limit and the region of energies that do not belongs to any of these families of functions

are named energy gaps.

These results are valid for any kind of periodic potential, no matter its specific shape.

Nevertheless, some particularly regular potential structure allow to more easily compute the

band structure. Let’s now consider a squared well potential, since it will be the one that will

be experimentally investigated in this work.

The Kroenig-Penney Model and the band structure

The case of a squared well potential can be easily solved numerically by a method named

Kroenig-Penney model[141]. It is based on the fact that in the case of a squared well potential,

of the kind represented in figure 4.1, solutions in each site,1 and 2, are combination of plane

waves of the form respectively eiαx and eiβx, with α = (2mE)1/2/~ and β = [2m(V0 −E)]1/2/~.

The problem can be numerically solved by imposing the continuity conditions at the edge of the

interfaces, in the case of a wavefunction of the form 4.2 [142]. The allowed energy values and

the corresponding band structure can be computed.
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Figure 4.1: Schematic representation of a squared well periodic potential. The potential strength

is V0, and the period is given by P=a+b.

Few exemples of typical band structures are reported in figure 4.2, where we use parameters

not far from the typical ones for polariton systems.

Figure 4.2: Band structure of a squared well lattice calculated with the Kroenig Penney model

for different values of V0. Parameters: a = b = 1.05µm(P = 2.1µm),m = 9 ∗ 10−5 ∗m0. The

values of V0 are shown in the picture.

We clearly observe the appearance of several bands, labelled by the index n, and between

them, regions of forbidden energies. In figure 4.2 the height of the potential goes from few tens

of meV (panel a) up to 12 meV(panel c). By varying such parameter, the dispersion can be

strongly modified, affecting the energy width of the bands, their shapes and the size of the gaps.

Such Kroenig Penney calculation will be used all over this chapter in order to either predict the

expected polaritonic band structure or to reproduce the experimental polariton dispersions and

extract some essential parameters.
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4.2.2 Weak potential and tight binding

Let’s now consider two essential energy scales in the system. One is given by the amplitude

V0 of the periodic potential and the other corresponds to the kinetic energy of a particle for

a quasi momentum corresponding to the edge of the first Brillouin zone, that is called recoil

energy ER =
~2k2

B
2m . Two regimes can be indentified depending on the ratio V0/ER.

Let’s consider the case of a weak potential and the simplest case of a sinusoidal potential of

the form V (x) = V0/2 cos(2kBx), where kB = π/P . In the case of low values of V0,the effect of

the lattice can be treated as a perturbation to the case of a free particle, with eigenstates given

by plane waves |k〉 ∝ eikx. At the first order, the correction to the energy for the plane wave |k〉
is given by:

δE = 〈k| V0

2
cos(2kBx) |k〉 = 〈k| V0

4
(e2ikBx + e−2ikBx) |k〉 (4.4)

This expression is incorrect when the two degenerate state |k〉 and |−k〉 are coupled to the first

order on V0, as is the case for k = ±kB. The hamiltonian must be diagonalized limitedly to this

two state as:

H =

(
ER V0/4

V0/4 ER

)
(4.5)

which eigenvalues are ER +V0/4 and ER−V0/4 and corresponds to respectively a symmetric or

antisymmetric combination of the plan waves, (|kB〉+ |−kB〉)/
√

2 and (|kB〉− |−kB〉)/
√

2 [143].

The effect of the lattice is to destroy the degeneracy at the edge of the Brillouin zone and

to introduce a gap of forbidden energy of width V0/2. In this regime, the bands will be

strongly perturbed only in the proximity of the BZ edges [140, 144]. This is well illustrated in

the first panel of figure 4.2, corresponding to V0/ER = 0.34.

Let’s now consider the case of a strong modulation, with V0 much higher than ER, where

we can apply the tight binding model[40]. In the case of very deep potential well, we should

expect particles to be localized inside this well. At the same time, for a periodic repetition

of this wells, the Bloch Theorem requires this solutions to be of the form of Bloch functions

(see 4.2), delocalised on the ensemble of the lattice. This two points of view can be joined by

introducing the Wannier functions wn(x) (n being the band index) [145, 140]. They represents

functions localized around the site l of the lattice, centered in the position P ∗ l, with l integer.

Given Ψn,k(x) = eiPkun,k(x) the Bloch function in the band n and quasi-momentum k, they

Wannier functions of the site l can be defined as defines as:

wn,l =
1√
2kB

∫ +kB

−kB
e−ilPkΨn,kdk (4.6)

For the first bands, that means for small n, the Wannier functions are strongly localized

in each site. The effect of the lattice will so be limited by the small overlap of the different

functions centered in each site. It can be shown[146] that we can write the eigenenergies as:

En(k) ≈ En + δEncos(kP ) (4.7)
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where the center of the bands En is the value of the unperturbed state in the single well and

the width of the band is proportional to the overlap between functions located in different sites,

or in other word, to the tunneling coupling between the sites.

δEn = 〈wn,l(x)|H |wn,l+1(x)〉 (4.8)

This situation corresponds to the extreme case represented in the last panels of figure 4.2.

Here the high values of the potential V0 = 12meV (corresponding to V0/ER = 12.6), reduces

the coupling between sites, and so the bands tends to collapse towards the discrete states of a

particle in an infinite well.

We will see that different localization mechanism can appear depending of the strength of

the periodic modulation.

4.2.3 Group velocity and effective mass

The periodic potential affects fundamentals properties of a particle, such as the effective

mass and the group velocity.

One can show that particles inside the bands can freely propagate with a constant wave-

vector and group velocity [40]. Such group velocity is given by:

vg,n =
1

~
δEn(k)

δk
(4.9)

where n is the index of the band.

In figure4.3 , we report an example of the dependence of vg on k in the first miniband of the

band structure( also shown in the figure). The curves is not monotically increasing as in the

case of a parabolic dispersion, but presents a maximum and then decreases and goes to zero at

the edge of the BZ.

Figure 4.3: Left: First band of a squared well lattice of parameter P = 2 ∗ a = 2.7µm,m =

5.6 ∗ 10−5 ∗ m0, V0 = 1.5meV . Center: Group velocity extracted from the calculated band

applying the formula 4.9. Right: Effective mass extracted from the shape of the band obtained

applying equation 4.10

.
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Together with the redefinition of vg, the deviation from the parabolic dispersion induced by

the lattice allows the redefinition of an effective mass. This will be defined by the expression:

meff,n =

[
1

~2

δ2En(k)

δk2

]−1

. (4.10)

The values obtained from such expression are reported on the right of figure 4.3. Besides the

region numerical divergence,corresponding to the point in which the dispersion is almost linear,

the effective mass is well defined and positive on the bottom of the band and furthermore we

observe how, both in the case of weak or strong potential, in the proximity of the Brillouin zone

edge (where the band can be approximated as parabolic), the curvature of the first miniband

changes sign and so the effective mass can be defined and it is negative. This property will also

be essential in the case of localization of interacting particles within a lattice.

4.3 Motivations and state of the art

The interest in the shaping of a periodic potential relies in the control that it provides on the

particle dispersion relation. From the fundamental point of view, for example, artificial lattices

allowed the investigation of several localization mechanism[147, 148] and the implementation

and study of Ising and Bose-Hubbard Hamiltonians [149, 150, 151]. In terms of application,

they provided, for instance in optics, essential tools for guiding[152], slowing down[153] and

strongly confining light[154], enhancing light matter interaction[155].

Periodic lattice for photons have been deeply investigated. At first in arrays of waveguides,

coupled via evanescent field, as proposed in 1965 [156] and then implemented few years later

with GaAs waveguides [157, 158].

Later photonic crystal have been realized, opening the way to the implementation of lattices

of the most various geometries, from 1 to 3 dimensions[159, 160, 161] In such a structures, a

photonic band gap is created (PBG),giving, for given wavelength, a photonic equivalent of an

insulator material[162]. Furthermore, one could mention how the anomalous curvatures of the

photonic modes opened the way to the flourishing and actual research on metamaterials[163].

Equivalent structures have been realized for electrons: periodic sequence of semiconductors

materials, proposed in the ’70 as superlattices [164] , strongly influences the conduction

properties. Negative differential conductivity has been observed as well as electron Bloch

oscillations, interesting as potential emitters of Thz radiation [165, 166], as discussed later in

the chapter.

More recently, cold atoms in periodic lattices have also been subject of interest. The

interference pattern generated by two contra-propagating laser forms a lattice for atoms, which

geometry, amplitude and period can be controlled at will. This allows the investigation of a

large variety of effects: squeezed states[167], Mott-insulator transition[168],

Bloch-oscillations[169] together with Landau-Zener tunneling[170].

For all these mentioned systems, a particular interesting field has been the investigation of

the several mechanism of particle localization that these systems provide. More specifically, the

case of interacting bosonic particles or equivalently, of non linear optical medium, is particularly
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rich since the non linearities generates a wide range of peculiar localized states of different nature

[171, 172, 173, 161, 173]. On these localization mechanisms we will focus our attention.

4.3.1 Localization of interacting bosons in a lattice

The localization mechanism available for bosonic particles inside a lattice are severals, few

of them are purely linear, others are peculiars of interacting particles or non linear medium

and are based on the interplay between the band structure and the non-linearities.

Defect states

A case of linear localization mechanism is represented by a defect state. If the periodicity

of the potential is perturbed, for example by slightly varying the potential height of one site, a

state inside the gap will appear. In analogy with electronic states of donors and acceptors in

semiconductors, in which electrons are trapped and don’t contribute to conductivity, particle in

this state won’t undergo any propagation but will be strongly localized nearby the perturbation.

The wavefunctions characteristic of such a state presents an exponential decay profile on the

side of the perturbation which decay-constant increases with the spectral distance from the band

edges [174, 175].

This mechanism has been applied to generate a wide variety of optical cavities, with a low

modal volume and high Q factor. In particular in the field of photonic crystal, strong light

localization has been obtained by a local variation of the period of the lattice[154], or by slight

changes of the refractive index[176]. This confinement has been obtained both in 1, 2 and even

3[162, 159] dimensions. In some cases the perturbation was externally controlled, allowing the

implementation of reconfigurable circuits[177, 178].

Let’s now consider the effects of the non-linearities and introduce two more classes of

confined states : Truncated Bloch waves (also named self trapped states) and Gaps Solitons.

Truncated Bloch states

The generation of truncated Bloch states takes place in the regime of deep potentials coupled

with strong repulsive non linearities [179]. Let’s consider that the ground state of an individual

site (Wannier state) is occupied by a population of interacting bosons. From this state, particles

can spread toward the next sites only by Josephson-like tunneling. But this is possible as long

as the energy difference between two sites, renormalized by the interaction energy, is smaller

than the energy associated with the single particle tunneling, or, in other word, with the width

of the band. Otherwise, this tunneling stops, and the population imbalance between adjacent

site is locked. The resulting spatial distribution of a cloud of particles presents a flat constant

population distributed for a certain number of sites ( modulated as “non linear bloch state”

[180]), truncated by step edges, through which tunneling is suppressed.

This states has been deeply discussed theoretically in the group of Yuri Kivshar [182, 183]

in Camberra, and firstly observed experimentally in atomic condensates in the group of

Oberthaler in Heidelberg[181]. In their experiments Rb atoms were confined in a one

dimensional trap superposed to an optical lattice. As shown in figure 4.4, by increasing the
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Figure 4.4: Observation of truncated Bloch states (or non linear self trapping) of Bose condensed

Rb atoms. By increasing the atom density (from squared to circles), the width of the state

decreases and acquires the typical top-flat profile discussed in the text. Figures extracted from

[181].

atom densities the self trapping regime was achieved and a top hat profile was observed. Few

years laters, the same effect has been observed also in arrays of defocusing optical

waveguides[184].

Although the basic mechanism for the generation of these states, the self trapping, has

been already observed in a polariton system [37] , the condition of strong non linearities and,

moreover, of deep potential make these states difficult to be generated in our system.

Gap Solitons

Another class of non linear localized states are the Gap Solitons. Thess states will be the

most interesting in our study since the conditions for their formation, namely weak potentials

(V0/ER ≈ 1) and weak interactions[179] , correspond to out experimental conditions.

Their origin relies on the modified curvature of the dispersion that the lattice generates at

the band edge. As already discussed, in the case of the first band (n=1),this curvature results

in an negative effective mass at the edges of the BZ. Here the dispersion of a wavepacket is

anomalous: the time evolution of the wavepacket will go backwards (due to the symmetry of

the Schrödinger equation to the inversion m > 0, t < 0 → m < 0, t > 0). In the presence of

interacting particles, the defocusing of the wavepacket due to repulsive interactions can be

compensated by the focusing due to the negative mass values and this will generate a non

spreading wave-packet named Gap Solitons.

Thus Gap Solitons are non spreading soliton solution of the Gross-Pitaevskii equation (or

equivalently, of a Non Linear Maxwell equation) in the presence of a periodic potential,

representing a state at the edge of the Brillouin Zone, where a negative (resp. positive)

effective mass compensates the repulsive (resp. attracting) inter-particle interactions.
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The energy corresponding to these states lies inside the energy gap, due to the interaction-

energy shift. Their spatial profile is characterised by an envelope sech wavefunction that reads

:

ψGS(x) =
√
n sech

(
x

ξ

)
(4.11)

where ξ = ~2/
√
αn|m| is the healing length, with α the interaction constant,m the particle

effective mass and n the particle density at the soliton peak [179].

Considering the case of the first band and repulsive interaction, Gap solitons represents

stationary solutions for energies lying between the bottom and the middle of the first gap.

Their healing length decreases from infinity at the band edge (for low particle density) up to

the lattice period at the center of the gap (for high density).

In the reciprocal space their wave functions presents two peaks corresponding to the edge

of the Brillouin Zone k = ±kB.

Gap Solitons have been widely investigated, theoretically and experimentally[185, 179].

The first theoretical proposal was made in 1988 and concerns arrays of waveguides with

defocusing non linearities[186]. It’s indeed in this system that, 10 years later, the first

experimental observation was realized [187] : a large array of waveguides were pumped

resonantly at a frequency inside the photonic gap. The signal was then collected after a certain

propagating distance and a focusing effect was observed for high optical densities (see figure

4.5). Later, Gap Solitons have been observed in several other photonic

systems[148, 188, 173, 189].

Figure 4.5: Left: Experimental observation of Gap Soliton in AlGaAs waveguide arrays with

Kerr non-linearities. Several waveguides are excited. Light propagates inside the waveguide and

is collected at the end of the guide. In the left panel we see how increasing the pump power,

the beam is more and more focused. Figure extracted from [158]. Right: Observation of Gap

soliton for a Rb atomic BEC. On top, the scheme of the experimental approach to bring the

condensate from the bottom to the edge of the first miniband: to do that the whole optical

lattice is accelerated. In the bottom, effect of the negative effective mass on the expansion in

time of the packet of atoms. Figures extracted from [190].

Also atomic BEC have been investigated in region of negative mass of the band structure.
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The control of the dispersion of the wavepacket[191] and the formation of Gap Solitons[190]

has been achieved. Thanks to an acceleration of the optical lattice the BEC was slowly

accelerated and brought adiabatically at the band edge and after that the spreading of the

wavepacket was observed revealing non dispersive behaviour (see picture 4.5).

Both these two systems presents some experimental complications for the generation of

Gap Solitons. For atoms, since the top band-edge is not the ground state of the system, it is

complicated to drive a BEC exactly at this state. For photons, the weak non linearity and the

need of pumping the system in the photonic gap, requires high pumping powers. Additionally

also the study of the time evolution of the system present some difficulties. In this context,

polaritons, with their strong non linearities and their out-of-equilibrium features, can present

some advantages in the excitation of such states.

4.3.2 Polaritons in a periodic potential: the state of the art

In the last few years, polaritons in a periodic potential started to be investigated and three

main methods has been developed to implement a periodic lattice felt by polaritons.

The first one was developed in 2007 in the group of Y.Yamamoto in Stanford [192]. It is

based on the deposition of patterned metallic thin films (20 nm) on the top surface of GaAs

based microcavity (see figure 4.6). In the region where the metal is deposited, the cavity mode

is red-shifted of around 400µeV . Consequently,the polariton modes are shifted of approximately

half of this value. When the metal is deposited in parallel equidistant stripes, it generates a 1D

periodic potential in the direction perpendicular to the stripes, while no confinement is present

on the perpendicular direction. This method is versatile and allows also the generation of several

geometries of 2 dimensional lattices [193, 194, 195].

Although polaritons condensation has been observed in this system, the method presents two

main limitations. The metal deposited on the cavity absorbs photons and decreases the polariton

lifetime. Additionally, the weakness of the induced potential limits the width of the generated

energy gaps to values around 200µeV ( comparable with the linewidth of the polaritonic mode):

this factor limits the possibility of investigating localization in states inside the energy gap.

Another method was developed in the group of Paulo Santos in Berlin. It is based on surface

acoustic waves, generated over the sample with a deposited piezoeletric material [196]. Such

waves travel all over the cavity, inducing a compression and extension of the width of the cavity,

the Bragg mirrors and the QWs. Both the excitonic and photonic modes are then modulated

periodically with the spatial period of the travelling wave (see figure 4.6). A 1D lattice for

polaritons is created and it travels at the speed of the acoustic excitation. Such a method allows

to generate a modulation of depth up to few meVs. The possibility of easily acting on the

strength of the modulation allowed the investigation of the transition from weak potential to

the tight binding regime. Localization of the condensate in each lattice sites could be achieved

[197, 196]. Nevertheless, even this system presents some limits. The potential generated is not

static but travels over the cavity. Although this movement is slow with respect to characteristic

time involved in the system, it is fast with respect to the data acquisition time in the experiments,

in which the collected signal must be averaged over several acoustic periods. Additionally, the

cavity quality factor (Q ≈ 2000), limits the photon lifetime to ≈ 3− 4 ps and this complicates
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Figure 4.6: Left: Schematic of an array of metal stripes deposited on the cavity. In the inset is

shown the induced energy modulation of the polariton states (figure extracted from [192]). Right:

Scheme of the experimental configuration for generation of surface acoustic wave propagating

over the microcavity. The resulting polariton dispersion is also reported, where forbidden energy

gaps appear (figure extracted from [196]).

.

the investigation and comparison of propagation in the band and localization in gap states.

In the next pages, I will presents how with our approach we tried to overcome some of the

limitations of these systems: we obtained a periodic potential in a real 1D geometry (with total

confinement on the transversal direction), with a high modulation depth and without sensibly

affecting the polariton lifetime.

4.4 Modulated wires

In this section we present our approach for realizing a one dimensional lattice for polaritons,

based on laterally modulated wires. We first characterize the polariton modes in the linear

regime.

4.4.1 Engineering the potential landscape: modulation of a wire width

The confinement of microcavity polaritons, both in 1D or OD geometry, is associated to an

energy blueshift of the ground state, due to the existence of a confinement energy [198]. As

already discussed in chapter 2, in the case of a microcavity wire, the energies of the optical

modes depends on the lateral size of the wire according with formula 2.1.

In figure 4.7, we show the energy of the optical mode at ky = 0 extracted from wires of

different lateral size. The experimental points are then fitted with formula 2.1 for j = 0, 1, 2.

We can conclude that the variation of the lateral size of the wire modulates the optical mode

states, and thus the polaritonic one.

This dependence of the polariton energy on the size of the wire provides a tool to shape a

1D potential. One can realize defects for a polariton flow, a barrier or a well with controllable

size and height [31], or an energy gradient to accelerate or decelerate polaritons.
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Figure 4.7: Squares: Energy of the several transversal confined cavity mode at ky = 0 extracted

from wire of different width. Lines: Curves corresponding to the formula 2.1 for j = 0, 1, 2.

Here we show how this method can be exploited to realize a periodic potential for polaritons.

We etched some 1 dimensional microcavity with a modulation of the wire width. Figure 4.8 shows

a Scanning Electron microscope image of an array of modulated wires.

Figure 4.8: Up: Scanning electron microscope image of few modulated wire structures. Bottom:

The width profile of a typical modulated wire together with the resulting potential for polaritons.

The modulated region is 80µm long. The period P is 2.1µm.

An exemple of width profile and the corresponding expected potential profile is also reported.

The potential is a squared well potential, with a unity ratio between large and thin part, both
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of size a. The period of the potential, P = 2a, goes from 1.6 up to 2.7µm.

The height of the potential steps is modulated by two parameters: the strength of the lateral

modulation, or the exciton-cavity detuning δ. Indeed, the wire shaping modulates the optical

mode energy. If the energy steps is named Vopt, the effective potential for polariton is weighted

proportionally to its photonic part following the relation V0 = |C|2Vopt, where C is the photonic

Hopfield coefficient of the polariton state.

The present method allows to reach a potential modulation that goes from zero up to 2-3

meVs. The only limitation is given by an upper and lower limit to the lateral size of the wire.

A width shorter than 1.5µm brings to strong non radiative exciton recombination at the lateral

interfaces, while if the wire is too wide, more than 4µm, the splitting between the first and

second order transverse confined mode is too small and the system loses its one dimensional

character.

The whole set of etched wires is reported in figure 4.9, together with their main parameters.

Figure 4.9: Scheme of the etched microcavity mask representing several families of modulated

wires. The main parameters are reported in the figure. The values of V0 corresponds to the

estimated potential depth for a cavity-exciton detuning δ = 0. Every combination of the

parameters V0 and period P are reproduced three times by varying the average width of the

wire Lavg.

4.4.2 Characterization in the linear regime

We now characterize these structures in the linear regime via the photoluminescence signal

collected both in real and reciprocal space under non resonant excitation.

The redefined polariton dispersion

In figure 4.10 we report two examples of far field emission from modulated wires, that allows

us to directly visualize the polariton dispersion. The measurements put in evidence how the

dispersion curve is strongly modified by the lattice.

The continuous dispersion is now cutted in several minibands, separated by the presence of

forbidden energy gaps. One can define several Brillouin Zones (BZ), and enhancing the signal

for certain energy and angle of emission, the effect of the band folding is visible.
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Figure 4.10: Reciprocal space emission measured on a single modulated wire excited non

resonantly with low power. The band structure characteristic of a periodic potential is visible.

The dashed white line indicates the edges of the 2 first BZs. The signal inside the rectangle

in the right panel has been amplified to better show the band folding. Parameters of the wire:

Left: P = 2.7µm, V0 ≈ 0.9meV , δ = −1meV . Right:P = 2.1µm, V0 ≈ 1.5meV , δ = −9.5meV .

Gap and band width

The dispersions obtained from a wide variety of wires of several parameters have been

analyzed and the main results are reported in figure 4.11. On the the left graph we show the

Figure 4.11: Left: Black points: width in energy of the first forbidden energy gap measured

for several wire of period P = 2.1µm. Red points: Kroenig-Penney calculation of the width of

the energy gap obtained with parameters V0 and mp(polariton mass) extracted according to the

geometry of the wire and its detuning δ. Right: Values of the energy width of the first (black)

and second (red) allowed energy band. Squares and circles represent values extracted from wire

with a modulation depth V0 around, respectively, 0.3 and 0.8 meV. The solid lines are the results

from a Kroenig-Penney calculation.

width of the first forbidden energy gap as a function of the strength of the potential step V0.

The values of V0 have been calculated considering the modulation of the optical mode
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corrected by the photonic fraction |C|2 corresponding to different exciton cavity detunings δ,

different for each wire.

The point shown corresponds to a family of wires with a period of P = 2.1µm. The width of

the gap doesn’t change sensibly with the period P of the modulation. On the contrary, it is

strongly dependent on V0. In the graph we show how we can vary the gap width from 0.2 meV

up to almost 1 meV. Its values are, as expectable, slightly higher than V0/2, the value

discussed in the beginning of the chapter for a sinusoidal potential of amplitude V0.

A Kroenig-Penney calculation has been performed, with parameters given by the expected

value of the effective potential V0 (extracted from the geometry of the wire) and by the

polariton mass, both corrected according with the detuning δ of each wire. The obtained

results reproduce quite well the experimental points.

On the right part of figure 4.11, we plot the energy width of the first 2 allowed energy bands,

which limits corresponds to the polariton energy at k = 0 and k = kB for the first band, and

at k = kB to k = 2kB for the second one. We plot it as a function of the 3 different periods

available on the sample and for values of the potential V0 around 0.3 and 0.8 meV. The band

widths depend weakly on V0 but mainly on the values of the period P. We also compare our

results with a Kroenig Penney calculation obtained varying the period P, and also the potential

V0 and the polariton mass according with the detuning.

The results show how the comparison is satisfying concerning the first band, while it

overestimates the width of the second band. This discrepancy can be explained by the fact

that the Kroenig-Penney model consider a particle of constant mass, that correspends to a

parabolic dispersion. For polaritons, this approximation is valid for low energy, and so the

model works for the first band, while approaching the reservoir the effective mass increases and

the model is not adapted anymore. Additionally also the effective amplitude modulation varies

with the photonic fraction |C|2, thus with the polariton energy.

Influence of the non parabolic polariton dispersion and of the higher order tranverse

modes

To exactly reproduce the observed dispersion curve, a simple KP model is not enough and

a more complete one is needed. This is better shown in figure 4.12.

On the left panel we show the experimental polariton dispersion in a modulated wire (same

of the right panel of fig. 4.10). In the middle we show a Kroenig-Penney calculation performed

to reproduce the experimental dispersion. We observe that the first band is properly reproduced

but for higher energies this model is not adapted.

The more complex features observed in the experiments are result of two effects.

One,as already discussed, is the variation of the mass and of the photonic fraction with increasing

the energy.

Additionally, the real structure is not fully 1D but allows the existence of several transverse

mode. At higher energy this transverse mode plays a role and produce some additional

anticrossing and the opening of several gaps. A good reproduction of the experimental

dispersion has been obtained by solving two coupled Schrodinger equation for the excitonic

and photonic fields, taking into account the real 2D geometry of the wire .
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Figure 4.12: Right: Experimental dispersion collected from a modulated wire (same as right

panel of fig. 4.10). Center: Best fit of the dispersion obtained from a Kroenig-Penney calculation

(the bands are shown in the folded representation). Only the lower energy region of the dispersion

is properly reproduced. Right: Simulation of the band structure obtained solving two coupled

Schroedinger equations for the excitonic and photonic fields and taking into account the real

2D geometry of the wire. A slight asymmetry in the wire profiles (shown in the inset) has been

introduced to reproduce the additional anticrossing indicated by the arrows.

The results are shown on the right panel of figure 4.12, obtained in collaboration with

H.Flayac and D. Solnyshkov in Clermont Ferrand. In order to reproduce also the additional

anticrossing in the middle of the second band (white arrows in the figure), we had to introduce

a slight asymmetry between the modulation on the two sides of the wire, as shown in the inset

of the right panel.

We finally remark that, despite the influence of the transverse modes discussed in this

paragraph, in most of the presented experiments, the condensates are studied at energy low

enough to do not excite any transverse mode of higher order. The 1 dimensional character of

the system is preserved.

The ratio V0/ER

An essential parameter that will characterize the behaviour of polariton inside these

structures is the already discussed ratio V0/ER, where ER is the recoil energy.

In figure 4.13 we report typical obtained values for wires of different width modulation and

period. Our structure allows to access values of V0/ER going from a minimum of 0.1 up to

around unity values (values up to almost 2 can be reached for really negative detuning).

The meaning of this ratio, appears from a better looking to the shape of the first miniband for

2 different wires ,reported also in figure 4.13. For low V 0/Er values, the polaritons dispersion is



4. Polaritons in a 1D modulated potentials 81

Figure 4.13: Top: Values of the ratio V0/ER for wires of different width modulation and period

P. Values from 0.1 up to 1 are presented. Bottom: Far field emission from the first miniband

of two modulated wires with two different values of the ratio V0/ER. The main parameters

are reported on the figures and those parameters has been used to obtain the fit of the bands

reported on the images with red dashed lines.

almost unaffected, and the minibands is essentially parabolic with a slight curvature only in the

proximity of the edge of the BZ. On the contrary, for higher values of the ratio, the curvature

of the minibands is more pronounced, acquiring a shape similar to the cosine form expected

within the tight binding approach. The curves superimposed to the experimental dispersion in

the figure come from a Kroenig-Penney calculation obtained by using the structural parameters

of the 2 different wires.

Al tough far from the strict tight binding limits, that would required V0/ER of around 10

or higher [143], the values accessible in our structures allows to investigate different regimes.We

will highlight the influence of this ratio on the localization of particle in gap states and on the

hopping from the first to the second band.

Density of states

In figure 4.14 we show a typical exemple of the total integrated intensity as a function of the

energy measured on a modulated wire excited non resontantly at low power. The main graph

on the left corresponds to signal coming only from polariton states, obtained correcting the raw

emission by substracting the contribution from the excitonic emission (see inset of the left graph

of 4.14).

We observe that the polariton emission is not spectrally homogeneous but presents several

peaks. These are the manifestation of what in solid state physics are well known as Van Hove

singularities after the name of the Belgian physicist who in 1953 introduced them for phonons
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Figure 4.14: Left: Photoluminescence spectra from a modulated wire excited non resonantly at

low power. The curve in the main graph represents emission only from polariton states.It has

been obtained by subtracting the contribution to the total intensity coming from the excitonic

emission. The raw data are represented in the inset. Right: The black curve represents the

photoluminescence restricted to the first mini band. The red curve represents the inverse of the

derivative dE/dK obtained from a Kroenig-Penney calculation,and so it represents qualitatively

the energy dependence of the density of states DOS, according to equation 4.13. The peaks at

the edge of the bands represents a divergence of the DOS.

in a lattice [199].

Neglecting the spin degree of freedom, one can construct the density of states defined as

proportional to the number of allowed wavevectors in the n-th band in the energy range from E

to E+dE.

The number of allowed wavectors is just the volume of a primitive cell in the reciprocal space

with E ≤ E(~k) ≥ E + dE, divided by the volume per allowed wavevector ∆~k = (2π)d/V , where

d is the dimensionality of the crystal.

The expression so becomes:

g(E)dE =

∫
Ω

d~k

(2π)d
×

{
1, ifE ≤ E(~k) ≥ E + dE

0 otherwise.

}
(4.12)

where the integration is over Ω, an elementary cell in the reciprocal space.

The integral can be transformed in a surface integral on an isoenergetic surface Sn = En(~k) =

E within the primitive cell, being n the band index. Given ∇En(~k), the gradient of such surface,

one then gets[40]:

gn(E) =

∫
Sn(E)

dS

(2π)d
1

∆En(~k)
(4.13)

which gives the relation between the density of levels and the band structure.

The periodicity of the band structure assures the existence of at least one local minimum and

maximum of the energy for each band. The point of minima and the maxima of each band, that

often coincide with the edges of the BZs, corresponds to points in which the gradient vanishes

and so the density of states has anomalous behaviour, giving rise to Van Hove singularities. In
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three dimensions, such singularities are integrable, giving finite values of gn, but they do result in

divergences of the slope dgn/dE. experimentally they have been observed in optical absorption

spectra [200] .

In lower dimensions, 2D and 1D, g(E) is expected to diverge to infinity. This corresponds

to anomalies in spectroscopic measurements obtained for example in graphite (quasi-2D)[201]

or more recently in graphene [202] . In one dimension, they have also been observed in both

optical absorption and photoluminescence [203], for example in single-wall carbon nanotubes.

In the luminescence spectra collected from our wires, the observed peaks correspond to edges

of the minibands. We can clearly identify the Van Hove singularity corresponding to the first

and second band edges and the additional gap discussed above in the middle of the second band.

Also peaks are visible, corresponding to other gaps appearing at higher energies (as visible in

fig 4.10). On the right of figure 4.14 we focus on the emission intensity from the first band. The

red curves represents the inverse of the derivative dE/dK of the first miniband simulated with

a Kroenig-Penney calculation. A qualitative similarity is observed (the height of the divergent

peak in the calculated curve is arbitrary and only related to the precision in the numerical

calculation).

These results shows that, although we are far from the condition of thermal distribution

of the polariton population, the photoluminescence intensity generated at weak non resonant

excitation reflects qualitatively the polaritonic DOS in the system.

Linewidth of polariton modes

The periodicity and regularity of the periodic potential directly depends on the precision

of the etching. One could expect that some slight imprecision in the shaping of the structures

could bring some random variation on the width of the wire and so of the energy depth of the

potential well between sites. One could expect an effect of this on the linewidth of the polariton

modes.

In figure 4.15 we report the emission corresponding to the polaritonic state at kx = 0, coming

from a non modulated (flat) wire and a modulated one (V0 ≈ 0.8meV ). The two wires have a

similar cavity-exciton detuning of around δ = −5meV .

We observe that the flat and modulated wire present similar linewidths, with a slight increase

of around 15% for the modulated ones. This is a further confirmation of the regularities of the

etched structure.

Propagation in real space

In figure 4.16 we report a typical example of the emission from a modulated wire excited at

its center with a 2µm non resonant laser spot. Together we show also the corresponding band

structure collected in the far field emission.

Polaritons inside the bands can propagate away from the excitation region and spread all over

the wire. The resulting polariton intensity distribution presents a periodic spatial modulation,

with a period that corresponds to the one of the lattice, allowing a direct visualization of the

polarition wavefunctions.
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Figure 4.15: Emission line from a polariton state at kx = 0 measured on a non modulated (flat)

wire (blue) and a modulated one (black) with V0 ≈ 0.8meV . The red dashed lines represent two

Lorentzian fit. The resulting width of the emission line is 95µeV and 112µeV for respectively

the flat and modulated wire, which is mainly due to inhomogeneous broadening.

Figure 4.16: Center: Real space emission from a modulated wire of period P = 2.7µm, excited

below threshold in the center with a 2µm wide spot. Polaritons are created in the center and

propagates all over the wire inside the allowed energy bands. A modulation in the polariton

emission is visible, and corresponds to the period of the lattice. Left: The corresponding far field

emission, where the band structure is visible . The red dashed line is a fit of the first miniband

obtained with a KP calculation (Parameters P = 2.7µm, mp = 5.3 ∗ 10−5m0 , V0 = 0.9meV ).

Right: The black points are the experimental values of the group velocity vg for polaritons in the

first miniband extracted by fitting the decrease of the intensity signal along the propagation ( a

polariton lifetime of 30 ps is considered). The red curve represents the group velocities extracted

from equation 4.9 applied to the fit of the miniband.

The signal intensity decreases with the distance from the excitation region. We already

discussed how this decrease is related to the finite polariton lifetime and to their propagating
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velocity.

In the right graph of figure 4.16, we show the experimental values of the group velocity for

polaritons in the first miniband extracted by fitting the decrease of the intensity signal along

the propagation and taking into account a polariton lifetime of 30 ps.

The red curve in the graph corresponds to the value of the group velocity calculated from

the band obtained in KP calculation with the structural parameters of the wire and applying

formula 4.9.

We observe quite a good agreement between the two curves, confirmation that the

propagating behaviour is conserved in the modulated wires. The values of polariton lifetime

used, 30 ps (corresponding to 40 ps for polaritons at δ = 0meV ), is similar to the one

measured on the planar cavity (see 2.1.1) or in other etched structure [31, 100], indication that

the modulation doesn’t affect the polariton lifetime.

To conclude, in this section we have presented our approach to obtain a 1 dimensional lattice

for polaritons. We managed to strongly redefine and modulate the polariton dispersion and the

results obtained in the characterization of the polariton states indicates a good control of the

parameters of the system. Additionally, the lifetime and the propagation inside the bands seem

not to be affected by the periodic modulation.

4.5 Condensation regime and localization

under CW excitation

In this section we discuss the condensation regime for polaritons in a 1D periodic potential.

4.5.1 Condensation in localized gap states

Let’s consider a modulated wire excited with a 2µm non resonant CW laser spot. The spot

is centered on a barrier of the periodic potential and its power is progressively increased. The

results for few relevant powers are shown in figure 4.17. Below threshold, all the states inside the

allowed energy band are populated. In panels c,f of figure 4.17 we focus on the first miniband

and the first gap: in the real space emission we observe polariton created in the excitation region

and propagating all over the wire as already discussed in details in the previous sections (see

4.4.2).

By increasing the excitation power, we observe a strong non linear increase of the total

polariton emission (see panel a), signature of polariton condensation, as already observed and

discussed for non modulated wire (see figure 3.7). But here the spatial behavior of condensed

polariton drastically changes with respect to the case of non modulated wire. In panel d and e

we observe how condensation does not generate a monochromatic flow of polaritons spreading

away from the excitation region ,as in the case of flat wire. On the contrary condensation takes

place in a strongly localized state, with the energy of such states lying inside the first energy

gap (panel b).

The interpetration of these results is the following. The non resonant excitation locally

populates the excitonic reservoir. The repulsive interaction between exciton and polaritons and
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Figure 4.17: A modulated wire is excited with a 2µm wide cw laser spot centered on a maximum

of the periodic potential. (a) Total emission intensity measured as a function of the excitation

power. (b) Black points: Energy of the state inside the gap measured as a function of the

excitation power. Blue points: typical blueshift measured exciting a non modulated wire.

(c-e) Spectrally and spatially resolved emission for three excitation powers (in logarithmic

color scale).(f-h) Spectrally resolved far-field emission measured on the same wire for the same

excitation powers (in linear color scale); the first minigap induced by the periodicity is indicated

with dashed lines. (Parameters of the wire: P = 2.7µm, δ = −5.5meV , V0/ER = 1).

the consequent induced blueshift represents a perturbation to the perfect periodicity of the

lattice.

Such additional local potential breaks the symmetry of the lattice and creates some additional

localized states, appearing in the energy gap. In panel b we have plotted the energy of the

generated condensate as a function of the excitation power (black points). We thus observe that

condensation takes place in localized state inside the gap.

Bounding and anti-bounding states

By observing the emission in the reciprocal space, reported in panels g and h of figure 4.17,

we observe that by varying the excitation power, condensation is triggered towards two different

states, labelled S1 and S2. This two states present in k space two opposite profiles: S1 has two
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peaks corresponding to edge of the BZ while S2 presents two minima at the edge of the BZ.

To understand the nature of the two S1 and S2 gap states, we performed some numerical

simulation, reported in figure 4.18. In collaboration with the group of G.Malpuech, we

Figure 4.18: Calculated emission distribution in real and in k space solving the time dependent

Schrodinger equation including pumping and lifetime, in the presence of both a periodic potential

and a Gaussian potential at x = 0µm. The height of this potential is 0.3meV for panel a,c and

0.9meV for panel b,d. The pumping is a delta function in time and space which allows exciting

the more localized solutions of the spectrum. The white dashed lines indicate the position of

the first energy minigap induced by the periodic potential. In panel e we report the density

probability (black line) and real part of the S1 (up) and S2 (down) wavefunctions, showing

respectively the antisymmetric and symmetric character with respect to the reservoir position

(the imaginary parts are not shown but present the same symmetries).

numerically solved a time-dependent Schroedinger equation in the presence of a periodic

potential perturbed by a Gaussian potential located on top of a lattice barrier. We neglect

firstly interparticle interactions.

The eigenstates of the system are perturbed by the local gaussian. By varying the height of the

gaussian potential, we observe the appearance of two different gap states, similar to S1 and S2.

The experimental results are well reproduced, in particular the features observed in k space.

From the simulation, we understand that on each side of the potential, a surface state

inside the gap is created. Due to the finite size and height of the potential, the two states can

couple. The coupling brings to the formation of an anti-symmetric (anti-bonding state) S1,

and a symmetric (bonding) state S2. In the simulation, the eigenstates of the system are then

excited by a pumping consisting in a delta function in time and space, which favors the

excitation of the more localized solutions of the spectrum. For lower potential, the state S1 is

located inside the energy gap and so localized and the more favorably excited. Increasing the

excitation power, S1 energy increases and approaches the second band, becoming wider. The

state S2 instead is in the center of the gap and so is more efficiently excited(panels b,d).

In panels e the wavefunctions for S1 and S2 are shown, both modulus and real part (the

imaginary part is not shown but has the same behaviour). The real part for the wavefunctions

of S1 and S2 presents respectively antysimmetric and symmetric shapes, reflecting the bonding

and anti-bonding character of these states.
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The relaxation’s kinetic

The discussed gap states are clearly not the lowest energy state of the system. Indeed, due

to their finite lifetime, polaritons present out-of-equilibrium features that allows condensation

to occur not necessarily in the ground state [82]. The choice of the state in which condensation

occurs strongly depends on the relative efficiency of the relaxation from the excitonic reservoir

towards the polaritonic state. This relaxation is proportional to the spatial overlap between

the reservoir and the final state wavefunctions.

In our experimental conditions, the potential perturbation that generates the gap states is at

the same time source of excitons in the reservoir. Consequently, this gap states, strongly

localized, will present the highest overlap with the reservoir and so the condensation will be

favored towards such states. The efficiency of the relaxation reduces the reservoir population

and so the values of the blueshift generated. An indication of this is shown in panel h of figure

. The energy of the states excited inside the gap (black points) is much lower then the

blueshift generated in a flat wire with a comparable detuning δ (the k=0 energy has been set

to the same values for the 2 wire): this is an indication of a reservoir more efficiently depleted

by the good spatial overlap with the state.

Dependence of the localization on the ratio V0/ER

The localization feature in a state inside the gap strongly depends on the wire parameters,

and in particular on the ratio V0/ER.

On the left column of figure 4.19 we summarize the behaviour of wire with V 0/ER around unity

or larger (panel a corresponds to the wire of fig. 4.17 ).

We represent schematically the band structure, with dashed horizontal lines, while the

black points are the energies of the states generated inside the gap. Even below threshold, a

state in the gap appears, and then above threshold condensation takes place in such a state

and the energy remains almost stable inside the gap.

The behaviour is different in the right column of figure 4.19. Here we consider wires with

small V 0/ER ratio. In panel c we observe how, even if states in the gap appear below threshold,

at condensation power 1Pth, the condensation takes place in a state already inside the second

band and the energy continues to increase. Here the width of the gap and consequently the

localization of the gap states are not strong enough to trigger condensation on such states. The

observed blueshift is comparable with the one of a flat non modulated wire (blue points).

The case of panel d represents a wire where the gap is small and the first band is wide:

the observed behaviour is fully similar to what observed in a flat wire.We can measure the

blueshift generated by the reservoir below and then above threshold, progressively increasing.

Condensation takes place in a state inside the first band and then overcome the gap and create

a condensate in the second band.

In panels e and f (corresponding to the wires of panels b and d), we report the real space

emission of the wire corresponding to panels, respectively, b and d. We see how strong or weak
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Figure 4.19: In the 4 panels we summarize the behaviour of 4 modulated wires with different

values of the ratio V0/ER. Panels a,b represents wire with V0/ER ≈ 1 , while in panels c-d

V0/ER < 1. The band structure is schematically represented by the green dashed lines, edges of

the bands, and the red ones, edges of the energy gap. The black squares represents the blueshift

observed by varying the excitation power. In panels c,d this values are reported together with

the ones obtained for a flat wire of width 3.5µm and δ ≈ −5meV . Panels e and f show the

spatial resolved emission corresponding to the wire of, respectively, panels b and d. The red and

green lines always represent the edges of the gap and of the bands. The essential parameters of

the wires are reported in the figure.

value of V 0/ER corresponds, respectively, to condensation in a localized or propagating state.

4.5.2 The role of interactions: Bound Gap Solitons

A specificity of our system, with respect to other previous studies of interacting bosons in

lattices, is the coexistence of the local excitonic potential together with the polariton-polariton

interactions. We already discussed how interparticle interaction can drive localization in gap

state named Gap Solitons, characterised by a hyperbolic secant profile with a characteristic size

that decreases when going from the low density (bottom of the gap) to the high density limit

(centre of the gap). Furthermore, we know that the exclusive presence of an external local

potential generates a defect states in the gap, characterized by an exponential spatial decay.

Let’s now consider what should be the effect of the coexistence of the two effects on the
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spatial profile of the resulting state.

Theoretical background on Bound Gap Solitons

We consider a given number N of bosonic particles inside a lattice, presenting repulsive

interaction , being α the interaction constant. We inject them in a region of negative effective

mass of the BZ.We also consider the effect of the excitonic potential considering, for simplicity,

a delta potential V δ(x). In such a case, a simple analytical solution of the Gross-Pitaevskii

equation (see 1.3.3) is given by a truncated sech wave function of the form :

ψ(x) =
√
n sech

(
(|x|+ x0)/ξ′

)
(4.14)

This solution is obtained from boundary conditions: the jump of the derivative at the barrier

is proportional to the strength of the barrier potential while far from the barrier, the free Gap

Soliton solution remains unperturbed.

The variable ξ′ is the characteristic decay length of the envelope function and is linked to

the energy of the state as:

ξ′ =
~√

2|m|E
(4.15)

where E indicates the energy above the upper edge of the first miniband, and is given by:

E =
|m|

(
V + αN

2

)2
2~2

(4.16)

x0 is the truncation coordinate and is given by the expression:

x0 = ξ′ arctanh

(
1

1 + αN
2V

)
(4.17)

.

We can define a variable β as the ratio αN
2V , and study the behaviour of the wavefunction for

some limit cases. In absence of interaction, β = 0 and x0 →∞. The wave function is the one of a

pure defect state, exponentially decaying on both side of the reservoir. On the contrary, without

any excitonic potential V or, equivalently, in the case of strong interaction, β →∞ and x0 → 0.

In this case the wavefuction as has pure sech shape. This is the characteristic shape of a Gap

Soliton, (see eq. 4.11),a localised state driven by inter-particles interaction already discussed in

4.3.1. All the intermediate cases, which represent states bound to the perturbation potential

V , with a profile modified by interaction, are named Bound Gap Solitons. One can generate a

whole family of solutions characterized by a well defined energy in the gap by fixing the quantity

V + αN
2 and varying the parameters β: this allow to obtain a continuous transformation from

an exponential defect state to a free GS.

Few exemples of spatial profiles obtained applying the formula 4.14 are reported in figure

4.20 for two different values of E and so of ξ′.

We observe how, by increasing the interactions, the profile deviates from a perfect

exponential, gets flatter on top approaching progressively the probability density of the form

sech2, characteristic of a free gap soliton. In the left side of the graph, corresponding to a
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Figure 4.20: Envelope of a Bound Gap Solitons wavefunction, calculated using the formulas

from 4.14 to formula 4.17 by progressively increasing the particle density N and so the ratio β.

The energy and so the variable ξ’ are kept constants. Parameters used: Left side, ξ’= 10µm,

E = 10µeV . Solid line: αN = 0, dashed line αN = 12µeV ·µm, dotted dashed αN ≈ 20µeV ·µm.

Right side ξ’= 3µm, E = 100µeV , solid line: α = 0, dashed line αN ≈ 120µeV · µm, dotted

dashed αN ≈ 200µeV · µm.

energy near to the lower edge of the gap, this variation is particularly clear, while for higher

energy, when the size of the state is around 3 microns, the deviation is less pronounced. It’s

important to notice that changes in the profile occurs even for small values of the non linear

term, corresponding to energy shifts of just few tens of microelectronvolts.

Measured spatial profiles of the Gap states

Figure 4.21 shows the experimental profiles corresponding to the gap states S1 and S2

presented in figure 4.21.

The state S2 has an energy close to the center of the gap, corresponding to an energy shift

with respect to the top of the first miniband of E = 0.38meV . Its intensity profile evidence a

strong localisation, with a FWHM of 2.2µm, smaller than the period P of the lattice. For such

localized state, we are in the case of the right side of the graph 4.20, where due to the strong

localization , it is not possible to see the effect of interactions in the profile shape.

We performed a fit for the envelope of the intensity based on on the formulas 4.15 and 4.14.

The result correspond to a curve that is essentially an exponential decay (corresponding to low

values of the factor β < 0.05.)

On the contrary, the state S1 has lower energy, with a value of around E = 0.22meV . It’s

intensity distribution is broader (it presents a FWHM of 6.1µm) and so, although the interaction

term is expected to be lower, a deviation from the exponential profile can be evidenced. The

envelope of the intensity has indeed the shape of a sech2 function and this is an indication of

the role of interaction on the intensity profile and on the formation of a Gap Soliton.

For both states, the exponential spatial decay of the wings of the envelope is found to be

around 4µm, not far from the expected values of ξ = 4.6µm(for S1) and ξ = 3.5µm (for S2),
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Figure 4.21: The intensity profile of the states S1 and S2 corresponding to figure 4.17. The

measured FWHM of S1 and S2 are 6.1µm and 2.2µm. The profiles are fitted by applying

formulas 4.15 and 4.14. In order to fit the envelope of the emission, only the intensity at the

peaks of the modulated profile are considered. The resulting best fitting function corresponds

essentially to a sech2 for the state S1 and to an exponential for S2. In the insets, the same

profiles are shown in log scale.

obtained by applying formula 4.15 (using a polariton mass of |m| = 0.7 ∗ 10−5m0, derived from

the curvature of the mini-band at the edge of the BZ).

In conclusion, we have shown how the modulation of the polariton energy changes the spatial

behavior of the generated polariton condensate. We discussed how the perturbation to the lattice

generate states inside the gap, strongly localized, toward which condensation is triggered. The

cohexistence of both polariton-exciton and polariton-polariton interaction is unique and specific

of our system. It results in the formation of hybrid states named Bound Gap Solitons, bound

to the reservoir with a profile analogous to that of a Gap Solitons, dependent on the relative

strength of the two interactions.

4.6 Condensation and localization

under pulsed excitation

In this section we discuss the condensation of polaritons in modulated wires under pulsed

excitation. In this case, both the reservoir and the polariton population evolve in time allowing

to explore different regimes by studying the time evolution of the system.

4.6.1 Localization and Bound Gap Solitons dynamic

We now excite a modulated wire by a non resonant picosecond laser pulse and we collect the

photoluminescence resolved in time by using a Streak camera (see Chapter 2 for experimental
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details).

Dynamics of condensation

In figure 4.22 we summarize the behaviour in time of the integrated photoluminescence signal

as a function of the power of the laser beam. On the left graph we report few curves showing

Figure 4.22: A modulated wire is excited with a non resonant ps laser pulse. Its dynamic is

resolved in time by the use of a Streak Camera. Left: Total integrated signal emitted from the

wire as a function of time for several excitation powers. The peak at t = 0 represents reflection

of the incoming laser pulse. In the inset the same curve are reported in log scale. Right: Black

squares represent the peak intensity of the polariton signal as a function of the excitation power.

The red circles show the delay between the pulse arrival and the peak in the emitted polariton

signal. Total integrated signal emitted from a modulated.

the typical dynamic of the signal. The ps laser pulse, arriving at t=0, populates the excitonic

reservoir. Within a certain time delay, excitons in the reservoir relax towards polaritonic states.

Below threshold this dynamic is slow, the photoluminescence curve has a long rise time and the

photoluminescence signal is weak. On the right of fig. 4.22, we report the value of the peak

intensity together with the time delay between the arrival of the pulse and the intensity peak.

By increasing the pump power, the bosonic stimulation accelerates the relaxations from the

reservoir toward the lowest energy states and we observe a strong non linear increase of the signal

intensity, corresponding to the creation of a coherent polariton population. Parallely, the rising

of the signal gets faster, the pulse-signal delay strongly decreases below the time resolution.The

signal intensity, after a fast rising, decreases in time due to the finite lifetime of both polaritons

and excitons.

It’s important to remind that the two populations evolve in time in a coupled way, due to

a transfer of particle from the reservoir to the polariton states. As a consequence, although

excitons have long lifetime up to 400 ps, the depletion of the reservoir can be much faster due

to the stimulation of the relaxation process.
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Localization inside the gap

As observed in the case of cw excitation, the spatial behaviour of polariton signal in

modulated wire is substantially different from the one observed in a flat wire. In panel a of

Figure 4.23: Emission under non resonant excitation with a 2µm wide pulsed laser spot. (a)

Spatially resolved emission measured as a function of time for a flat wire with power P ≈ 3Pth.

(b,c) Emission in real and reciprocal space time resolved for a modulated wire excited with a

power of P = 2.5Pth and spot placed on a maximum of the periodic potential. In (c) the dashed

lines show the position of the edges of the first BZ. (d) Energy of the emission as a function of

time measured at the center of the wire corresponding to panel b. The dashed lines show the

position of the edges of the first BZ. Parameters of the modulated wire: period P = 2.7µm,

δ = −7.5meV , V0/ER = 1.5.

figure 4.23 we show an example of the spatial emission from a flat wire resolved in space and

time, excited above threshold. The reservoir blueshift created on the spot region expels

polariton from the center. The polaritons outside the spot propagate ballistically and

generates the two wing appearing in the figure. The residual reservoir will remains on the spot

region and decay with a long lifetime (≈200 ps) and, since it is sufficiently highly populated,

will continues to populate the polaritonic states. A more complete discussion of the

propagation and on the role of the reservoir in flat wire can be found in the Phd thesis of

Esther Wertz , and also in [83].

The panel b of figure 4.23 corresponds to a modulated wire excited with a similar the power
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(P = 2.5Pth) but that presents a completely different spatial features, showing localization of the

emission in the center instead of propagation. In order to completely understand the behaviour

of the system, we report also the emission in the reciprocal space (panel c) and the energy of

the emission measured in the center of the wire (panel d).

As seen in panel (d) of figure 4.23, for short time delays, a small part of the emission

lies in the second allowed band and the corresponding real space image indeed shows a weak

signal propagating away from the excitation spot. But the biggest part of the emission remains

strongly localized on the spot region in the whole time window. This emission in reciprocal

space corresponds to two harmonics located at the edges of the Brillouin zone (white line in

panel c), characteristic of the state S1 discussed above.

This shows us that also under pulsed excitation we can trigger condensation into a

localized state in the energy gap. But now the system is free to evolve, driven by the coupled

evolution of the polariton and excitons populations. Furthermore, the localization of polaritons

in the excitation region increases the spatial overlap between the two: this should accelerate

the relaxation and so increase in time the ratio between the polariton and exciton density.

Evolution of the spatial profile

Let’s now better observe the spatial profiles of the polariton density evolving in time.

In figure 4.24 we report few profiles extracted from panel b of figure 4.23 at different time

delays.

At 37 ps, we observe a strongly localized state corresponding to an emission arising from the

center of the gap. Later on, the profiles gets slightly broader, together with the approaching of

the energy to the bottom of the gap. Interestingly, the shape of the profiles also changes with

time. On top of figure 4.24 we report fits of the envelope of the observed spatial distribution

applying the formula 4.14 for a bound Gap Solitons attached to a local perturbation. We observe

how the envelope progressively changes from an exponential function (β < 1), typical for a defect

state driven by the reservoir, towards a sech2 shaped envelope, typical for a Gap Solitons in

which localization is driven by self-interactions. The increase in time of the parameter β, plotted

in panel b of figure 4.24 gives a measure of the increase of the relative strength of the interparticle

interactions, with respect to the interactions with the excitonic reservoir.

The reservoir indeed gets more and more depleted and the relative strength of interparticle

interaction increases: β, despite the large error bars, it is found to increase from almost zero

up to a values around 20. From the evolution in time of the size of the state, we can deduce

the consequent blueshift, plotted in panel c. To do that we applied formula 4.15 with a values

of the mass extracted from the curvature of the band at the edge of the BZ

(|mp| = 1.7 ∗ 10−5m0). The comparison of the obtained values with the experimental blueshift

curve extracted from panel d of figure 4.23, is quite satisfying. Additionally, we can combine

these values with the ones of the fit parameters β = αN/2V0 and obtain an extimation of the

relative contribution to the blueshift coming from the reservoir and from polariton self

interaction. This is also plotted in panel c, together with the total emitted intensity as a

function of time. We can observe that the increase in the self interaction term (orange circles)

corresponds quite exactly to the increase in the total emission. This should corresponds to a

fast transfer of particle from the reservoir to the polariton states and to a decrease of the
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Figure 4.24: a) Normalized intensity profiles extracted from panels b of figure 4.23 at different

time delays (black lines). The red lines are fits of the envelope of the profiles obtained applying

formula 4.14 and 4.17. In panel b) we plot the values of β obtained from the fit of several spatial

profiles corresponding to different time delays. From the extracted size of the observed profiles,

we can deduce the corresponding energy blueshift (with respect to the edge of the first band)

applying formula 4.15. The results are plotted in black squares in panel c. They are compared

to the blueshift extracted from the direct measure shown in panel c of fig.4.23. By combining

the values of the extracted blueshift and the values of β, we can derive an extimation of the

contribution to the blueshift coming from the reservoir (blue circles) and from the polariton

polariton interactions (orange triangles). With a red line we report also the time evolution of

the total integrated intensity corresponding to panel b of fig.4.23.

exciton induced blueshift, as obtained and represented by the blue circles. For longer times

both contributions decreases, due to finite particle lifetime. The decrease of the total emission

at long time presents an exponential decay constant of around 80 ps, that is at least 2 times

longer than the expected polariton lifetime. This suggest that still some reservoir is presents

and continuously refill the polariton state.

This analysis allowed us to evidence the role of self particle interactions on the nature of

the localized state formed. The agreement between the values extracted from the fit and the

measured dynamic of both the blueshift and the total intensity is quite satisfactory: it confirms

the dynamical evolution from a pure defect state into a Bound Gap Solitons.
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Oscillations across the reservoir

We now show different regimes obtained by varying the spot position with respect to the

lattice.

Figure 4.25: a,b) Spatial and reciprocal space emission of the same wire and same excitation

power than figure 4.23, but with the spot placed on a minimum of the periodic potential. Here

the state S2 is excited. c-d) The same wire is now excited with P = 4Pth and the spot is placed

in between a minimum and a maximum of the periodic potential and the spatial and reciprocal

space emission is reported. e) Energy of the emission as a function of time measured at the

center of the wire. f-g) Simulation of the emission both in real and reciprocal space. See text

and [83, 110] for more details on the simulation.

In the first two panels a,b of figure 4.25, we show the real and reciprocal space emission

of the same wire than figure 4.23 , excited with the same power but with a spot centered on

a minimum of the periodic potential. This allows to excite the gap state S2, that presents a

localized real space emission and in the reciprocal space (panel b) shows the characteristic far

field pattern with two minima at ±kB.

This dependence on the spot position allows us to generate a coherent superposition of two

gap states by placing the spot in the middle between a maximum and a minimum of the lattice

potential. This is shown in panel c and d and e of figure 4.25. We observe pronounced oscillations

both in real and reciprocal space, while the emission energy always remains within the gap. The

group of Guillaume Malpuech performed some simulation of our system under pulsed excitation:

they reproduced the generation of the state S1 and S2, and also the present oscillatory behavior,

shown in panel f and g. The model used is similar to the one presented in [83]: non linearities

and also coupling between a local exciton reservoir and the condensate are taking into account

and described by the Gross Pitaevskii equation (see [83, 110] for more details on the simulation).

A good qualitative agreement with the experiment has been obtained.

The interpretation is that the condensate moves from one side of the reservoir to the other

one, passing through the barrier that such reservoir induces. Coherent oscillations between
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localized state has already been observed with polariton condensate: they were obtained in a

geometry consisting of two coupled traps or two coupled pillars [37, 204]. This was interpreted in

term of Josephson oscillations[205], in analogy with the ones observed in atomic gases or liquid

helium in double traps [206, 207, 208]. Our situation is analogous: the existence of the energy

gap provides the localization needed and the reservoir placed asymmetrically with respect to

the lattice provides an energy and spatial splitting between the two states.

Unbinding of Gap Solitons

The simulations revealed also the presence of an addittionally regime, corresponding to high

polariton density, that is reported in the panel a and b of figure 4.26.

Figure 4.26: a,b): Simulation of the time evolution of the emission in real and reciprocal space

(same as panels f-g of figure 4.25) for high excitation density. c-f): Experimental results obtained

on modulated wire excited with a 2µm pulsed laser spot positioned in between a minimum and

a maximum of the periodic potential with power P = 10Pth. Panels c and d show the spatial

and reciprocal space emission as a function of time. Panel e, shows space and energy resolved

emission from the wire corresponding to a time delay of 75 ps. The red and green lines represent

the edge of, respectively, the gap and the first and second energy bands. We observe how the

main emission comes from inside the gap. In panel d we plot the position of the two distinct

wavepacket appearing in panel c (evidenced by white arrows) as a function of time . The two

vertical lines delimit the interval in which the emission from the two packets lies inside the

energy gap. Parameters of the wire: P = 2.7µm, δ = −3meV ,V0 ≈ 0.9meV .

Here we observe how, for short time delays the generated gap state remains localized in the

spot region, but later on, at around 70 ps, two wavepackets spread away from the central region,

while the energy of the polaritons in the packets remains inside the energy gap of the linear

dispersion.

This behaviour could be interpreted in terms of moving Gap Solitons. The high excitation

region would bring to a quickly depletion of the reservoir in the first 70 ps. Polaritons localized
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in the gap wouldn’t be attached to the reservoir any more and could unbind a spread away,

with a energy given purely by polariton-polariton and placed inside the energy gap, forming a

moving free Gap Solitons, as theoretically discussed in ref. [147, 209].

In the experiment we observed a behaviour similar to the simulated ones, reported in panels

(c-f) of figure 4.26. The pumping configuration is the one of figure 4.25, but at higher power

(P = 10Pth) and on slightly different wire.

At short times a complex behavior both in real and k-space is observed: this is due to ballistic

propagation of high energy polaritons, together with oscillations similar to the case described

in the previous paragraph. We won’t discuss in detail this regime. We will focus on the fact

that after 50-60 ps, the signal in the excitation area vanishes, while two packets seems to move

away from the excitation region. The position of the two packets are reported for several time

delay in panel f of figure 4.26. The emission has been resolved in time, energy and space. This

allows to obtain the complete evolution of the system and to reconstruct a colormap showing the

emission, energy and space resolved, for different time delays. An example is reported in panel

e. We observe that in a time interval in between 50 and 90 ps the emission comes from inside

the energy gap. This means that the polariton wavepackets are unbinding from the reservoir

localized in the excitation region, and spreading away, despite having an energy in the gap.

Since outside the central region no blueshift induced by the reservoir is expected, this suggests

the crucial role of interparticle interactions in the generation of this spreading gap states.

Further investigation of this regime, especially of collisions of this expelled

wavepackets[147], would give a better insights on the nature of these states.

Conclusion of the first part

The first part of this chapter has been dedicated to the study of polaritons in a periodic

potential.

We introduced our approach to engineer a 1D potential for polaritons, based on the

modulation of the wire’s width. We have shown how a periodic change of the wire’s width

generate a lattice and allows to redefine the polariton dispersion by the formation of bands and

opening of energy gaps, which widths can be controlled at will.

In the condensation regime, we have shown how the obtained band structure completely

changes the spatial behaviour of the generated polariton condensate. Condensation is trigger

towards a strongly localized states inside the energy gap, induced by a perturbation to the

periodicity of the lattice is introduced. The peculiarities of our system is that, under non resonant

excitation, such perturbation is the result of both interactions with the exciton reservoir and from

polariton-polariton interactions . We discussed how this can generate hybrid state named Bound

Gap Solitons and we observed effects of polaritons non-linearities in the measured spatial profile

of the localized states: the correlated time evolution of the excitons and polaritons population

allowed us to observe a spontaneous transition from a pure defect state to a Bound Gap Solitons.

The potentialities of the presented 1D potential shaping opens the way to the implementation

of a wide range of structures and devices,from a controlled defects[210], to a double barrier

operating as a resonant tunneling diode[31]. In the following we present how more complex
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potential structure can also be obtained to observe polaritons Bloch oscillation [211] or study

polaritons in aperiodic potential.

Especially under pulsed excitation, the mutual time evolution of the excitons and polaritons

population allowed us to observe a spontaneous transition from a pure defect state to a Bound

Gap Solitons.

4.7 Polaritons Bloch oscillations

This section will be dedicated to the study of the behaviour of polaritons when a periodic

potential is combined with an energy gradient.

A by Hugo Flayac[32, 211] to exploit the polariton coherent propagation to observe Bloch

oscillation by monitoring the time evolution of a polariton wavepacket.

In this chapter we present two different approaches to obtain a periodic potential combined

with a constant acceleration. The first one consisted in the etching of a properly shaped

microcavity and in this structure we will proof of the appearance of a Wannier-Stark ladder.

The second one is based on the exploitation of the blueshift induced by the reservoir and the

energy gradient present at its edges. In this configuration, time resolved measurements will

show the generation of Bloch oscillation and will give evidence of Landau-Zener tunneling

effect.

4.7.1 Overview on Bloch oscillations

Basic theory

The Hamiltonian that we consider is the following:

H =
p̂2

2m
+ V (x̂)− Fx̂ with V (x+ P ) = V (x). (4.18)

where the periodic potential V is superposed to a gradient F , constant in space. The gradient

term breaks the translational symmetry and so the Bloch states |n, k〉 are no more eigenstates

of the system. We can ask ourselves how a particle prepared at t = 0 in the state |n, k0〉
evolves in time. It can be shown [140] that at time t the wavefunction is still in the Bloch form

|Ψ(x, t)〉 = eik(t)x |u(t)〉, with the quasi momentum k given by:

k(t) = k0 +
1

~

∫ t

0
F (t′)dt′ (4.19)

As we better discuss later, for low values of F we can neglect the possibility of an interband

transition and this means that the |u(t)〉 corresponds exactly to the function |n, k(t)〉( except

for a phase factor).

In the case of a force F constant in time, the quasi-momentum is given simply by:

k(t) = k0 +
Ft

~
(4.20)

It means that the quasi-momentum scans the reciprocal space at constant speed, as schematically

represented in figure 4.27, where the band structure is reported extended over several BZ.
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Figure 4.27: Scheme of the trajectory in the reciprocal space of an accelerated particle inside a

periodic band structure in the adiabatic approximation.

It is possible to define a characteristic timescale of the system:

τB =
2~kB
F

(4.21)

that corresponds to the time required to an increase of 2kB of the quasi-moment or, in other

word, to a complete scan of the first BZ.

The corresponding mean velocity vg is a periodic function of the quasi-momentum. This

means that vg varies periodically in time, and consequently also the mean value of the position

oscillates. This effect, despite firstly predicted by Zener[212], was named Bloch Oscillation

(BO), and consists in a constant force that generate, counter intuitively, an oscillating

trajectory.

Classical approach and trajectory calculation

The calculation of the particle trajectories, in the adiabatic approximation, can be

approached in a complete classical way, in which the operator x̂ and p̂ can be replaced by

number x and p = ~k, while the information on the band structure will be enclosed in the

dispersion relation E(p) [213]. The Hamiltonian becomes:

H = E(p) + Fx (4.22)

and solutions are given by:

x′(t) =
δH

δp
= δE(p)δp p′ =

δH

δx
= −F (4.23)

In the tight binding regime, the dispersion of the first band has the simple expression E(k) =
∆
2 cos(pP/~) (given also in eq. 4.7), and one can derive analytical solution of the motion equations

with initial conditions x0, p0, as done by Hartmann and coworkers, obtaining:

x(t) = x0 −
∆

F
sin(

ωB
2
t)sin(

ωB
2
t− p0) (4.24)

p(t) = p0 − Ft (4.25)
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with ωB = FP
~ .

Additionally, in the theoretical work of Hartmann, the evolution of a whole Gaussian packet

of initial width ∆x0 and ∆p0 is considered. At t = 0 the packet is described by:

W (p, x, t = 0) =
1

2π∆x0∆p0
e
−
(

(x−x0)2

2∆x2
0

)
−
(

(p−p0)2

2∆p2
0

)
(4.26)

The time dependence of the momentum mean value and width is trivial:

〈p(t)〉 = p0 − Ft ∆p2
t = ∆p2

0 (4.27)

while for the spatial coordinate the result is more interesting:

〈x(t)〉 = x0 −
∆

F
e−∆p2

0P
2/2~2

sin(
ωB
2
t)sin(

ωB
2
t− p0P ) (4.28)

∆x(t)2 = ∆x2
0 +

∆2

2F 2
(1− e−∆p2

0P
2/~2

)sin2ωBt

2
(4.29)

Both in 4.24 and 4.29, we observe how the trajectories are periodic functions, with a Bloch

period τB = 2π/ωB. But the spatial amplitude and the width of the packet are strongly

influenced by the initial width in the momentum space 1. In figure 4.28 we plotted few results

Figure 4.28: Evolution of a Gaussian wavepacket in a periodic potential with a constant

gradient obtained applying formulas 4.27 and 4.29. Panel a) shows the mean values of the

quasi-momentum (represented folded in the first BZ). Panels b-d) Evolution of the Gaussian

wavepacket in real space obtained for 3 different values of the width of the packet in k space

(values reported in the figure). Parameters:∆E = 1meV , F = 0.1µeV/µm x0 = 0, p0/~ = 0,

∆x0 = 0.

in which we simulate the trajectories for different initial conditions. The parameters used are

similar to the ones characteristic for a polariton system. By varying the initial width in k space

1The origin of this effect relies on the variation of the effective mass meff with k[143]
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we can identify a first regime, panel b, in which a large distribution in k, results in a constant

position ot the wavepacket of oscillating width. This effect is called breathing.

The Bloch oscillations appear when ∆p0/~ � kB. The packet oscillates with a time period

τB and remains confined in a region of space. The spatial amplitude is given by the expression:

LB =
∆E

|F |
(4.30)

This values has an intuitive interpretation: the band structure can be seen as tilted by the

gradient force (see figure 4.29). A particle starts at the bottom of the first band, travels at

a constant energy, then reaches the gap, is reflected and comes back. The total undergone

trajectory is therefore 2 · LB.

Although this approach of tilted band is not really rigorous, since it mixes real and reciprocal

space,it is the one used originally by C. Zener [212].We will see how it provides the good picture

to interpret experimental spectra.

Above the adiabatic approximation: the Landau-Zener tunneling

The tilted-bands picture given by Zener was initially introduced not to describe the effect

of Bloch Oscillations but to investigate the effect of breakdown of the electronic bands under

strong electric field in a solid[212].

Up to now we have considered the single band or adiabatic approximation, with the particle

staying always in the same band. But actually there is a non zero probability for the particle

to hop to the upper band. This effect is known as Landau-Zener tunneling and is represented

schematically in figure 4.29.

According to [212], the probability of hopping to the second band follows the expression:

PLZT ∝ exp

[
−π

2

h2

mP∆E2
gap

|F |

]
(4.31)

The formula shows how the probability strongly depends on the width of the gap ∆Egap and

also on the strength of the acceleration.

The observation of Bloch oscillations of course requires such a probability to be low, otherwise

most of the population would be lost after one or few oscillations.

The Wannier Stark ladder

In the late 50s, Wannier showed that in presence of a constant gradient, Bloch functions

are no more stationary states of the system and the continuum of each bands splits in a series

of discrete states, equally spaced in energy. An intuitive understanding of this effect can be

obtained with the following reasoning. Considering an eigenstate function Ψ(x) of eigenenergy

E0, the periodicity of the modulation of the potential, allows one to build a complete series of

eigenstates by a shift of integer number l of periods P, Ψ(x−lP ). This results in the construction

of a whole ladder of eigenstates with energies

E±l = E0 + lPF with l = 0,±1,±2... (4.32)
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Figure 4.29: Scheme of the Landau-Zener tunneling represented in two different approaches. On

the left is represented in the tilted band scheme as introduced by Zener [212]. One the right

in terms of a particles that follow trajectories inside the periodic band structure. In both the

pictures, red flashes indicates Bloch oscillation following adiabatiac evolution while green flashes

indicates non adiabatic tunnelling effects.

.

The complete set of these solutions forms the so called Wannier-Stark ladder2. This ladder

is, in principle, infinite, with no upper and lower limits. The distance between the levels

corresponds exactly to h/τB and indeed this ladder can be interpreted as the equivalent of the

Bloch Oscillations in the energy domain.

Wannier stark ladder has been observed experimentally in several systems: the first

observation was done by Paul Voisin, and consisted in the probe of electronic levels in a

semiconductor superlattice [215] by optical absorption. The observation of such states indeed

requires that the energy step F · P to be bigger than the linewidth of each electronic states in

the crystal, mainly induced by the diffusion of impurities. In other words, we can say that the

particle needs to have a sufficiently high coherence length, that allows it to perform a complete

Bloch oscillations before being scattered. The superlattice allowed indeed to modulate and

increase of around 2 orders of magnitude the value P · F , since P is no more the material

lattice constant but is the distance between dielectric layers.

A sufficiently coherent length is therefore essential for observing both Wannier Stark Ladder

or Bloch oscillations.

Indeed,in system where particles has much longer coherent propagation lengths, such as cold

atoms[216] or photonic systems[217, 218, 158], both Wannier-Stark resonances and BOs have

been observed.

2The existence of Wannier-Stark ladder has been the subject of a long controversy[214]: indeed formula 4.32

is exact only in the limit of single band approximation. The non zero probability of tunneling to higher bands

allows to define such energies only as resonances, corresponding to metastable of finite lifetime.
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Detecting Bloch oscillations

The observations of BOs requires long coherence length compared to the oscillation period

(as discussed above), but also a mechanism to induce an energy gradient together with a efficient

way to detect the time evolution of the population.

For electrons in bulk or in a superlattice, the gradient is provided by the application of an

electric field, while the detection is obtained via quite complicated experimental techniques such

four wave-mixing[219] or detection of terahertz emission[165]. For cold atoms acceleration is

given by gravity[220] or by an overall shift of the optical lattices[221]: with these approaches

BOs have been observed in reciprocal space (see figure 4.30).

More recently, BOs have been studied also in photonic systems, such as waveguide arrays or

periodic dielectric layers. The gradient was generated by a linear variation of the optical index

obtained either by varying the alloy composition[218, 217] or by a thermic effects[222]. Then

the transmission of the device is detected, or, as in the case of reference [222], the output at

the end of the waveguide arrays is collected as a function of the propagation time and of the

induced gradient. The experiment results are shown in picture 4.30.

Figure 4.30: Two examples of observation of Bloch oscillations. Left: Bloch oscillations detected

following the momentum distribution of ultracold cesium atoms in optical lattice constantly

accelerated. Oscillations inside first BZ are observed (figure extracted from [221]). Right: Bloch

oscillation inside waveguide arrays. The output of the waveguide is detected as a function of

the strength of the gradient in the optical index gradient and oscillations of the center of the

wavepacket are observed (figure extracted from [223]).

Despite the fact that a large variety of systems has been investigated, Bloch oscillations have

never been observed and studied at the same time in real and momentum space and additionally,

the observation in real space are mainly indirect observation, where the evolution of wavepacket

is usually studied as a function of the variation of the gradient, while the direct time evolution

is not detected.

In this context, polaritons present clear advantages. They have long coherence length typical

of photonic systems, and polaritons motion can be easily detected via the signal escaping the

cavity, both in real and reciprocal space. In addition, peculiar effect related to the pseudospin
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precession have been predicted[32].

4.7.2 “Bloch oscillators” structures

We now describe the first approach that we applied to obtain an energy gradient along a

wire based on the etching of specific 1D structure, that will be named “Bloch oscillators ” The

Wannier-Stark ladder will be evidenced in the photoluminescence spectra of these structures.

Design of the structures: basic parameters

Figure 4.31: 1D structures for the observation of Bloch Oscillations. a) Scanning electron

microscope image of one of this strucure. b) Width profile and corresponding polariton potential

in one of the structure (Parameters: P = 2.7µm, V = 0.4meV , F = 45µeV/µm). c) Scheme of

the whole set of structures realized: the essential parameters are reported in the figure.

The lateral width modulation in a wire can be used not only to generate the periodic

modulation but also to induce an acceleration for polaritons.

The dependence of the confinement energy with the width Lx (see 2.1), allows to obtain a

constant energy gradient when the lateral size of the varies as Lx ∼ L0/
√
x.

Inspired by previous theoretical proposal [211, 224], we realized this kind of lateral

modulation at first on the profile of straight wire, where we observed acceleration and

deceleration of polaritons traveling through this ramp.

Then, we combined this principle with the periodic modulation, obtaining the structure

shown in figures 4.31. By properly adjusting the strength of the width modulation with respect

to the local width of the wire,it is possible to obtain a lattice of constant depth V0 combined

with a linear energy profile, or in other word, a constant acceleration (see panel b of figure 4.31).
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The purpose of these structures was to observe Bloch oscillations of polaritons and their

parameters were set accordingly. In panel c of figure 4.31 we resume the whole set of structures

etched on the samples.

The set of adjustable parameters are the period P and the depth of the potential V0 and

also the additional parameter F giving the strength of the acceleration, expressed in µeV/µm.

Practically one cannot achieve any value of the acceleration for two reason. A wire larger than

4µm reduces the spectral distance between the several confined modes and so the 1D character

of the system. A wire thinner than ≈ 1.5µm brings to non radiative excitonic recombination

and affects polariton propagation.

According with figure 4.7, this limits correspond to confinement energy difference of around

4meV for the optical mode, and ≈ 2meV for polaritons (at detuning δ = 0). The size of

the accelerating region is 40µm long in all the structures and the maximum values for the

acceleration obtained is around 80µeV/µm 3.

In figure 4.32 we show how the parameters of the wire influence the two main parameters

characterising the BOs: the temporal and spatial period τB and LB. The results shown are

directly obtained considering the band structure values illustrated in fig. 4.11 and applying the

formula for τB an LB reported in the discussion above.

Figure 4.32: Temporal (black) and spatial (red) expected period of BOs , varying the period P

of the modulation and for two different values of the acceleration F: 40µeV/µm(squares) and

65µeV/µm(circles).

The target was to obtain spatial oscillations that could always remain inside the 40µm of

the modulated region, far from the edges and from the region where the wire gets too thin. At

the same time the temporal period shouldn’t be too long compared with the typical polariton

lifetime of around 40 ps, in order to observe several repetition of the oscillations. The best

structures reveal to be the ones with the strongest gradient and higher period. Additionally also

the depth of the potential plays a role, since for higher potential, the Landau-Zener tunneling

probability decreases.

3Some wires has been etched with values of the width that goes down to 1.2µm
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Observation of Wannier-Stark ladders

The observation of Bloch oscillations requires the excitation of such structure via a pulsed

excitation and the detection of the evolution in the picosecond scale. But interesting information

can be obtained also by studying the photoluminescence under cw excitation.

In panel a of figure 4.33 we show the emission from the structures excited non resonantly

with a 2µm spot.

Figure 4.33: a) Emission spatially and energy resolved from a Bloch oscillators excited non

resonantly below threshold. The linear gradient is visible and also the band structure can be

recognized. The red and and green flashes represent respectively the gap and the first miniband

that shift according with the gradient. b) Integrated emission spectra from a Bloch oscillators.

We focus on the energy of approximately the first miniband. Several equidistant peaks are

visible. The distance δ corresponds to 170µeV , exactly the value characteristic of the Wannier-

Stark ladder for this structure.

The presence of the gradient appears clearly in the linear shift of the lowest emission energy.

More remarkably, the band structure is still clearly distinguishable, with the energy gap and the

first band tilted following the gradient. The picture of Zener reported in the scheme of figure

4.29 is exactly reproduced.

In panels b of figure 4.33 we focus on the emission spectra extracted from a Bloch oscillators

at the energy region corresponding to the first miniband.

The spectra collected presents several equidistant peaks. The energy distance between the

peaks is measured to be 170µm. This values corresponds extacly to the values

F · P = 63µeV/µm · 2.7µm = 168µeV , where F is directly measured from the tilt of the bands.

This siggest that the origin of these peaks are signature of the Wannier-Stark Ladder, seen, as

far as we know, for the first time via photoluminescence measurements.

Limitation for the observation of BOs

Although the Wannier-Stark states represent the equivalent of the BOs in the spectral

domain, the observation of the oscillations in time, requires different conditions. One needs to

follow and distinguish the emission of a single wavepacket in time, if possible both in real and

reciprocal space.
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The experimental configuration that we used consisted in a resonant excitation provided by a

1.4ps pulsed laser, focused down to a spot of size around 2µm by a microscope objective of NA =

0.55. This results in an excitation that will be broad both in energy and in angular distribution:

the energy broadening can be estimated around 0.3meV ,comparable with the width of the first

band, while the angular distribution corresponds to several kB. As a consequence, it’s hard to

resonantly excite a well define state at t = 0 and then follows its evolution. Additionally resonant

excitation in reflectivity configuration is complicated by the strong intensity of the reflected laser

signal. A different approach has then been tried, based on a non resonant excitation.

4.7.3 Bloch oscillations under non resonant excitation:

acceleration induced by the reservoir

Here we present observations of Bloch oscillations obtained under non resonant excitation of

straight wire, without any gradient on the width. In order to overcome the limitation presented

by the ”Bloch oscillators” structure, we tried to exploit the blueshift induced by the excitonic

reservoir in order to obtain an energy gradient along a modulated wire.

By using a large laser spot the reservoir can be extended over a wide region. The blue-

shift that it generates does not represents anymore simply a local perturbation of the lattice,

but it shifts the energy of all the sites causing an overall shift of the bands structure. This is

represented in figure 4.34, where a modulated wire is shined in the center by 30µm non resonant

laser spot. We can recognize how the band structure is blue-shifted according with the laser

shape and at the edge of the spot an energy gradient is induced.

Figure 4.34: Real space emission from a modulated wire excited with a 30µm wide spot below

threshold. The reservoir generates a blueshift of the whole band structure, evidenced by the

white dashed line, and therefore an energy gradient is induced on the edges of the spot. The

position of the first band and the energy gap are reported respectively by green and red flashes.

This shows how a non resonant excitation, above threshold, could be used at the same time

to inject a reservoir that induce a energy gradient, and a condensate with a well defined k

vector.

In figure 4.35, we represent the results obtained by exciting a modulated wire with a non

resonant pulse at P ≈ 5Pth focused on a large spot, schematically represented in this figure and
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which profile is shown in panel b of fig. 4.36 ). We monitor the dynamics of the emission in

both real space and k-space/

Figure 4.35: a) Real space emission from a modulated wire excited at power P ≈ 5Pth with

a large non resonant spot (spot profile shown in figure 4.36). b) Reciprocal space emission

corresponding to the region on the left of the spot in panel a ( from −20µm to 0). The black

dashed lines indicate the edge of the first BZ. Oscillations of the wavepacket inside the first BZ

are visible and in real space they correspond to signal that remains confined in a certain region

and oscillates in time. Both the spatial and temporal period of the oscillations increase in time.

The dashed blue lines presents the result of a numerical calculation based on formula 4.33 and a

band structure obtained via a KP calculation (see text for more details). Parameters of the fit:

τ = 80ps, F0 = 120µm. Parameters of the wire: P = 2.7µm, V0 = 0.85meV , mp = 6.1 ∗ 10−5,

δ = −4meV .

Panel a corresponds to real space emission, while in panel b I plot the k space emission

corresponding to the region on the left of panel a.
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In both we can recognize an oscillatory behavior: the signal in reciprocal space presents a

continuous monotonous variation of the k-vector inside the first BZ, indicated by dashed black

lines, while at the edge of the zone one can recognize the jump from +kB to −kB typical of

a Bloch reflection. In the real space this corresponds to a wavepacket that moves but remains

localized in a certain region, following trajectories almost parabolic. These present exactly the

same period than the oscillations in the k-space. These oscillations are triggered only on the the

left of the spot due to its asymmetric shape.

The energy gradient induced by the reservoir accelerate polaritons away from the spot region,

but then when the acquired wave-vector reaches the edge of the BZ, it changes sign abruptly,

and so the speed of the wave-packet is inverted generating the observed oscillations also in

real space. During the time evolution, the reservoir gets depleted thanks to the relaxation and

exciton recombination. The values of the potential gradient decreases in time, and so both the

temporal and spatial period of the oscillations increase, according with formula 4.21 and 4.30.

To quantitatevely reproduce the observed oscillations, we performed some simulations

starting from the specific parameter of the wire used. The model proposed by Hartman in

[213] and described in the introduction is not appropriate anymore, sinceit was based on an

acceleration constant in time. Therefore, we performed a more general numerical calculation.

By starting from the structural parameters of the wire we obtaining the band dispersion from

a Kroenig Penney calculation. Then, from the band shape, the group velocity is deduced, and

so all the kinematic can be derived. Parallely, we consider the existence of a energy gradient

which dependence in time is extracted from the measurements of the energy and time resolved

emission. In panel (a) of figure 4.36 we show the energy of the emission at k = 0 corresponding

to panel (b) of figure 4.35. The decrease of the energy with time can be fitted by an

exponential with decay constant τ = 80ps, as shown in the panel. This will be the decay rate

of the acceleration used in the model. In panel (a) we also report with horizontal lines the

energies corresponding to the gap and the band for the unaffected band structure: it’s

important to underline that although most of the signal have energies inside the gap, we can

still consider polaritons as inside the first miniband since the whole band structure is

blue-shifted by the reservoir.

The exponential decay of the acceleration, that reads F (t) = F0e
−t/τ , gives an evolution of

the quasi-momentum that can be written as:

k(t) = k′0 +
1

~

∫ t

0
F (t′)dt′ = k0 −

τF0

~
e−t/τ (4.33)

From this, we deduce vg(t).Then, the real space trajectories are calculated. The parameter k0

is the wave-vector at the beginning of the oscillations and this can be deduce from the k-space

emission. Therefore, the only fitting parameter is F0, is the initial value of the acceleration.

The results are reported superposed to the experimental datas on figure 4.35 starting from

a time delay of around 30 ps , since before oscillations are too fast and small to be identified.

We can see how the experimental trajectories are well reproduced both in real and reciprocal

space: the period of the oscillations increases in time and the corresponding oscillations in real

space get larger. This is due to the decay of the reservoir population.
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Figure 4.36: a) Energy of the emission at k = 0 corresponding to the right panel of figure 4.35.

The green and red lines represent the limits of respectively the first miniband and the energy

gap corresponding to the wire excited at low excitation power. The decrease in energy is fitted

by an exponential of decay constant τ = 80ps, shown with a white dashed line. b) In the upper

graph, the black squares are the values of the acceleration deduced using formula 4.21 from the

measured time period for the 3 more clear oscillations in figure 4.35 (centered in 50 ,70 and

94 ps ). The red line shows the time dependent values of the acceleration used in the model

to reproduce the trajectories shown in 4.35. c) Wavepacket evolution in real space calculated

applying the semi-classical model of ref.[213]. The gradient F (t) used is a step-like function, with

values constant in each oscillation. The values are the ones extracted from the experimental

results indicated by the arrows of panel b. d) Black points show the measured width of the

wavepacket during the oscillations. The red curves is the calculated one corresponding to panel

(c). Parameters of the calculation: ∆E = 0.62meV , ∆x0 = 4.5µm ∆k0 = 0.15kB.

In panel (b) of figure 4.36 we explicit some key parameters of the oscillations. From the

temporal period of the 3 oscillations that appear more clearly in the experiment, we deduce

the value of acceleration F . The points are reported in the graph, together with the curve

representing the values of F used in the calculation. The agreement is very good. In the inset

we show the spatial profile of the excitation spot while the red line is the approximation to a

linear profile used in the calculation. Additionaly, also the values of the spatial amplitude of the

oscillations are extracted and compared with the values obtained by the model applying 4.30.

Calculation and experimental results are in good agreement. The model can reproduce



4. Polaritons in a 1D modulated potentials 113

the observed behavior, and this, remarkably, with only a single fitting parameter F0, while all

the others numerical values put in the models are extracted from independent measurements.

The values F0, defined as the value of the acceleration at the beginning of the first oscillation

(t ≈ 30 ps), is F0 ≈ 100µeV/µm. Considering the observed spot extension of around 20µm,

this corresponds to an initial maximum blueshift of around 20µm · 100µeV/µm = 2meV , not

far from the blueshift of around 1.5 meV , with respect to the bottom of the band, observed at

t = 30 ps in panel a of figure 4.36.

Additionally, we also measured and try to reproduce the width of the wavepacket during

the oscillations. To do this, we apply the model by Hartmann [213] described in 4.7.1,

considering the gradient F (t) as a step-like function, constant for each oscillation period, with

values corresponding to the one extracted from the experiment (see panel b of figure 4.36). We

will then apply formulas 4.29, with ∆ the measured width of the band.

The result in real space is shown in panel c of figure 4.36, in which the oscillations of figure

4.35 are qualitatively reproduced. We analyze the time evolution of the width of the

wavepacket, reported in panel d. The oscillations in the width of the wavepacket observed in

the experiment (black points) are well reproduced by the calculation taking as parameters

∆x0 = 4.5µm and ∆k0 = 0.15kB, the latter compatible with the width observed in k-space. A

discrepancy is observed at the end of the third oscillations since the signal is weak and the

estimation of the position and of the width of the wavepacket is imprecise.

Overall, the agreement between observation and numerical simulation provides a clear

confirmation that the observed oscillations can be interpreted in terms of Bloch oscillations.

They are drive by an energy gradient induced by the reservoir and they are observed at the

same time in real and reciprocal space.

The ratio LB/τB

Bloch oscillations have been observed also in wires with different potential period P from

the one of fig. 4.35. An example is reported in figure 4.37 for a wire with P = 2.1µm.

In reciprocal space the oscillations are now wider, according with a larger BZ. Also in real

space at least two oscillations are visible. The same calculation discussed above has been

performed for this wire and the results are shown in blue lines in the figure.

We notice how the ratio between the two parameters that characterize the oscillations, LB
and τB, gives:

LB
τB

=
1

2

∆E

~kB
(4.34)

This quantity, homogeneous to a velocity, depends purely on the wire parameters and is

independent from the value of the gradient F, that in our analysis is the only fitting parameter

used to describe the trajectories.

In figure 4.38, we show this ratio corresponding to the two considered wires ( fig. 4.35 and

4.37), result of the average over the oscillations visible in each wire. We plot it as a function of

the ratio ∆E/~kB and we observe how they lay on the line of slope 1/2 according with 4.34.
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Figure 4.37: Left: Real space emission of wire with P = 2.1µm, excited with a large non

resonant excitation spot. Right: Reciprocal space emission corresponding to the region in real

space between −20µm and 0µm, the region where oscillation takes place. The dashed blue

lines indicates the trajectories obtained by numerical calculation as described in detail in the

text relatively to fig. 4.35. Parameters of the wire: P = 2.1µm, V0 = 1.25meV , δ = −4meV ,

∆E = 1.04meV . Parameters of the model:F0 = 140µeV/µm, τ = 85ps.

Figure 4.38: Black points reprent the ratio LB/τB for two different wire of different period

extracted from the observation of BOs in figure 4.35 and 4.37. These values are plotted as a

function of the ratio ∆E/~kB extracted from the wires’ dispersions. The red line is a line of

slope 1/2 according with 4.34.
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Only two points are present on the graph since oscillations have been observed for wire with

P = 2.7µmand P = 2.1µm but not with the third avalaible period in the sample P = 1.6µm.

As discussed for the effect of localization in the gap, the ratio V0/ER plays an important role.

Wires with P = 1.6µm have a much higher ER values and so a ratio V0/ER is too low: the

particles do not undergoes Bloch reflection at the BZ but they can more easily jump on the

second band via Landau-Zener tunneling.

Observation of Landau-Zener Tunneling

Let’s now discuss the signal observed not where oscillations takes place but outside this

region, further from the excitation region.

Figure 4.39: Panel a) Real space emission of a modulated wire, with experimental conditions

similar to figure 4.35. Bloch oscillations are observed and fitted with the blue dashed line

(obtained with the numerical calculation already discussed). The signal outside the oscillation

region is enhanced with a better contrast. Several ejected beams can be identified and labelled

from 1 to 6. Panel b) Typical emission in k-space coming from a region right outside the

oscillation region. For pratical reason, this figure doesn’t belongs exactly to the same set of

measurements than the one in panel (a), but it represents qualitatively the same situation.

Signal is collected from outside the first BZ, indicated by the black dashed lines. Panels c)

Black squares represent the intensity of the ejected beam normalized over the total integrated

intensity. They are plotted as a function of the time of their emission. The red curves is

proportional to the expected Landau-Zener tunneling probability, obtained applying formula

4.31 and with the gradient F used in the calculation of the oscillations in panel a (exponentail

decay constant τ = 80ps ).

This is done in figure 4.39 , where oscillations in real space are observed in a region from
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-20 to 0 µm, while the contrast is enhanced outside this region. This allows to observe how at

each oscillation, at the time when reflections takes place, a certain amount of particles are not

reflected but propagates straight away. This signal can be interpreted in terms of Landau

Zener tunneling from the first to the second band. During the time evolution, this effect seems

to be weaker, and this is in accordance with formula 4.31, since the acceleration progressively

decreases. Additionally, this interpretation can be confirmed from the observation of the

reciprocal space emission. In panel b we show a typical emission in k-space coming from a

region right outside the one which oscillations take place; unfortunately, for pratical reason,

this figure doesn’t belongs exactly to the same set of measurements than the one in panel (a),

but it represents qualitatively the same situation. We can observe how such signal is emitted

from outside the first BZ, mainly from negative k values. It is attributed to polaritons that

have jumped up to the second band. The weak signal collected at positive k values derives

from some backscattering or reflection from the edge of the wire.

From the real space emission, we extracted the intensity of each of this ejected beams (labelled

with number from 1 to 6 ). In panel c of figure 4.39 we plot the obtained values, normalized

to the total intensity integrated in the oscillations region. This does not give us the absolute

values of the escaping ratio, but allows to get an idea of its evolution in time.

Indeed, this evolution is compared with the one expected for the Landau-Zener tunelling

probability, estimated applying formula 4.31. We apply such formula considering again an

exponential decrease of the gradient F, the same that is used to reproduce the trajectories in

real space shown in panel (a) with blue dashed line. Although this remains a rough evaluation

and just few experimental points are available, this comparison shows how the fast decrease of

the trasmitted ratio is compatible with the interpretation in term of Landau-Zener tunneling.

Conclusion of the second part

This section has been be dedicated to the study of polaritons in a lattice accelerated by an

energy gradient. We presented two possible experimental implimentations of such configurations.

The first one was based on the etching of wires with a periodic width modulation combined

with a progressive variation of the average width. In such a structures, we have shown how

minibands and energy gaps are conserved and we observed signature of the Wannier Stark

ladder in the photoluminescence spectra.

The second approach was based on the use of simple modulated wire and the gradient was

induced by the excitonic reservoir generated by a large non resonant spot. In this configuration

we observed the generation of Bloch oscillation both in real and reciprocal space. The

interpretation of the results is confirmed by numerical calculations which reproduce the

observed trajectories and in which a single fitting parameter is required. All the other are

extracted from the experimental measurements.

Finally, we have given signatures of the Landau-Zener tunneling: both in real and

reciprocal space we present good indication of polaritons hopping from the first to the second

band, when reaching the edge of the first BZ. Additionally, also the decrease in time of the

escaping probability is in accordance with the theoretical picture.
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4.8 Polaritons in a quasiperiodic potential

We now study polaritons in a qasiperiodic potential by analyzing the photoluminescence from

micro cavity wires in which barrier and potential wells are ordered in a way that reproduces the

Fibonacci sequence.

4.8.1 Quasicrystals and the Fibonacci structures

In addition to crystalline and amorphous materials, there exist a third intermediate class

consisting of deterministic aperiodic structures, known as Quasicrystals.

They were firstly observed by Shechtman and coworkers in 1984 [225] when X-ray diffraction on

an AlMn solid alloy evidenced a five fold but also icosahedral symmetry, forbidden by the rules

of crystallography. The observation was explained few months later by Levine and Steinhardt

[226] by the aperiodic Penrose tiling, that presents locally small areas of five-fold symmetry,

opening a complete new area of research rewarded with the Nobel prize in 2011.

The fascinating features of such kind of structure relies on the fact that although aperiodic,

thanks to their long range order, they can still exhibit sharp diffraction patterns and other

collective properties not shared by their constituent parts. In particular, they are expected to

present a highly fragmented energy spectrum displaying self-similar (fractal) character [227, 228].

The Fibonacci’s sequence

Quasi-periodic structures have been deeply investigated especially in 1 dimension[229]: the

aperiodic sequence is generally generated starting from two building blocks, represented for

instance by region of different potential values. These 2 building blochs are spatially ordered

following a given deterministic succession. Several sequences have been studied (Thue-Morse,

period-doubling, Rudin-Shapiro, Cantor [230, 231]) but the biggest efforts were focused on the

Fibonacci’s sequence[232, 233, 234, 235], subject of our experimental studies.

One possible approach to generate the Fibonacci’s sequence is based on the method named

”substitution”. It consists in taking two blocks A and B and apply the iterative rules that

reads A → B and B → BA. By starting with the first two blocks B and A and applying the

substitution rules several times, we obtain for every n-th iteration a Fibonacci’s word Sn of

increasing length. The results for the first iteration orders are the followings:

S0 = B

S1 = A

S2 = BA

S3 = ABA

S4 = BAABA

S5 = ABABAABA

....

The procedure is the analogous of the one that generates the well known numerical Fibonacci

series Fn = Fn−2 + Fn−1 with F0 = F1 = 1. The length of the obtained words indeed follows
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the Fibonacci numbers 1, 1, 2, 3, 5, 8, ..., while the appearance of A’s and B’s ,respectively NA

and NB, increases and the ratio NA/NB tends to the value τ = 2cos
(
π
10

)
= 1+

√
5

2 ≈ 1.618, the

Golden number.

Let’s now consider the diffraction properties and the energy spectrum of a 1D potential built

of wells and barriers of length respectively LA and LB ordered following the Fibonacci sequence.

The Fourier components of such a 1D potential consist in an arrangement of δ-functions which

densely fill the real line. In a diffraction experiment of particles experiencing such a potential,

these peaks will appear as Bragg peaks; they will form a countably infinite set and their positions,

height and phases can be analytically calculated. In the specific case of LA/LB = τ , the Golden

ratio, the Bragg peaks corresponds to reciprocal vectors given by the expressions [228]:

qh,h′ =
2πτ2

LB(τ2 + 1)
(h+ h′/τ) (4.35)

with h, h′ integers numbers. We will discuss later the more general case of finite sequence and

arbitrary LA/LB ratio.

In analogy to what has been discussed in the beginning of this section, these peaks arise from

resonant interference effects, related to the structural self-similarity of Fibonacci sequence, in

which some patterns are repeated along the lines 4. This guarantees the existence of suitable

resonance conditions at any scale.

Each Fourier component qh,h′ of the Fibonacci potential couples the two degenerate Bloch waves

with k = ±qh,h′/2; in a perturbative approach, the coupling is represented by the matrix:

W =

(
Ek Vm,n
Vm,n Ek

)
(4.36)

where Ek is the energy of the free particle with wavevector k, and Vh,h′ the Fourier component

of the potential corresponding to qh,h′ . The states split into Ek±Vh,h′ and a pseudo-gap of 2Vh,h′

is open[231].

The resulting energy spectra is the complementary of the pseudo-gaps. In the case of an

infinite sequence, the high density of gaps makes the spectrum to be everywhere not dense: it

is a Cantor like spectrum with zero Lebesgue measure[237]. The gaps can be labeled with

couples of integer numbers, according with a general theorem on aperiodic structures named

”Gap labeling Theorem” [237, 238].

The spectrum strongly influences the localization of the wavefunctions. For energies

outside the pseudo-gaps, wavefunctions are indeed neither extended (as Bloch modes in the

bands), neither localized (as defect states inside the gap, exponentially decaying), but present

an intermediate behaviour, presenting a decay in space weaker than exponential, usually a

power law: they are defined as ”critically localized” [233, 239].

Quasiperiodic systems are particularly interesting for fundamental studies of localization

and propagation of light pulses [227, 240] and of the control of spontaneous emission of

quantum emitters[241]. They are also attracting for realization of high Q defect-lasers [242]

4The existence of repeated pattern is the subject of the Conway’s theorem which reads as the following: given

an arbitrary sequence of layers, one will always find a replica at a distance smaller than twice its length [236, 227].
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and their peculiar spectral structure makes them suitable for the realization of frequency

filters[230] , low absorption mirrors[227] and also for enhancing surface luminescence[243] or

increasing sensitivity in biosensing platform [244].

Previous experimental observations

The first experimental implementation of the Fibonacci sequence was realized for electron in

1985 [245]. It consisted in a GaAs−AlAs superlattice with layers of different lengths arranged

in a Fibonacci sequence. X-ray diffraction and Raman scattering gave the first evidence of the

characteristic multiple diffraction Bragg peaks discussed above. But the clearest results up to

now have been obtained in optical systems.

Photonic Quasicrystals have been investigated in several dimensions but for simplicity both

in the implementation and in the theoretical interpretation, the most investigated geometry

is the 1-dimensional one. The pioneering experiment in 1D optical Fibonacci structures were

performed by Gellerman et al. [232] in 1994: the structure consisted in dieletric layers of SiO2

and Ti02 of different refractive index arranged in a Fibonacci sequence. In figure 4.40 we report

the measured optical transmission through these structures: several transmission peaks appear

according with eq. 4.35. Furthermore, by increasing the number of layers (and so the order in

the Fibonacci serie) up to S9, the self similarity of the spectra appears, showing patterns in the

transmission spectra that looks the same when undergoing discrete scale transformation.

Figure 4.40: Optical transmission spectra (transmission versus wavenumber) for dielectric

coating stacks corresponding to the Fibonacci words from S6 to S9 (from left to right). The top

(bottom) spectra show experimental (calculated) results extracted from [232]. One can observe

the appearance of several peaks and increasing the number of layers a triple peaks shape appears

repeated at two different energy scale, evidencing the self similarity of the spectra.

This works has been followed by several others, based on different layers compositions,

higher order words [246, 235, 247] and even with phononic[230] and plasmonic [248] systems.

Nevertheless, the experimental approach remains basically the same, presenting few

limitations: the transmission spectra gives a quite indirect informations on the eigenstates of

the system and their spatial distribution can only be simulated but it is hardly accessible
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experimentally.

In the following pages we will present first results on polaritons in a Fibonacci potential. In

a photoluminescence measurement under non resonant excitation, the eigenstates of the system

can be directly observed and all the information concerning real and k-space distribution and

phase can be accessed. Furthermore, although not studied here, the effects of interactions

on the critical localization expected inside the pseudo bands represent an interesting field of

investigation.

4.8.2 Fibonacci wire

The shaping of the Fibonacci potential sequence was obtained by properly adjusting the

lateral width of the etched microcavity wires, that we will name Fibonacci wire. The height of

the potential step can be controlled as well as the size of the A’s and B’s building blocks of the

sequence, and also the length of the words can be, in principle, arbitrary long.

Several Fibonacci wires have been realized and in figure 4.41 we show a SEM image of few

of them, together with a scheme of the resulting potential profile.

Figure 4.41: SEM image of 3 Fibonacci’s wires etched on the sample. The one in the middle

will be the one investigated and from which the results presented have been collected. A zoom

of the top view of such wire is reported on the upper right panels. On the lower right panels, a

scheme of the resulting potential is reported.

The letters A and B correspond to two different values of the potential felt by polaritons,

VA and VB. The length of all the letters was the same, that means LA = LB = a. We realized

wires of different spatial constant a and potential steps V0. More precisely, for every values of

V0 we realized two different families of wires, corresponding to the two possibilities that reads

VA − VB = ±|V0|, in which the letter A represents a barrier and B a well or viceversa.

The order of the Fibonacci’s words sculpted on the structure goes up to S12, that means 233

letters. This corresponds to a sequence of around 200µm of length.

In analogy to what has been discussed for periodically modulated wires, we can define a

recoil energy given by ER = ~2π2

2mp(2a)2 . The ratio V0/ER will play a role also here : a value

of around unity or higher is required to better observe the opening of the pseudogaps and for

investigate localization effects.
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The results presented in the following pages were obtained on a wire of modulation

strength V0 = 1.1meV and recoil energy ER = 1.15meV with VA < VB, and a potential pattern

corresponding to the Fibonacci word S11.

4.8.3 Dispersion, eigenstates and energy spectrum in a Fibonacci wire

The study of the eigenstates of the wires has been performed by non resonantly exciting

them with a cw excitation at a power well below condensation threshold. Such excitation

condition populates the available states in the system and, as in section 4.4.2, the resulting

photoluminescence intensity gives access to the density of states.

Additionally,in this case we excite the wire with a spatially extended spot (with FWHM of

≈ 50µm) in order to excite a large number of sites and to minimize the effect of the local energy

blueshift induced by the reservoir.

The resulting photoluminescence emission, energy and spatially resolved, is reported in figure

4.42.

Figure 4.42: Emission from a Fibonacci wire excited at low power with a large non-resonant

spot (FWHM of ≈ 50µm). The low energy part of the emission is reported (corresponding to

the bottom of the polariton band). Several localized states appear and in the observed pattern

one can identify the final letters of the S11 Fibonacci word shaped on the potential, reported in

the figure.

The difference with the case of periodically modulated wire is evident: the continuous bands

are replaced by a series of discrete localized states, appearing at several energies. The potential

is indeed a sequence of wells and barrier and by observing the emission especially at lower

energy, one can identify some patterns and directly recognize the corresponding letters of the

S11 Fibonacci’s word expected. A direct visualization of the wave functions is thus possible.

In figure 4.43 the corresponding emission in reciprocal space is reported. Here we notice

how the polariton dispersion is modulated and fragmented in a high number of pseudobands

divided by pseudogaps. The high number of gaps corresponds indeed to the numerous Bragg

peaks discussed in the introduction paragraph.

A theoretical analysis of the eigenstates of the systems was performed in the group of Eric

Akkerman in the Tehnion Institute in Haifa. By taking into account the finite size of our system

formula 4.35 can be rewritten and the positions of the Bragg peaks is given by:
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Figure 4.43: On top we report the reciprocal space emission from the Fibonacci wire

corresponding to the previous figure 4.42. Several pseudogap and pseudobands appear. We

report also the indexing of each pseudo-gap with the couple of integers [h, h′], according with

eq. 4.37. Below we report the result of the simulated polariton dispersion numerically calculated

starting from the parameters used in the experiments.

qh,h′ =
2π

aFj+1
(Fj+1h+ Fjh

′) (4.37)

with Fj the j-th Fibonacci number and j the order of the considered sequence.

Additionally, starting from the parameters used in the experiments (including finite length

of the microwire and its lateral shape), the polaritons states have been numerically calculated

and the polariton dispersion of fig. 4.43 has been exactly reproduced (as shown in fig.4.43).

Thanks to this analysis, we succeed in indexing the different gaps observed in the

experimental band structure with the index [h, h′], as shown in fig. 4.43, proving the

applicability of the ”Gap labeling theorem”.

Integrated Density Of States

The peculiar structure of the emission spectrum appears more clearly by observing the

integrated intensity and the integrated density of states derived from it. This is what we report

in figure 4.44 for the low energy part of the spectrum. We observe the appearance of peaks,
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corresponding to band edges and deeps corresponding to pseudo gap.

Figure 4.44: On top left we report the integrated intensity spectrum corresponding to the

reciprocal space emission of figure 4.43. Below, we report the intensity of the upper curve

integrated on the energy axis. Such curve is expected to give an indication of the behavior of

the IDOS function. The pseudogaps correspond to flat region of the energy integrated intensity.

We identify the main gap observed on the dispersions, identified by red flashes. The small

gaps at ≈ 1572.3 meV also appear in the spectrum. All these features are reproduced in the

theoretical calculations performed by Akkerman and coworkers, reported on the right column

and corresponding the theoretical dispersion shown in fig. 4.43 . In the inset on the bottom

right, the calculated IDOS in the low energy region is reported in a double-log scale, as a function

of E −E0/ER (with E0 ≈ 1570.8meV and ER = 1.2meV ). Log-periodic oscillations are visible,

modulated by an increasing by a power law with α = 0.32 (see formula 4.38).

Additionally, by assuming that this signal is proportional to the density of state, the

integration of the curve along the energy scale from the lowest energy up to E′ gives integrated

density of states: IDOS(E′) =
∫ E′
Emin I(E)dE. The result of this integration is also reported in

fig.4.44. We can observe how the pseudogaps correspond to a flattening of the IDOS curve and

this flat region corresponds to the energy of a polariton given, in the parabolic approximation,

by
~2q2

h,h′
2mp

.

The IDOS is a quantity particularly interesting since it is always well defined and can be

convenient to describe different types of spectral singularities [231]. In previous works, the

group of E. Akkerman [249] has shown how quantities such as the integrated density of states

in a fractal system 5 present general behavior and can be described by the product of a power

function modulated by a log periodic function . This reads:

IDOS(E′) = |E − E0|αF

(
ln|E − E0|

ln b

)
(4.38)

where F is a periodic function of unit period, b a scaling parameter and the energy of the lower

energy state.

5The Fibonacci sequence is more exactly defined as a multifractals, with multiple scaling rules [231]
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In the right column of figure 4.44, we report the calculated DOS and IDOS curves. We

observe an excellent qualitative agreement with the experimental curves. Also quantitatively

the agreement is satisfying, confirming how emission intensity allows to directly access the

density of states in the system. Additionally, the high resolution available in the calculation

allows to look in detail into the behaviour of the IDOS. In the inset in the bottom of fig.

4.44,we plot in a log-log scale the IDOS as a function of (E − E0)/ER (with E0 the bottom of

the band). We observe a log periodicity of the curve modulated by an overall increasing fitted

by a power law with exponent α = 0.32. The energetic resolution of the experimental spectrum

doesn’t allow to recognize this pattern in the present structure. Nevertheless, the results

obtained in the simulation show a direct indication of the fractal character of the polariton

spectrum, besides the finite size of the structure. An optimization of the microcavity structure,

thanks to a smaller step size a and a higher potential steps V0 could allow to resolve also

experimentally at least one periodic oscillation in the IDOS.

Conclusion of the third part

In this section we have discussed polariton in potential profile that follows the quasi periodic

sequence of Fibonacci. We presented at first few characteristic theoretical features expected for

such aperiodic potential profile and we described the microcavity structure used to implement

such potential for polaritonic particles. A direct visualization of the eigenstates has been proofed.

In real space, a set of confined states has been observed, with an intensity spatial pattern that

directly corresponds to the shape of the aperiodic potential . In reciprocal space pseudo bands

and pseudogaps can be identified and signature of a Cantor-like spectrum appears. Additionally

the position of the pseudo gaps and their labeling by couples of integers nicely follows the

theoretical prediction for a quasi periodic crystal and are confirmed by numerical calculation.

This work represents a first characterization of these structures that appear as a promising

framework for future investigation. A possible direction of investigation consists in the study of

polariton localization in such a structure , especially in the non linear regime, where interactions

are expected to drive the system into the equivalent of a metal-insulator transition [250, 251, 252].



Chapter 5

A polariton interferometer

5.1 Introduction

In the previous chapter we have shown few examples of how interaction properties of

polaritons can be exploited for manipulating the polaritons flow. Especially the

exciton-polariton interaction has been demonstrated to provide an efficient all optical way to

reshape the polariton potential, to accelerate them, to block and reflect them, and superposed

to a periodic potential, to localize them in gap states or drive them to perform Bloch

oscillations.

In this chapter we will demonstrate how interactions give a way to control and manipulate

the phase of the polariton flow in an all optical way.

To put in evidence this effect we etched polariton interferometers. The proof of the principle

will be obtained thanks to a coherent propagation polaritons flow inside a Sagnac

interferometer and the effect will be exploited in order to modulate the transmission of a Mach

Zehnder interferometer.

We discuss the propagation and precession of polariton pseudospin in both 2D and 1D

geometry, and then the behavior of such spin degree of freedom will be analyzed inside the

Mach Zehnder interferometer. It is shown how we can also obtain a control of the degree of

linear polarization of the outcoming signal.

We conclude discussing the potentiality of this structure as a tool to detect a polariton Berry

phase.

5.2 Measuring and controlling the phase

Interferometry is a field that have accompanied most of the major discoveries in the physics

of 20th century. Several examples can be presented: Michelson and his interferometer provided a

key experiment in the debate of the light propagation in different reference systems[253], Young’s

experiment still represents one the clearest proof of the wave nature of photons [254] , while

Fabry and Perot completely revolutionized the spectroscopic measurements[255].

The advent of quantum mechanics further increased the potentiality of these techniques. The

wave nature of every particle predicted by De Broglie has first become visible in interference

experiments: fringes formed by electrons scattered by a thin metal film where observed by G.P.

125
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Thomson [256] ,helium atoms were seen to form density fringes when reflected on a crystal [?]

and nowadays the equivalent of the two slit experiment with single electrons or atoms is still

one of the most astonishing and appealing proof of quantum mechanics.

Since then, interferometry strongly developed in different directions [257, 258, 259].

Optical interferometers represent not only tools for highly precision measurements [260, 261,

262, 263] but they are also an essential ingredient to investigate fundamental properties of light

sources such as spatial and temporal coherence, or to investigate the more subtle behaviours of

single photons sources [4], indistinguishible photons [264], entangled states [265].

Additionally, development of photonic materials, waveguides and photonic crystals, allowed

the realization of light confinement and guiding at the wavelength scale and below [153, 266,

162]. Interferometers in solid state structure in several geometries became the basis of various

integrated optoelectronic devices [267, 268, 269, 270, 271, 152, 272].

Parallely, matter wave interferometer have been realized , thanks to the development of

atom optics, based on exotic structures such as mechanical and laser gratings, able to

reproduce the equivalent of mirrors and beam-splitters for De Broglie wavelength of typically

fractions of Angstrom [257, 258]. Initially conceived as elements of basic research, nowadays

atom-interferometers are building blocks for high precision measuring devices, such as atomic

clocks or gravimeters.

Interference effects have been also detected in electronic circuits: thanks to high quality

quantum conductors and sub-Kelvin temperature operation, interference between a single pair

of electrons has been detected [273].

It’s also worth to mention the case of cold atom gases: as introduced in the first chapter,

the phase transition towards a Bose Einstein condensation manifests itself with the appearance

of spatial coherence [92] detectable measuring the spatial correlation function via

interferometric measurements. For atomic condensates this property has been proved by

splitting a condensate in two trapped ones and letting them expand and interfere with each

other [274], or by realizing the equivalent of a two slits experiments [275], and nowadays also

on-chip BEC interferometers have been implemented [276, 277].

In the polariton field, optical interferometric techniques has also played a major role, since

the phase information of the emitted photons gives a further insight into the polariton states.

A good example comes from the measurements of spatial coherence: with respect to atomic

condensate, this measurements can be done more easily thanks to optical interferometry on the

photons emitted and collected out of the sample. Such measurements represented one of the

indication for polariton quasi-condensation in CdTe cavity [?], and later in GaAs [13], and GaN

[16] based cavity.

Furthermore, spatial mapping of the phase of the excited polaritons states allowed the

identification of topological defects, characterised by phase discontinuities such as vortices [24],

half vortices [23], as well as solitons and half solitons [20] and still inspires much other

theoretical propositions [278].

In these pages we will show how interference effects in a polariton flow will be visualized

directly inside the sample without indirect interferometric measurements of the emitted light

and they will be exploited to drive and control the flow by optically modulating the phase itself.
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5.2.1 Phase modulation

A two-beam interference pattern shifts according with the path difference between the

beams. This can modulate the output intensity of an interferometer that can become a

sensible devices for measuring distances, time delay, temperature, acceleration, gravity,

magnetic field and many other quantities [279, 280, 260, 263].

But the deterministic control of the accumulated phase in one of the arms opened the way to

use them as integrated solid state devices acting as modulator of the signal transmitted trough

them (see section 5.5.3). Furthermore, such control can also allow to accurately manipulate

quantum states [281, 282, 267] and to generate, ideally, any discrete quantum operator [283].

Concerning optical devices, the optical path k · x is modified generally acting on the wave-

vector k via a local variation on the refractive index. Several mechanisms have been investigated

in order to modulate the refractive index of a waveguide material. It can be done thermo-

optically, based on temperature dependent refractive index material[271], electro-optically, using

index change with electrically injected carriers [284], or based on optomechanical induced index

changes [285], while we talk about all-optical systems when such variation is driven by a control

optical beam.

In most of these cases, the optimization and enhancement of the induced phaseshift is

based on two main ingredients.

On the one hand, one needs to use a medium with a refractive index that strongly depends

on the control parameters, such that a small variation of the control, highly influence the value

of n and so of k. In the case of optical control, this has been obtained by using strongly non

linear medium [286], or mainly by adding in the active region carrier confinement, thanks to

QWs and especially QDs, to enlarge non linear optical response[287, 269, 270] .

On the other hand, one can engineer its optical mode in order to traduce even a small variation

on n, in a big variation in k or of the propagating velocity. Indeed in a dispersive material, in

the vicinity of a resonance, light can be strongly slow down and so, going slowly trough this

region, can accumulate a large phase shift. This is the essential principle of the structures based

on electromagnetic induced transparency [285] , ring resonator [288] and, the most diffused,

photonic crystals[153, 266] (see section 5.5.2).

5.2.2 Interaction induced phase shift for polaritons

Now we introduce a different approach for inducing a phaseshift in a polariton flow by

optical control but still based on these two principles just mentioned: the mixed light-particle

nature of polaritons will provide strong non linearities typical of electronic systems combined

with the highly dispersed mode of a photons confined in a micro-cavity.

Let’s consider a monochromatic polariton flow propagating along a microwire, with a well

defined kinetic energy Ek. In the effective mass approximation, or , in other words, considering

a parabolic band, its corresponding wave-vector is given by k1 =

√
2mpEk

~ .

We place a non resonant control spot shining on a certain region of the wire. Its intensity
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will be kept below condensation threshold so that its main effects will be the local injection

of excitons in the reservoir. As mentioned in the previous chapters, the repulsive interaction

between polaritons and excitons results in a local shift of the polaritonic resonances of a quantity

V , as depicted in figure 5.1. We have already discussed how such a barrier induced by excitonic

reservoir could be used to accelerate and decelerate polaritons, and, if the barrier is sufficiently

high, to stop and reflect them. In this case we consider a barrier lower than the kinetic energy

such that polaritons will cross the region of the non resonant control beam. However, in this

region their kinetic energy will locally decrease, E′kin = Ekin − V , and consequently their wave-

vector will decrease to a value k2 =

√
2mp(E′k−V )

~ .

Figure 5.1: Schematic representation of the experimental configuration for inducing a phase

shift to a polariton flow by a non-resonant control laser beam. The blue curves schematically

represent the polariton dispersion in two different region of the wire: on the region of the control

beam the dispersion is locally blue-shifted of a quantity V.

Considering L the diameter of the control spot, the flow acquires a phase-shift with respect

to the case of unperturbed propagation equal to:

∆φ = L ·∆k = L

√
2mp

~

(√
Ek − V −

√
Ek

)
(5.1)

Since the value of the height of the potential can be controlled by the power density of the

control beam Pc, this will provide us an external all optical control of the phase of the polariton

flow.
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5.3 The interferometer structures

In this section we present polariton interferometers controlled by the described method.

Splitting a condensate into two

The starting point in the realization of almost every kind of interferometer configuration is

the realization of a beam splitter to divide in two the incoming signal and then guide each part

and recombine them in the output arm, always in a phase-preserving way. This has been

realized in several systems and in many different ways. Thanks to quantum point contact for

electrons interferometry in circuits or via a double well potential for propagating BECs, while

in optics several approaches have been used. In photonic crystals,0D or 1D confining potential

can be created for photons that are guided in the desired direction [162].Then, strong or weak

abrupt variations of the effective optical index provides the possibility of realizing the

equivalent of a mirror or of beamsplitter [152]. Alternatively, optical waveguides have been

used, when light is strongly confined due to index difference between the guide material and

the one in which is embedded or the air and a large variety of optical paths can be realized

[289].

Our approach is based on the etching of a 1D microcavity structure consisting in wire split

via a y-shaped bifurcation, depicted schematically in fig. 5.2.

Figure 5.2: Scheme of the bifurcation of the microcavity structure.

The shape of the bifurcation, as well the path of the arms, are designed to present smooth

curvatures in order to decrease the probability of backreflections of polaritons at the junctions
1. The efficiency of the injection of the structures will be discussed in details in the following

paragraphs, when the coherent propagation inside this structure is studied.

5.3.1 The 2 interferometers

Two different kinds of interferometers have been realized.

The first one (on the top of figure 5.3) is a Sagnac interferometer (that we friendly named

“tennis racket”). A simplified scheme of the original Sagnac interferometer [290] is reported on

1The curvature of the wire follows the shape of a Lemniscate of Bernoulli, described by the equation (x2+y2)2 =

2a2(x2 − y2)
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the upper left of the figure: the incoming beam is split into two contra-propagating beams that

circulate in the interferometer, superposing their paths. The beams come back to the initial

beam splitter and couple out towards a detector.

Our structure is analogous, with the slight difference that our beam splitter redirects the two

signal in a single output path.

Figure 5.3: Left top: Scheme of the standard configuration for a Sagnac interferometer. Right

top: SEM image of our structure, analougous to a Sagnac interferometer. Bottom: The Mach-

Zehnder interferometer. Essential parameters are reported in the pictures.

.

The second one is the well known Mach Zehnder interferometer.

To obtain it, we need the equivalent of two beamsplitter, so in our case two y-shaped coupler.

The two beams undergo well separated path inside the two arms of the interferometer and then

recombine at the output.

We realized these two structures in different sizes, varying the arm to arm distance and the

width of the wires. In the following pages we will present measurements realized on structures

with 25µm distance between the arms (see figure 5.3) and a 3µm wire width.

5.4 Optical control of the polariton phase

Let’s now investigate the propagation of polaritons inside the Sagnac interferometer, that

will be an ideal structure for proving the effect of the phase shift induced by the interaction

of flowing polaritons with the reservoir and to directly measure and quantify such a optically

induced phase shift.
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5.4.1 Interference patterns in the Sagnac interferometer

The experimental configuration is represented on top of figure 5.4.

The structure is excited along the injection arm to create a polariton flow that will propagate

inside the structure. In this section we excite the system with a non resonant excitation. The

resulting emission from the Sagnac interferometer are reported in figure 5.4 for several power of

the non resonant pumping beam.

Figure 5.4: Top: Scheme of the experimental configuration. The pump laser Pp is non resonant.

Bottom: Real space emission collected from the racket for different excitation power. The

red rectangle in the first panel idnicates the region from which profile reported in fig. 5.5 are

extracted.

Below threshold an incoherent population of polaritons is injected, wide in energy and k

space. But we know that, above threshold, we should expect the generation of a monochromatic

beam and the build up of a coherent propagation of a monochromatic beam.

What is remarkable is that here in order to detect this transition, we won’t need neither an

output of the interferometer (as it is normally required) nor a movable arm to control the

relative beam path but since all the interference effects are taking place inside the sample, we

will simply collect the light escaping from the structure to directly access the polariton
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wavefunction and so visualize and quantify the onset of coherence.

Two wave interference

Let’s consider a incident signal in the injection arm and that will be splitted. We will have

so two signal propagating in the two arm, labelled 1 and 2 . We treat the problem in one

dimension, the position along the waveguide, and we consider the two monochromatic wave

contrapropagating with opposite wave wector. So we write:

Ψ1 =
√
I1exp

i(kx−ωt+θ1) Ψ2 =
√
I2e

i(−kx−ωt+θ2) (5.2)

and the results interference pattern is:

I = |Ψ|2 = I1 + I2 + 2g
√
I1I2 cos(2kx+ θ1 − θ2) (5.3)

where we introduced a factor 0 ≥ g ≤ 1 to take into account non perfect monochromaticity or

a finite coherence between the two beams.

The sum of the first two terms can be seen as a uniform background while the last term is

an oscillating terms representing the interference effect: g = 1 represents completely coherent

waves and g = 0 complete incoherent ones. According to the argument of the cosine, intensity

will oscillates between a minimum and a maximum of intensities, generating an interference

pattern of period π/k, with fringes visibility defined as Imax−Imin
Imax+Imin

. In the case of I1 = I2, the

parameter g corresponds exactly to the fringes visibility.

In formula 5.3 and in the fits that will follow, we are neglecting the spatial decrease of

intensity due to finite polariton lifetime along propagation; we can state that, by looking to the

interference pattern only in a region of few microns at the top of the interferometer (see red

rectangle in fig. 5.4), this spatial decrease can be neglected. Later, in the next sections, we will

take it into account.

Expression 5.3 will be used to fit the observed spatial emission profile in the power series

corresponding to figure5.4, where adjusting the parameter g we take into account the

transition from an incoherent polariton population below threshold, wide in energy and k,

towards monochromatic coherent wave above threshold.

5.4.2 The spontaneous build up of coherence

We plot the spatial profiles of the emission from the Sagnac interferometer for the series of

measurements corresponding to figure 5.4. The profiles are extracted from the region indicated

by the red rectangle in the figure and are plotted on the left panel of fig. 5.5 for several values

of excitation power. Using the formula 5.3 we fit such extracted curves, considering I1 = I2

and where the adjustable parameters are the coefficient g and the k vector that increases with

power.

We observe that, as expected from an energetically broad signal distribution corresponding

to below threshold excitation, a quite uniform intensity profile is observed along the device and

almost no interference pattern is detectable, corresponding to low value of visibility g. Then the
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increase of the visibility and so the onset of the coherence takes place at an excitation power

corresponding to a non linear increase of the local polariton density,as reported on the right of

fig. 5.5.

Figure 5.5: Left: Normalized intensity profile extracted from the head of the interferometer

corresponding to the panels of fig. 5.4. Right: Visibility of fringes as a function of power (black)

and integrated signal intensity at the head of the interferometer as a function of power (blue).

One can interpret these measurements as the equivalent of the ones by E.Wertz, reported

in fig. 3.5, where the first order correlation function g(1) where measured by evaluating the

visibility of the interference fringes from two point at a distant a along the wire (see figure 3.5).

In the present experiment the point a is the total length of the interferometer, 80µm. A

visibility of 0.85 shown here, was detected only for a distance a of few µm in the Wertz

experiment. Although we didn’t performed a detail study of the decrease of the fringes

visibility with the propagation distance in this sample, we can nevertheless conclude that it

present coherent propagation length longer than the previous investigated sample, in accord

with its higher quality factor.

Additionally, one could also argue and demonstrate that the measured values of the visibility

is actually a lower limit, since the visibility of the fringes can be lowered by the effect of multiple

reflection of the signals inside the interferometer taking place at the beam-splitter and by a not

perfectly equal intensity injected in the two arms.

In conclusion, we have shown how such interferometer structure can provide a way to directly

visualize and quantitatively analyze the effect of spontaneous build up of coherence under non

resonant excitation, giving a more direct confirmation of the previous results obtained on straight

wires[38].

5.4.3 The optical-induced phase-shift

After the discussion on the interference pattern appearing inside the ring, let’s take advantage

of this as a tool for measuring the optically controlled phaseshift proposed in the beginning of

the chapter.

Let’s fix the intensity of the pump beam to 3Pth placed on the injection arm of the Sagnac

interferometer: this corresponds to the injection of a monochromatic polariton flow with a
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kinetic energy of 3.1meV . The corresponding k vector, obtained from the far field emission,

is k = 2µm−1, giving rise to a fringe space of 1.6µm, in agreement with the fringe spacing of

figure 5.6. Now on one arm of the interferometer we place a second non resonant control beam.

A beam collimator is placed on the path of this second control beam in order to enlarge its

spot size to a higher values with respect to the almost diffraction limited size of the 2µm pump

beam. In all the reported results of the chapter, the size of the control spot is characterized by

a FWHM between 5 and 9 µm. As explained before, this spot will create locally an excitonic

reservoir and so a blueshift of the polariton bands. The height of this potential is controlled by

the power of the control beam.

In figure 5.6 we report the emission from the interferometer for different control powers. It

appears clearly that all the interference patterns shifts progressively with increasing the power

of control beam.

Figure 5.6: Top: Scheme of the experimental configuration: a control non resonant beam is

placed on one of the arms. The non resonant pump beam is also indicated and is placed on

the injection arm right outside the window. Bottom: Real space emission of the interferometer

measured for different values of control beam power Pc, placed on the region indicated with the

red circle on the upper arm. A dashed white lines is a guide to the eye to evidence the shift of

the interference pattern between the panels.

In figure 5.7 we reported few intensity profiles corresponding to series of measurements of

figure 5.6, extracted at the head of the ring. By fitting the curves with the formula 5.3, one can
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directly derive the phase shift corresponding to the observed fringe displacements and plot it

as a function of the control power: the obtained shift increases almost linearly with the control

power to a value higher than 3π (see figure 5.7).

In order to understand and reproduce such a behaviour, also the blueshift induced by the second

spot has been measured: the pump beam has been blocked and the emission from the control

spot region has been collected energetically resolved. The results , in the in set of the graph of

fig.5.7, presents a linear increase with power.

Figure 5.7: Left: Normalized intensity profile extracted from the circular part of the

interferometer corresponding to the same series of measurements of fig. 5.6. The arrow indicates

the overall shift of the fringes. Right: Phaseshift as a function of the control power extracted

by fitting the experimental profiles on the left (black squares) . In the inset the measured

blueshift induced by the control beam as a function of power. The red curve represents the

calculated phaseshift obtained by applying formula 5.1 in a presence of a gaussian shaped

potential barrier of size σ and of height given by the experimental values of the blueshift

(Parameters: Ekin = 3.1meV , σ = 4.3µm, mp = 6 · 10−5m0).

To reproduce the measured phaseshift, we apply formula 5.1, in which we consider a

gaussian potential barrier of σ = 4.3µm with a height varying with the control power and

corresponding to the measured blue-shift reported in the inset of figure 5.7. The red line shows

the obtained fit which nicely reproduces the measurements in the whole power range. The

dependence observed between phaseshift φ and blueshift V appears linear, although we expect

a square root dependence φ ∝
√
Ekin − V . This is due to the fact that the kinetic energy is

always much higher that the induced blueshift, and so polaritons don’t approach the bottom of

the band and the effect of the parabolicity of the dispersion is reduced. In the next experiment

with the Mach Zehnder interferometer, the polariton kinetic energy will be lower, and a

deviation from a linear dependence between φ and V will appear.

Decrease and recovery of visibility

We would like now to discuss the observed visibility of the interference fringes when changing

the control power.
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The left part of figure 5.8 shows the visibility of the fringes as a function of the control beam,

obtained by fitting the curves in figure 5.7.

Figure 5.8: Left: Visibility of the fringes at the top of the interferometer (red rectangle in the

scheme) as a function of the power of the control beam. Right: Integrated emission intensity

collected at the top of the interferometer inside the red rectangle in the scheme.

The visibility starts from the already discussed value of around 0.8, stays quite constant up

to 15 mW , then decreases down to 0.25 and later increases again up to 0.7.

To interpret these results, at first one must consider that the control beam can act not only

as a source of excitons in the reservoir, inducing the phase shift, but also as source of additional

polariton injected in the circuit. For low power, below threshold, the injected polaritons are

incoherent and this can represent a background signal that reduces the visibility of the fringes.

In general this contribution can be neglected since it’s much weaker than the injected coherent

signal by the pump beam. On the right of figure 5.8, we report the total integrated signal over

the region on top of the interferometer, indicated by red rectangle in the inset. Here we observe

how the total injected signal is not independent on the control power, but instead oscillates and

can be reduced down to a factor 4.

A possible interpretation of this variation is directly related to the use of non resonant

excitation, in which case the formation of the coherent state is spontaneous, and, differently

form the case of resonant pumping, the initial phase of the state is not fixed. The geometry

of our Sagnac interferometer allows polaritons to travel the whole rings and thanks to a long

lifetime and especially, in this situation, to a high propagation speed, they can close the loop,

and so tend to form and lock into a stationary wave. This is analogous to what happens for a

polariton flux against a barrier [36, 39], in a closed loop [291] or between two spots [111]. In the

structure, by varying the induced phaseshift by the control beam, the input injection region will

oscillate between a node or an antinode of the standing wave. As a result the efficiency of the

injection (and eventually the reflection against the beamsplitter) changes and the total intensity

in the ring will oscillates as observed.

This interpretation is confirmed by the period of this oscillation of around 20 mW that
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correspond, compared to fig. 5.7, to an induced phase shift of around 2π.

This effect, combined with some incoherent signal introduced by the control beam, explains

the observed behavior of the visibility. The weak incoherent signal injected by the control spot

have an influence on the visibility only when the injection efficiency of the coherent signal is

low, around 25 mW, corresponding to the observed visibility deep.

Notice that these effects affect solely the visibility of the fringes. The phaseshift increases

continuously with the control power without presenting any discontinuity.

5.5 The complete Mach Zehnder interferometer:

the output modulation

The Sagnac interferometer was an ideal structure to provide a direct visualization and a

clear evidence of the principle of the reservoir induced phase shift for a polariton flow. Let’s

now exploit this effect for controlling the behaviour of a Mach Zehnder interferometer.

It’s important to stress that in all the following experiments the condensate will be injected

resonantly and the control pump power would be lower. This allow us to fix the phase and

the injection efficiency of the incoming beam and also to generate a signal from the pump laser

much stronger than the one possibly generated by the control beam and any influence of the

signal injected by the control beam will be absolutely negligeable.

5.5.1 Propagation inside the Mach Zehnder interferometer

The experimental configuration is summarized in figure 5.9.

Before discussing in details how the device operates, a particular attention must be paid

to the band structure of the wire cavity. As shown in the center of figure 5.9, several band

are presents. Here we observe the first two order (labeled 1 and 2). Each mode has a TE-TM

splitting (as discussed in chapter 2) and so we finally obtain a 4 bands structure.

In the following experiment, we will carefully adjust the kinetic energy of polaritons to a

value of Ek = 0.5meV , below the TE1 band, and in order to do so we will use a resonant pump

beam. This will assure us the excitation only of the lower band TM1.

The resulting emission is reported on the bottom panel of fig. 5.9; where we evidence polariton

propagation along the whole device.

The polariton flow is divided almost equally in the two arm of the interferometer by the first

beam splitter. Polaritons travels inside the arms and then reaches the second beam splitter. As

we will better demonstrate and discuss later, the two paths have almost exactly the same length

and so the phase difference between the two beams is expected to be zero: at the reunification

point, the second beam-splitter, constructive interference occurs and signal is transmitted outside

of the interferometer.

We can define the total transmission of the structure as the ratio between the signal in the

output arm Iout divided by the one in the input arm Iin. These two values are obtained

integrating the signal in the region indicated in the figure, and the resulting value for the
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Figure 5.9: Top left: Scheme of the experimental configuration. The pumping laser is now

resonant.Top Right: The band structure measured along the injection arm. The red arrow

indicates the energy of the pumping laser. Bottom: Emission intensity collected from the MZI

interferometer structure. The rectangles indicates some specific regions over which the integrated

emission intensity is considered (see text).

transmission is T = 6.5%.

This value, much smaller than unity, can be explained by two effects.0n the one hand finite

polariton lifetime reduces the overall intensity along the propagation. On the other hand, each

beamsplitter generates a ratio of backreflected signal that don’t enter the structure or that,

once inside undergoes several reflections. The latter effect is confirmed by the observation of

clear interference fringes in the arms of the interferometer. These are generated by an incoming

signal interfering with contra-propagating signal reflected by the second beam splitter.

In order to give a rough estimation of the efficiency of the beamsplitters and of the loss of

polaritons durings the propagation, one can derive some analytical expressions for the signal in

different points of the structure. In a simplified model, where interference effects are neglected,

we can consider that at each beamsplitter, a certain ratio t of the total incident signal is

transmitted, and the remaining r = 1 − t is reflected. Afterwards , we can define a damping

factor γ ≤ 1, representing the reduction of signal corresponding to the propagation over one

arm.

By taking into account and summing all the contributions of possible reflections, we end up



5. A polariton interferometer 139

with the following expressions (similar to the ones obtained for a Fabry-Perot):

Iin = I0

(
1 + r + γ2rt2

) 1

1− γ2r2
(5.4)

Iarm =
I0

2
t

1 + γ2r

1− γ2r2
(5.5)

Iout = I0t
2γ

1

1− γ2r2
(5.6)

where I0 is the injected intensity.

Experimentally, one obtain a value for the quantity Iout/Iin = 6.5% (as mentioned before)

and 2Iarm/Iin = 0.5 (where 2Iarm is the sum of the intensity measured in the two arms,

integrated in the region indicated in the figure). From there, we estimate the values for t and

g.

In the 2D colormaps of figure 5.10, we report the calculated values of 2Iarm/Iin = 0.5

(on the left), and the transmission Iout/Iin as a function of all the possible values of t and

g. The contoured region (in blue and yellow) represents the parameters combination that are

in agreement with the experimental measurements, that is with the requirements 2Iarm/Iin =

50± 5% and Iout/Iin = 6.5± 1.5%. Superposing the two conditions, we deduce essentially two

possible combinations of parameters, evidenced by green lines on the right colormap of fig. 5.10.

Figure 5.10: 2D color map representing the calculated values of the ratio 2Iarm/Iin (left) and

Iout/Iin (right), varying the parameters t and γ. The evidenced region on the map represents the

parameters combination in agreement with the experimental observation. The blue line contours

a region in which 2Iarm/Iin = 50 ± 5%. The yellow contours a region in which Iout/Iin =

6.5± 1.5%. Regions countoured by black lines on the right map indicates parameters for which

both the conditions are satisfied.

We can exclude values of γ of 0.9, that would correspond to polariton lifetime of several

hundreds of ps, and also a beam splitter with a transmission of only 20% is not compatible with

other experimental evidences. It is then legitimate to consider the map region on the upper left.

We can deduce an estimation for the efficiency of the beam splitter of around 65%. This in

the approximation of an equal efficiency for the entrance and the exit of the signal.

Furthermore, we extract a reduction of signal during the propagation due to the finite



5.5 The complete Mach Zehnder interferometer:
the output modulation 5. A polariton interferometer

polariton lifetime, given by γ, of around 0.25.

Considering the length of the arm l = 55µm, and the polariton group velocity of

vg = 1.5µm/ps (corresponding to a kinetic energy of Ek = 0.5meV ), one can deduce the

corresponding lifetime l
vgln(γ) = 30ps. Considering the negative detuning of the used structure

(δ = −8meV ), this values corresponds to a polariton lifetime at zero detuning of

τpol(δ = 0) = 42ps, in quite good agreement with the value of around 40 ps extracted from the

decay in a planar cavity.

The overall transmission of the device will be defined for the rest of the chapter as the

value T = Iout/Iin. But it’s important to keep in mind that, taking the extracted value of the

beamsplitter efficacy t, we can correct this value because, in first approximation,

Iin = I0 + (1− t)I0 and so the effective transmission is Tcorrect = (2− t) IoutIin
≈ 1.4T = 9%.

Nevertheless, the limitation on the overall transmission imposed by the polariton lifetime is

relevant and represents an handicap for this structure: handicap that although could be

partially overcome by a further increase of the polariton lifetime and also by reducing the

length of the interferometer arms. Increasing such a transmission value could be of particular

importance especially if considering such a polariton Mach Zehnder interferometer integrated

in optically driven polaritonic circuits. The cascadability indeed is one of the essential features

for any circuit element.

In conclusion, we have shown and analyzed the propagation of polaritons inside the Mach

Zehnder interferometer, characterizing the main parameters, essentials for the following

discussion of the device used as a modulator.

5.5.2 Control of the output intensity

We now adress the optical control of our MZI. To induce a control phase-shift, a non-resonant

control beam is now focused on the upper arm of the MZI. Its power Pc has been scanned from

0 up to 12 mW and the results are reported in figure 5.11 for few significative powers.

Figure 5.11: Emission intensity from a MZI for different values of the non resonant control beam

(scheme of the experiment in the small inset); the transmitted emission is modulated thanks to

the phase induced by the control beam.
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We can clearly observe how the output intensity can be controlled by the control power beam

and its non monotone dependence with Pc is a good indication that we are in presence of an

interference effect.

Indeed the second beam induces a phase shift between the two arms. A phase shift of π,

corresponding to Pc = 5mW , generates destructive interference at exactly the reunification

point. The interference pattern will present at this point a minimum and so the coupling with

the output arm is close to zero and the signal propagating outside the structure is strongly

suppressed.

For a higher power, a 2π phase shift is induced and constructive interference at the

beamsplitter position is recovered and so the intensity in the output arm is maximized.

In order to better quantify the modulation of the signal, one can plot the overall transmission

of the structure, defined as T = Iout/Iin, as a function of Pc. The results are reported in figure

5.12. We observe how such transmission coefficient is modulated by one order of magnitude. In

Figure 5.12: Experimental transmission T = Iout/Iin of the MZI as a function of the power Pc
of the non resonant control laser: Experimental point (black squared) and fits (solid colored

curves). The 3 fits are obtained using formula 5.7, considering a phaseshift inducedd by a

gaussian barrier with height given the measured blueshift reported in the inset. The first fit

(blue) curve is obtained considering I1 = I2 for every Pc, for the other two a correction to the

intensity of I2 caused by the increase of the potential barrier height is taken into account (see text

and appendix for more details B). Fit parameters : Ekin = 0.5meV , σ = 6µm, mp = 6∗10−5m0,

g = 0.8, α = 3.5%, τ = 25ps.

order to exactly understand the behaviour of the system, we fit the experimental curve with the

following model.

We use the standard formula for the intensity resulting from the interferences of two beams

with some additional parameters, and so we write the transmission as:

T =
α

I0

[
I1 + βI2 + 2g

√
I1βI2cos (∆φ+ θ0)

]
(5.7)

where:

• g represents the coherence of the beams in the two arms and will take a value of 0.8 in
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accordance with what is observed in the Sagnac interferometer since the path over which

polaritons go trough is approximately the same than fig. 5.6.

• α represents an overall decrease of the signal that takes into account finite polariton lifetime

and the reflected signal by the beamsplitters.

• θ0 is a constant phaseshift between the two beams, in order to take into account an eventual

slight asimmetry between the two paths.

• the values of the phase shift ∆(φ)depends on the blueshift following the formula 5.1, where

the potential is a gaussian with σ = 5.5µm and height given by the measured blueshift as

a function of Pc reported in the inset of fig. 5.12.

The values I1 and I2 are supposed both equal to I0/2 for Pc = 0 (with I0 is the measured

incoming signal). The coefficient β < 1 represents a reduction of the intensity on one of the

two arms due to the presence of the induced potential barrier. Such a reduction is related to

two effects that have been take in accounts.

Correction 1: Even if a barrier has a height below the kinetic energy of a particle, there’s

a certain probability that the particle is reflected. This effect is taken into account by

modeling the gaussian barrier by a sequence of squared barrier, for which the transmission

coefficient can be easily calculated.

Correction 2: Polaritons, passing trough the control spot region, are strongly slown down.

This also mean the the time required for travelling the same path gets longer, and so their

density could further decrease. A more complete description of how these two correction are

estimated is found in appendix B.

The results, taking progressively into account the mentioned corrections 1 and 2 are also

reported in figure 5.12. The parameters of the fit are reported in the caption.

This good result of the fitting procedure and the parameters used allow us to draw some

conclusions.

• The behavior of the system and the transmitted intensity is completely dominated by

interference effect and the influence of incoherent signal on the output intensity is weak.

The high value of g = 0.8 used confirms this, and it’s in agreement with previous

measurements.

• The small value of θ = π/10 confirms our previous statement that the two paths are indeed

almost identical. This small asymmetry could come from a slight energy difference of the

polariton resonance in the lower and upper band due to the gradient of energy always

present over the sample. This effect could eventually be overcome by paying particular

attention in the orientation of the etched structure.

• The correction effect to the intensity represented by the factor β becomes important for

higher pumping power, when kinetic energy and barrier height are comparable, and this

correction reproduces the asymmetry between the height of the two maxima of the
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transmission curve. As better shown in appendix B, the main correction comes from the

enhanced decay due to the slowing down of polaritons in the control region.

To conclude, we have demonstrated how the behaviour of the structure is controlled optically,

and how we can understand qualitatively and quantitatively the operation of the device and the

influence of the potential induced by the control beam.

In the following section will discuss our MZI as a possible signal modulator, evidencing

advantages and limitation in comparison with other similar devices.

5.5.3 MZI as a modulator

In the framework of a next-generation of electronic and optoelectronic devices, optical

switches and modulators are key components[284]. In this context, Mach Zehnder

interferometer geometry has been deeply investigated, in several kinds of structures and by

exploiting a wide range of mechanisms for inducing relative optical beam phaseshift, with the

aim of implementing an intensity signal modulator device. As already mentioned, the phase

shift can be induced by several physical effects, mechanically, thermically, electrically, but the

case of all optical control is particularly interesting since this could allow to overcome the

bottleneck of electro-optic conversion in the integration inside a chip. Whatever mechanism,

these modulators should fulfill certain requirements: they should be preferentially small, in

order to be highly integrable in a chip, they should be fast, allowing rapid modulation of the

out-coming signal, they should be low-energy consuming and operate at room temperature .

In the next paragraph we will discuss the main operating parameters of our system: although

still far from applications (due especially to low T functioning and short signal lifetime), it could

represent an alternative approach, taking advantages from the strong interaction properties of

polaritons.

Functioning parameters

Energy consumption

A parameter characteristic of the functioning of the MZI as a modulator is the power

consumption necessary to generate a π phase shift between the two arms or, in other words,

the power to switch from on to off the transmitted signal. By looking at the intensity

modulation series of Fig. 5.12 , we extract that the blueshift required for inducing a π phase

shift is Eb ≈ 0.3 meV. This corresponds to an estimated exciton density of

nX = 2.6 1010cm−2 2. Since the area of pumping is approximately L · w ≈ 21µm2 (with

L ≈ 7µm, size of modulated region, and w = 3µm the width of the wire), this values

corresponds to a number of exciton per quantum well (12 in total) of N ≈ 5400. Let’s now

consider that excitons have a lifetime at low T of τx = 400ps [75]. Under a constant cw

pumping, their population will follow the rate equation: dNX/dt = −NX/τX + R (with R

indicating the rate of excitons injection by the pump), which stationary state is given by

2The heigth of the induced potential barrier is given by: V = |X|2nX6a2
B∗EB , with X the excitonic Hopfield

coeffiecient of the polariton. This expression is obtained starting from the formula 1.43 for the interaction constant

and considering interactions from a polariton in the bottom of the band and a and highly excitonic one (|X|2 = 1).
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NX = RτX . The effective power to be injected inside the cavity required to maintain this value

of excitons is around 40µW . From Fig.5.12 we can also extract the real power sent on the

sample to obtain the π shift, that corresponds to 3 mW. The relevant difference between this

two values can be explained taking into account the following factors:

• half of the pump power do not really hits the cavity, since the spot is 2 times wider than

the waveguide;

• the control laser spot has a wide angular distribution due to the high numerical aperture

objective (NA=0.55) used to focus it. The consequent angular mismatch between the

incoming power and the reflectivity deep of the Bragg mirror brings to the fact that only

a small part of the signal, estimable at around 5%, is effectively injected in the cavity.

By simply optimizing the spot shape and its angular distribution, a reduction of a factor

around 40 could be obtained in the control power values, almost reaching the estimated

optimum value. In principle, this pumping condition should be quite easily achievable from the

experimental point of view. From the number of excitons per QWs estimated above, we could

also deduce what could be the energy needed to be delivered by one laser pulse to induce a

π − shift, in the case of perfect injection. This is approximately 15 fJ.

Size

The used interferometer structure has a size of approximately 40·30µm2, but the more significant

parameter is the size of the active region, the real lower limit for the device size. In our case is

the L ≈ 7µm corresponding to the control spot region.

Characteristic time

The speed operation of our MZI is limited by the exciton lifetime in the reservoir, that decays

with a lifetime of τx = 400ps [75].

A higher speed operation could be obtained by a reduction of this limit, for example via an

increase of the recombination rate of the excitons, in analogy with what is done for free carrier

in photonic crystal structures [292].

Extinction ratio

The intensity modulation between the maximum and the minimum transmitted values

obtained goes up to around one order of magnitude. It is common to define it in decibel scale

as log10
Imax
Imin

= 10. Although extinction ratio can be much higher in other devices (as reported

in table 5.5.3), this values is nevertheless enough to clearly distinguish on and off operation.

Furthermore,the measured value is a lower limit for the real exctinction ratio since the

sensitivity in the experiment is limited by noise coming from scattering of the resonant laser.

All characteristics of our device are summarized in the table 5.5.3, reported together with

parameters coming from few examples reported in literature and obtained in other MZI

modulator, working with different kinds of control mechanisms but most of them based on

photonic crystal.
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π shift power

π shift energy
Size

Operation

time
Extinction

Si Photonic Crystal

Thermoptical control [284]
20mW

−
20µs 20µm 20dB

Si Ph. Crys.

Eletrical control [266]
2mW

−
100 ns 10µm 15 dB

Surface plasmon polaritons

(CdSe QDs)

- optical control [270]
2µW

−
40 ns 4µm –

AlGaAs Photonic crystal

- optical control [268]
−

1.7nJ
3 ps 80µm –

InGaAs Ph.Cr+InAs QDs

- optical control [269]
−

100fJ
15 ps 500µm 16 dB

Our MZI
3 mW (40µWopt.)

15fJ
∼ 400ps 7µm 10 dB

Table 5.1: Summary of the essential operational parameters of our interferometers, reported

together with the ones from other kind of MZI interferometers reported in literature.

At first, it’s important to underline how all the systems which characteristics are reported

in the table operates at room temperature, while our experiments are performed at 10 K.

Nevertheless, we can comment how our system, especially after the discussed realistic

optimization of the control beam injection, can provide a phase modulation with low energy

consumption in extremely short active region and an acceptable extinction ratio value.

For a more quantitative comparison let’s for example compare our non linearities, with non

linearities expected in pure GaAs bulk material.

In our configuration, a π phase shift is induced by energy shift of the mode of

∆E = 0.3 meV , and this is obtained sending an effective injected optical density flux of

around f = 3 · 106 W/m2. One can also estimate the equivalent variation ∆n of the optical

index n which would be required in a bulk material to obtain the same energy shift through

the relation ∆n/n = ∆E/E. This gives ∆n ≈ 7 10−4. If we now consider bulk GaAs, with a

non linear Kerr coefficient n2 = 3.3 10−17m2W−1, and excited with the same optical flux f, the

corresponding variation of the optical index would be ∆n = fn2 ≈ 10−10. Even considering the

effect of light confinement by the Bragg mirrors in our structure, that can enhance non

linearities of a quantity equals to the cavity factor Q ≈ 105 , the equivalent index variation in

our experiment is still almost two orders of magnitude higher that the one relative to bulk

GaAs. This indeed suggests that polaritons modes and their interaction properties could

provide an interesting approach to combine,in the frameworks of optoelectronics, the strong

non-linearity of an electronic system (due to exciton-exciton interactions) with the long and
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coherent propagation of photons.

But still at least two important limitations needs to be overcome, that are: losses,that

reduce the transmission to 9% and limits the cascadability, and the low temperature

requirements. Concerning the first one, a significant reduction of losses along the propagation

could be provided by the use of guided surface polariton modes. Such configuration could be

realized in photonic crystal slabs with embedded quantum wells [293]or using laterally confined

Bloch surface polaritons [294]. While, to enhance the operating temperature up to room

temperature, large band gap semiconductors can be used, such as GaN or ZnO [16, 17], for

which the material quality has been strongly improved lately.

5.6 Polarization control

In this section we will show how the MZI structure, under proper conditions, can act as a

modulator of the linear polarization degree. But at first, we will discuss and illustrate the effect

of pseudo-spin precession in 2D and 1D cavities.

5.6.1 TE-TM splitting and pseudo-spin precession

In chapter 1 we have already introduced the concept of polariton pseudospin and how

polaritons can be considered as spin 1/2 particles. The spin state of the polariton inside the

microcavity has a one to one relation with the polarization of the photon escaping the cavity.

Now let’s discuss what happens when this pseudospin states are not degerate but there’s a

finite energy splitting between states with different pseudospin.

Optical Spin Hall effect

We refer to figure 2.7 of chapter 2 to remind the polarization feature of the polariton

dispersion. Both in 2D and 1D, polariton bands are splitted in linear polarization, and the two

linear polarization eigenstates will be called TE or TM. Such energy splitting ∆TE−TM can be

interpreted as equivalent to an effective magnetic field ΩTE−TM in the plane of the cavity,

acting on the polariton pseudospin ~S, represented in the Hamiltonian by the term

HTE−TM = −~S · ~ΩTE−TM . The pseudospin can be represented as a unit vector in the Bloch

sphere as in figure 5.13. The effective magnetic field have a peculiar dependence with the

polariton k-vector given by [70]:

Ωx =
∆TE−TM

~k2
(k2
x − k2

y), Ωy =
∆TE−TM

~k2
kxky (5.8)

also represented in the figure.

The pseudospin can process along such an effective magnetic field with a Larmor frequency

given by ω = ∆TE−TM/~. In the case of a polariton with a pseudospin on the x direction,

representing a linear polarization parallel to the x or y axis, and k vector lying, for example,

along the x spatial axis, no momentum is applied by the field and the spin be conserved. In the

other extreme case of spin aligned along the z axis, (representing circular polarization) there will

be precession around the magnetic field that lies in the x-y plane. Analogous to the intrinsic
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Figure 5.13: Left: Schematic representation of a pseudospin inside the Bloch sphere. The poles,

indicated by blue and red arrows, correspond to circular polarizations, respectively σ+ and σ−.

Figure extracted from [295]. Right: Orientation of the in-plane effective magnetic field generated

by the TE-TM splitting, dependent on the direction of the wavevector. Figure extracted from

[70].

spin Hall effect in doped quantum wells, where the spin of moving electrons or holes interacts

with the Dresselhaus and Rashba fields [296], this polariton pseudo-spin precession effect has

been called Optical spin Hall effect [70]. It has been firstly predicted by Shelykh and coworkers

[69] and then experimental evidences were obtained in the group of Alberto Bramati in Paris

[295] as well as by Langbein and coworkers in Cardiff[114] . But in all the previous experimental

observations, polariton lifetime wasn’t long enough to allow polariton to undergo a complete

precession before decaying.

In the following paragraph we will give experimental evidences of spin precession observed

following the polarization degree of the polariton emission along their propagation.

Spin precession in a planar cavity

In figure 5.14 we give an example of the effect of spin rotation in a planar cavity. Polaritons

are created at x = y = 0 by a 2µm non resonant laser spot above threshold and propagate

radially for few hundreds of microns. In the figure we plot the circular polarization degree of

their emission. We will not discussed in detail the initial polarization of the condensate, but

what we are interested in is that during propagation polariton pseudospin will precess in time

along an effective magnetic field. Then radial ballistic expansion of the polaritons convert this

time evolution in the observed spatial polarization pattern.

The radial ballistic motion permits, knowing the group velocity vg, a direct mapping between

radial coordinates and time evolution, and the spin textures observed can so be described by

the simple expression [109]:

vg
δ~S(~r)

δr
= ~S(~r)× ~ΩTE−TM

k (5.9)

In the figure we observe an initial 10% circularly polarized polaritons that radially expand

from the excitation region, while their spins precess coherently for at least 300µm. By increasing

the excitation power, the polariton kinetic energy increases, and so both the group velocity vg
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Figure 5.14: Left: Degree of circular polarization of a polariton condensate excited with a 2µm

non resonant spot in the origin. Polaritons expand radially and the pseudospin precession gives

rise to a polarization ring patterns of the emission. Right top: TE and TM polariton bands

extracted from fitting the experimental far field emission. In the inset the increase of the TE-TM

splitting with the kinetic energy is put in evidence. Right bottom: Solid line: Calculation of

the spatial period of the spin precession as a function fo the kinetic energy, calculated using 5.9,

where values of the TE-TM splitting and of vg are extracted from the experimental dispersions.

Squares: Few experimental values of the spatial precession period measured along the line

indicated on the left panel. A good agreement between experiment and calculation is found.

and the TE-TM splitting. By fitting the experimental dispersions (see top right panels of figure

5.14), we can extract these two values for every kinetic energy, and combined with a measure

of the blueshift as a function of power, we can calculate the expected behaviour for the spatial

precession period. We can see that the few experimental points collected are in good agreement

with this calculation.

Analogous results have been obtained and published by E. Kammann [109] and coworkers

in Southampton. The Spin Hall effect plays an essential role also in a work we realized in a

collaboration between our group and the group of Alberto Bramati in the laboratory LKB in

Paris, published in Nature Physics in 2012 [20], and reported in C. In this work, not detailed

in this manuscript, the combination of the Optical Spin Hall effect with the spin dependent

polariton interactions allowed us to evidence the formation of Half-solitons, interesting

topological defect that can be nucleated in wake of a defect. In presence of the effective

TE-TM magnetic field, half solitons behave as magnetic monopoles (for more details see

appendix C).
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Spin precession in wires

The TE-TM splitting in wires has a different origin and a different dependence on the

kinetic energy, as discussed in chapter 2 and already shown in figure 5.9. Here the polarization-

eigenstates of the system are determined by the direction of the linear polarization with respect

to the wire direction (parallel or perpendicular) but the physics involved remains essentially the

same, and also the direction dependence of the effective magnetic field with the k vector remains

the same of fig. 5.13, but where the only possible direction for the k vector is of course tangent

to the wire orientation.

In figure 5.15 we report the effect of spinprecession along a wire, plotting the linear polarization

degree of the signal along the propagation. Differently from the previous planar case, here

polariton states are excited resonantly, in order to exactly control the energy and the polarization

of the initial state. The exciting spot is broad in k space and so will excite all the possible

branches present at a given energy. Few examples of the emission resolved in polarization from

propagating polaritons along a wire are reported in figure 5.15. When we pump only one of the

eigenstates, TM or TE, pseudospin and effective magnetic field are parallel and so no precession

is observed (left panel of fig. 5.15). But if the wire is pumped not in an eigenstate, for example

Figure 5.15: A wire is excited resonantly and emission is detected along polariton propagation

in the region indicated with a rectangle in the sketch of the experiment. The polarization of the

excitation and of the detection is changed in the several panels. In the case of linear excitation,

an eigenstates of the system is excited and no intensity oscillation are observed. In the case of

circular polarization pumping, the pseudospin will turn in the Bloch sphere from σ+ to σ−, but

the linear component will remains constant.

with a circular polarized laser, what is excited is a linear superposition of eigenstates, pseudospin
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and effective magnetic field are not aligned anymore and we observe precession in space (and

so in time) in the circular polarization basis. The intensity in the linear component will remain

constant.

The spatial period of the circular polarization precession can be calculated as a function of the

kinetic energy. In figure 5.16 we report the results coming from measurements obtained on a

3µm wide wire for 3 different kinetic energies. By fitting the dispersions of the TE and TM

polariton branches, we extracted the group velocity and the TE-TM splitting, and we calculated

the expected spatial oscillation period. The TE-TM splitting now decreases with k so the period

increases for higher kinetic energy, differently from the 2D case. The experimental points are

quite well fitted by the calculated curve.

Figure 5.16: Left: Dispersion of a straight 3µm width wire. Dashed curve are fits of the two

TM and TE bands. Right: Experimental and calculate spatial oscillations period as a function

of the kinetic energy. The calculated curve is obtained applying formula 5.9, in which TE-TM

splitting and group velocity are derived form the fits of the dispersions.

These observations and the understanding of the spin dynamics will be now essential to

understand how can use the polariton MZI as a modulator of the polarization degree.

5.6.2 Pseudospin and phase inside the MZI

We now consider what happens to the pseudospin degree of freedom when the polariton

flow enter the MZI. The experimental condition is exactly as before (see fig. 5.9) with the only

difference being a higher energy of the excitation laser. We now excite with a laser energy that

is above the first TE1 band and with a TM polarization (pseudospin with Sx = +1), so we

actually populate only the eigenstates corresponding to the TM1 band. This signal propagates

unperturbed until the beamsplitter. This appears clearly in the figure 5.17, where the emission

is now selected in linear polarization, horizontal and vertical (parallel and perpendicular to the

longitudinal axis of the interferometer). Once inside the interferometer, the waveguide turns, the

magnetic field is no more aligned with the pseudospin (or in other word, horizontal polarization
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is no more an eigenstate) and the pseudospin starts to precess and we observe the appearance

of a component of the polarization along the vertical direction.

Figure 5.17: Experiment configuration as fig. 5.9 but with a higher energy of the injected

polaritons : Ekin = 1.45meV , so above the TE band. The pump laser is TM polarized.

In the center column, emitted signal along the MZI for horizontal and vertical polarization,

corresponding to TM and TE eigenstates of the straight injection arm. On the right,simulations

of a polariton states flow inside the MZI, performed by the group of G. Malpuech in Clermont-

Ferrand, considering the presence of an effective magnetic field. (Parameters:∆TE−TM =

0.4meV , Ekin = 1.85meV .)

It appears clearly in both the experimental pictures and in the theoretical ones (obtained

in the group of G. Malpuech), that, while TM signal is transmitted, TE signal does not come

out from the device. In the TE polarization a two lobes spatial profile is observed both at the

entrance and at the exit beamsplitter, typical for a π phase shift between the two arms (to

compare with figure 5.11). In order to explain this effect we need to understand how the wave

function evolves at the bifurcation.

π shift for TE polarization

Let’s consider an initial state in the injection arm linearly polarized along x, the propagation

direction. Let’s write it in the basis of circular polarization, and so as an in-phase superposition

of σ+ and σ−, that corresponds to pseudo spin Sz = +1 and Sz = −1, Ψ0 = 1√
2

(
1

1

)
. Let’s

write the 3 Cartesian components of the effective magnetic field as ~B =

 B0cos(2φ)

B0sin(2φ)

0

 with

φ the angle with respect to the x axis (we remember that the magnetic field turns twice faster

than the k-vector, as represented in the scheme of fig. 5.18). The evolution of the pseudospin

components is given by the following Schroedinger equation, in which the zero energy level
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Figure 5.18: Scheme of the beam splitter. Wavevector direction are represented by red arrow.

Blues arrows are the direction of the magnetic field, turning twice faster than the k vector. The

green arrows represents the initial pseudospin aligned with the injection arm.

corresponds to the spin aligned with the field:

i~
δ

δt

(
Ψ+

Ψ−

)
=
[
−~S · ~B +B0

]( Ψ+

Ψ−

)
=

(
B0Ψ+ −B0e

−i2φΨ−

B0Ψ− −B0e
i2φΨ+

)
(5.10)

where the component of ~S are the Pauli matrices σi.

We can observe in this expression how, by starting from a linear polarization and considering

a straight wire region (φ = 0), no precession is expected. Now let’s see how the wavefunction

evolves in presence of a magnetic field that curves following the bifurcation of the wire. We

can write the variation of the wavefunction after a short time dt, in the approximation of small

angles:

∆Ψ =

(
∆Ψ+

∆Ψ−

)
=
−iB0dt

~

(
Ψ+ −Ψ− + i2φΨ−

Ψ− −Ψ+ − i2φΨ+

)
(5.11)

We now consider the initial condition corresponding to linear polarization Ψ+ = Ψ− = 1/
√

2

and we can write: (
∆Ψ+

∆Ψ−

)
=
B0dt

~
√

2

(
2φ

−2φ

)
(5.12)

Since the basis in which we are interested is the linear plarization basis,(
ΨH

ΨV

)
= 1√

2

(
Ψ+ + Ψ−

i(Ψ+ −Ψ−)

)
, we can write the variation in this basis finally obtaining:(

∆ΨH

∆ΨV

)
=

(
0

iB0
~ 2φ

)
(5.13)

This result means that for small t and small angles φ, so at the entrance of the interferometer,

the horizontal polarization component almost doesn’t change, while some signal from the V

polarization appears. The sign of the wave-function changes with the sign of φ, meaning that

it will have opposite sign in the upper and lower arm.In other words, a π-shift for the TE

component is induced between the two arms and the wavefunction present a node at the axis

defined by φ = 0. This corresponds to the two lobe observed in the spatial emission image at

the beam splitter for the TE polarization.
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5.6.3 Control of the output polarization

We want to show here how we can use the polarization dynamic in order to optically

control the polarization of the output beam. The possibility of acting on the relative phase of

the two beams with the control laser will allow us to invert the situation of constructive and

destructive interference for respectively horizontal and vertical polarized signal.

In figure 5.19 where we report the emission from the structure in the two linear polarizations

for 3 significative powers Pc of the control beam.

Notice that the signal from outside the structure that is detected around the region where

the control beam is placed (panel 2 and 3 of fig. 5.19 ), is not signal from polariton but it’s

simply a scattering of the non resonant control laser that is not properly filtered in energy.

At Pc = 7mW the induced blueshift for the TM component corresponds to a phase shift of π:

the TM outcoming signal is suppressed and at the reunification we find the two lobe pattern

characteristic of destructive interference. For such power of the control beam, TE will also be

shifted of π, and so oppositely to TM, will present constructive interference. Vertical polarized

signal appears at the output of the device and so the polarization of the outcoming signal

switches from TM to TE, driven by the control power.

The TE signal also acquires a π phase shift proofed by the appearance of a vertical

polarized signal in the outcoming arm. Then the last column of figure 5.19 shows how,

Figure 5.19: Emitted signal along the MZI for horizontal and vertical polarization for different

values of the control power beam, placed in the region indicated by the red circle. Constructive

and distructive interference are alternatively induced on the two components.

inducing a 2π phase shift on both the component,the same features of the first column, with

Pc = 0, are recovered.

To better visualize the effect of polarization switch, in figure 5.20 we plot the resulting linear

polarization degree, defined as Ihor−Iver
Ihor+Iver

, as a function of Pc.
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The polarization degree oscillates, controlled by the Pc power, and completely changes sign

from +1 to -0.8 when changing Pc from 0 to 7 mW.

Figure 5.20: Up: Spatial image of the linear polarization degree of the emission from the MZI

for 3 different values of Pc (corresponding to the panels of fig. 5.19). Left bottom: Squares and

circles: Experimental transmission values, defined as the transmitted intensity divided by the

intensity of the TM injected signal, for the two linear polarization. The solid curves are results

of a fit obtained using formula 5.7,with parameters explained in the text, considering an initial

π shift for the TE component. The phase shift as a function of Pc of each component is deduced

taking into account the same blueshift for the two polarization, as confirmed by the experimental

point in the inset of the figure. Parameters used: ETMkin = 1.45meV , ∆TE − TM = 0.4meV ,

σ = 6µm, mp = 6 ∗ 10−5m0.

A fitting analogous to the one in figure 5.12, is now applied here to reproduce the transmission

intensity in the two polarization.

The fits are obtained by considering two different flows, TM and TE polarized. The same

parameters than in the previous fit for the spot size and the induced blueshift are used here. The

blueshift below threshold for the two bands is, as expected, the same. Since the kinetic energy

is given by the difference between the bottom of the band and energy of the pump laser, two

different values for the kinetic energy are used, linked by the relation ETEk = ETMk −∆TE−TM
with ∆TE−TM = 0.4meV is the measured TE-TM splitting. Also the parameters g is kept

equal to the previous case, while the factor γ, indicating the reduction of the signal due to the

beamsplitter efficency and the polariton lifetime, increases with respect to the previous fit up

to 0.15, due to the higher polariton kinetic energy.

In agreement with the theoretical explication given above, a phase shift of π at Pc = 0

between the two polarization must be introduced to reproduce the curves.
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Except this π shift, we also need to introduce some additional correcting phaseshift

θTM0 = π/10 and θTE0 = −π/6. These shift could be the results of some asymmetry between

the arms, and more specifically some asymmetry of the TE-TM splitting between the upper

and lower arm, and to a not perfectly TM polarization of the incoming signal.

To conclude, we have demonstrated how we can optically control the phase of a polariton flow

and with this, modulate the intensity of the transmitted trough a Mach Zehnder interferometer

device. The pseudo spin and so the linear polarization degree can be controled and modulated.

Another example of mode switching is given in the appendix A: we could induce a switch

between the first and the second transverse mode and observe spatial beating between the two.

5.7 Towards Berry phase detection

Here we want to to discuss, in terms of perspectives, how such interferometer structure

could be used to measure a geometrical phase acquired by polaritons in the presence of an

effective rotating magnetic field.

The concept of geometric phase, also known as Berry phase, is a general concept born in

the framework of quantum mechanic, but which can be easily generalized to a large number

of classical effects. Its universality lies in its geometric nature. Indeed, this concept can be

related to a geometrical phenomenon known as anholonomy [297], in which non integrability

causes some variables to fail to return to their original values when others, which drive them, are

altered around a cycle. As an example, let’s consider a quantum system that slowly undergoes

a certain trajectories in the parameter space, passing trough a series of intermediate state, and

that at the end comes back to the initial state. In this evolution the phase that its wavefunction

acquires is a quantum adiabatic geometrical phase, named Berry phase.

We will present the interpretation given by M.V. Berry in 1984 [298] of the Aharonov & Bohm

effect as special case of geometric phase. Then we will discuss possible experimental approaches

in order to observe a polaritonic Berry phase, taking advantage of our interferometer structure.

We will in particular discuss the proposal from Shelykh [299], presenting peculiarities, limitations

and possible successful approaches.

5.7.1 The Berry’s experiment

Let’s initially consider a general Hamiltonian H(~R), that depends on the parameter vector
~R. Let’s consider this vector ~R(t) evolving in time, undergoing a closed loop from t=0 to T. The

hamiltonian H( ~R(t)), its eigenstates |n( ~R(t))〉 and respectively eigenvalues En(t) will change in

time. We now consider an evolution slow enough that a system, if in an eigenstate n( ~R(0)) at

t=0, will remain in an eigenstate of H(~R(t)) at any time.This is the so-called adiabatic evolution.

It can be shown that at the end of the loop C, at time T, the wavefunction can be written as :

|ψ(T )〉 = eiΦ(t) |n(~R(t))〉 (5.14)
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with the phase term given by:

Φ(T ) = −1

~

∫ T

0
En(~R(t))dt+ i

∮
C
d~R · 〈n(~R)| ~∇~R |n(~R)〉 (5.15)

The first term represents the dynamical phase accumulated in the time evolution, while the

second term, time independent, represents the geometrical phase. In order to understand the

meaning of such expression let’s apply it to the example proposed in the original work of Berry

[298].

We consider a monoenergetic beam of particles with spins ~S along a magnetic field ~B. Let’s

split it into two, one undergoing a path in a region where ~B is constant, the other in a region

where ~B is constant in magnitude but its direction is varied slowly around a circuit C subtending

a solid angle Ω. The dynamical phase factor is the same for both beams because the eigenvalues

En are insensitive to the direction of ~B. But the rotating ~B will generate a relative phase factor

on one of the arm. Let’s estimate this phase shift. We consider a magnetic field ~B varying in

time; for simplicity we consider it rotating around a given axis,and we express it as follows:

~B =

 B0cosφsinθ(t)

B0sinφsinθ(t)

B0cosθ(t)

 (5.16)

The eigenstates of the hamiltonian − ~B · ~S,representing a spin parallel or antiparallel to the

field are the following:

|+〉 =

(
cos θ(t)2

eiφsin θ(t)2

)
|−〉 =

(
sin θ(t)2

−eiφsin θ(t)2

)
(5.17)

By applying the formula 5.18 in which the parameter R corresponds the angle φ, we end up

with the following expression for the geometric phase associated with spin up component:

Φ+
g = −

∫ 2π

0
cos2 θ

2
dφ = −π(1− cosθ) (5.18)

The value of this phase has no dependence on physical variables like the strength of the

field or the speed of rotation,expect from the condition of adiabaticity, and its value is purely

geometrical and is proportional to the solid angle Ω enclosed by the path. For example, in the

case of a field ~B undergoing an equatorial tour (θ = π/2), the corresponding solid angle is indeed

the Ω = 2π and corresponds to a maximum of the acquired geometrical phase, while no phase

shift is generated in absence of rotation of the vector ~B, corresponding to θ = 0 and Ω = 0.

Let’s now try to apply the same reasoning to understand the measurements of a polaritonic

Berry phase proposed by Shelykh [299].

5.7.2 A polaritonic Berry phase

Polaritons provide all the essentials ingredient for reproducing the configuration of the

experiment of Berry. They have shown coherence propagation hundred of microns and also

their pseudospin is maintained for long distances. Furthermore, such a spin interact with both
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Figure 5.21: Left: Scheme of the proposed experimental configuration by Shelykh [299] for

observation of a polaritonic Berry phase. The yellow arrow indicates the direction of the external

magnetic field. Pseudospin of polaritons travelling clockwise or anticlockwise in the circuit

precess in different directions and they acquire an opposite Berry phase. Right: Intensity of the

polariton beam outgoing the interferometer as a function of the Berry phase. In the inset; Berry

phase dependence on the ratio ∆Z/∆TE−TM

real or effective magnetic fields: these are the main ideas of the work of I. Shelykh, G.

Malpuech and coworkers [299].

In analogy with previous experiments realized with electrons, based on coupling Rashba

Spin Orbit Interaction and polarization splitting [300], the proposition consists in placing a MZI

interferometer like the one presented until now, inside an external magnetic field perpendicular

to the cavity surface. The TE-TM splitting ∆TE−TM , combined with the path determined by

the circuit, provides a rotating in-plane magnetic field. The external magnetic field provides

a constant out of plane component,and induces a Zeeman splitting ∆Z between pseudospin

parallel and antiparallel to its direction. The result is a magnetic field vector precessing around

the z axis along the arms of the interferometer, exactly analogous to the Berry configuration.

The inclination of this vector θ is given by the ratio between TE-TM and Zeeman splitting,

arccosθ = 1√
(∆TE−TM/∆2

Z)2+1
. Given the geometry of the TE-TM splitting, the magnetic vector

will rotate twice faster than the k vector, so it will perform a complete tour around a cone of

aperture θ along one arm of the interferometer; additionally the sense of rotation in the two

arms of the interferometer will be opposite. The two beams so will undergo opposite phaseshift,

that, adtapting eq.5.18, is given by:

Φg = ±π(1− ∆Z√
∆2
TE−TM + ∆2

Z

) (5.19)

By varying the external magnetic field, the phase shift between the arms could be modulated

and, as demonstrated above, detecting the transmission of the device could give a way to observe

and measure such geometric phase.
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5.7.3 Experimental requirements and limitation

Let’s now consider the applicability of this proposal considering the geometry and the

parameters characteristic of our sample. Two main issues must be discussed:

TE-TM Versus Zeeman splitting

By observing eq. 5.19 we can identify several regimes, varying the relative strength of the

TE-TM splitting.

• if ∆TE−TM � ∆Z , the spin-eigenstates along the guide corresponds to spin parallel and

antiparallel to the external field and never corresponds to elliptical polarization but always

exactly circular; the resulting swipped angle corresponds to θ = 0 and so no phaseshift is

induced.

• if ∆TE−TM � ∆Z , the spin-eigenstates corresponds to in-plane spins all along the guide ,

and the corresponding polarization is essentially linear; the resulting swipped angle

corresponds to an equatorial precession, θ = π/2 and so an in-influent relative phase of

4π is induced.

• the interesting regime is the one in which ∆TE−TM ∼ ∆Z . This could allow to vary the

aperture of the cone described by the total magnetic field and so to modulate the induced

phaseshift.

By considering the interferometer structure studied in this chapter, the TE-TM splitting is

found to be of the order of ∆TE−TM ≈ 0.5meV . The Zeeman splitting for polaritons is given

by the expression ∆Z = β2gµBB, where µB is the Bohr magneton and g the Landé or

giromagnetic factor of the exciton and β2 the excitonic fraction. The g factor strongly depends

on the composition and on the size of the QWs. In the present sample we use a 7nm thick

GaAs QWs which giromagnetic factor has almost a zero value [301] and we can estimate an

upper limit for the Zeeman splitting for a reasonable 10 T magnetic field that is: ∆Z < 30µeV .

We conclude that in this sample we are far from the required regime.

A possible solution consists in using different QW samples.

A new sample based on In4%Ga96%As QW has already been realized. The number of QWs

has been reduced to one, and this reduced the TE-TM splitting to ∆TE−TM ≈ 50µeV . While a

Zeeman splitting of 75µeV was measured at 9 Tesla.

The adiabatic regime

We mentioned before that the variation of the magnetic field is required to be slow, in order

to give to the system the possibility to follow this rotation and to the state to always be an

eigenstate during the evolution, attaining the so called adiabatic regime. But what exactly slow

means?

There are two timescales involved: one corresponds to the time period TL for a Larmor precession
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of the spin around the magnetic field, and the other is the time for a complete rotation Tr of

the magnetic field during the evolution. The requirement so reads:

Tr � TL (5.20)

More precisely, according with [302], a difference of around one order of magnitude is required.

In the case of the presented interferometer the Larmor period is given by T = 2π~
∆TE−TM

≈ 8 ps.

While, since the magnetic field is directly related to the position on the wire, its variation speed

is directly related to the polariton progating speed vg; taking into account an approximately

value of vg = 1µm/ps and considering the length of the arm around 50µm, we obtain Tr = 50ps.

The ratioTLTr ≈ 5 relative to the 12 GaAs QWs sample could be further reduced by one order

of magnitude in the single InGaAs QW sample allowing to completely fulfill also the adiabatic

condition.

Our interferometer structure seems to be extremely promising for the observation of a

polariton Berry phase: polariton provides pseudo spin that is maintained over hundred of

microns; additionally the geometric structure of TE-TM splitting, combined with advantages

of pseudospin interaction with an external magnetic field provided by the excitonic polariton

component, reproduces exactly the configuration described by Berry. On going experiment

performered by Chris Sturm under an external magnetic field might give a confirmation to this

proposal.

5.8 Conclusion

In this chapter we presented the realization of two kinds of polariton interferometers. In the

first part of the chapter we have discussed the propagation of polaritons inside these structures.

We put in evidence a coherent propagation that gives rise to interference effects taking place

inside the sample itself. We have demonstrated how we can also directly modulate by optical

control the phase of a polariton flow taking advantage of the repulsive interactions between

polaritons and excitons. The proof of principle of this method has been obtained in the Sagnac

interferometer, in which from the shift of the interference pattern formed inside the structure

we deduced a value of the induced phaseshift up to 3π. The mechanism has then been used in

a Mach Zehnder interferometer. We obtained a modulation of the output signal of one order of

magnitude and we discussed limits and potentialities of the device for future possible applications

in all optical controlled circuits.

The evolution of the pseudospin degree of freedom during propagation inside these structure

has also been investigated; at first we have evidenced how spin can process along the propagation

under the effect of the TE-TM splitting. Then we have shown how the phase modulation can

allow controlling the degree of linear polarization of the output signal of the MZI.

Additionally, we have shown how such structures are good candidates for detecting a

geometric phase that polaritons acquire along the propagation in the interferometer in the

presence of an external magnetic field.
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Conclusion and outlooks

In the present thesis we have studied the physical properties of cavity-polaritons inside

one-dimensional microcavity structures.

The mixed excitonic and photonic nature of polaritons results in unique possibilities to control

their generation, to manipulate their motion and, at the same time, to experimentally detect

their behavior.

During this works, we have largely exploited these potentialities. By acting on the confinement

of their photonic part, we have reshaped at will the potential in which polaritons move.

Additionally, their interaction properties, coming from their excitonic part, provided a further

manipulation tools enabling to put polaritons in motion, localize them, block or reflect them

and finally, also to control their phase.

By starting from the work of Esther Wertz, who demonstrated for the first time the

spontaneous generation of coherent polariton flows inside wire microcavities, we investigated

polaritons and polariton quasi-condensates in a variety of one-dimensional geometries.

We have studied polariton motion and their scattering by the disorder, naturally present in

the samples. A strong reduction of the backscattering signal has been observed, when the

particle density is increased; we proposed an interpretation for this reduced scattering based

on the onset of spontaneous parametric processes[139].

Polariton condensation has been investigated in a 1D ridge with periodically modulated

size. This lateral modulation gives rise to a periodic potential and results in a strongly

modified polariton dispersion, in which mini-bands and forbidden energy gaps appear. This

modified dispersion completely changes the spatial behavior of the condensation process.

Condensation is triggered towards strongly localized states inside the first energy gap. We have

shown, with the theoretical support of the group of Guillaume Malpuech in Clermont-Ferrand,

that this localized state is a Bound Gap Solitons, due to a complex interplay between the

localized blueshift induced by the excitonic reservoir and polariton-polariton interactions. In

time resolved experiments under pulsed non resonant excitation, we have used the different

time evolution of the exciton and polariton population to demonstrate a dynamical transition

from a pure exponential defect state to a Gap Solitons[110].

This periodic potential has been combined with a constant potential gradient resulting in

the acceleration of polaritons. In some specifically etched structures, we have shown how

minibands and energy gaps are conserved in presence of such gradient and we observed
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characteristic Wannier Stark ladders in the photoluminescence spectra. This potential gradient

could also be obtained making use of the interaction energy with the excitonic reservoir in the

region where the exciton density spatially varies, i.e. at the edge of the excitation spot. In this

configuration we demonstrated polariton Bloch oscillations both in real and reciprocal space,

and we presented signatures of polariton Landau-Zener tunneling, jumping non adiabatically

from the first to the second mini-band.

The possibility of engineering the potential profile has also been exploited to realize a

quasi-periodic lattice, following the Fibonacci sequence. Polariton states in such a potential

have been investigated, in collaboration with the group of Eric Akkerman from Technion Israel

Institute of Technology. Fibonacci polaritons modes have been imaged both in real and

reciprocal space. Their spectrum is a Cantor-like spectrum and their dispersion evidenced

appearance of several pseudogaps obeying the gap labeling theorem.

We have finally demonstrated examples of more complex polaritonic circuits, with the

realization of both Sagnac and Mach Zehnder interferometers, in which the phase of a coherent

polariton flow is changed with a control laser beam. To realize this optical control, we make

use of repulsive interactions between polaritons and excitons locally injected by the control

laser beam. This repulsive potential locally slows down the polariton flow and thus induces a

controlled phaseshift. This mechanism has been applied to control the output signal of a Mach

Zendher interferometer. We have demonstrated the possibility to control both the

interferometer output intensity and its degree of linear polarization[303].

All these results illustrate the variety of physical problems that can be addressed using

one-dimensional polaritons and open the way to several future research directions . These

research perspectives can be envisaged within three main topics.

One direction is surely the continuation of more complex band engineering and the

study of polaritons in controlled lattice structures.

A first example concerns further investigation of the original properties of polaritons in a

Fibonacci potential. The study presented in this manuscript is indeed a first characterization

of a system that appears promising for further investigation. One possible direction consists in

the study of the spreading of time of a wavepacket. In a Fibonacci potential, the time

evolution of the width of a wavepacket is expected to follow a power law behavior but

modulated by log periodic time oscillations[304, 305]. These oscillations are a direct

consequence of the self-similar properties of the Fibonacci potential, in which any partial

sequence is always repeated at least ones along the whole series[236, 227].

These oscillations have never been observed, but our system presents the advantage to

provide a direct imaging of the particle distribution, not available in other system like

electronic superlattices[234] or optical dielectric arrays[228]. The study of the polariton

diffusion in a time resolved experiment could give an experimental proof of this effect.

Periodic potential can also be realized using coupled micropillars. This approach is closer
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Figure 5.22: Polaritons in honeycomb lattice of coupled micropillars. On the left, SEM image

and scheme of the hexagonal disposition of microcavity pillars to form the lattice. Right: Section

of the 2D dispersion evidencing the appearance of Dirac cones.

to a tight-binding approach, as opposed to the approach described in this manuscript which is

more a perturbation approach to the case of free polaritons. Recently in the group, Thibaut

Jacqmin, has observed a graphene-like band structure in a honeycomb lattice of polaritonic

pillars (see figure 5.22) . Dirac cones, as well as non dispersive bands (flat bands) have been

observed, providing a system to study, within the same sample, massless, massive and

infinitive massive interacting particles[306].

A second interesting direction of investigation is the study of the hydrodynamics of 1D

fluids of interacting bosons.

One of the structure that I designed during my thesis consists in straight wires with the presence

of a controlled defect, represented by barriers or wells of different heights (see figure 5.23).

Generation of solitons of other turbulent effects are expected for a flow of interacting bosons

against such barrier . Our 1D samples provide a platform to study these effects.

Figure 5.23: Left: SEM image of a straight wire in which a control defect is induced by the

etching. This defect can be either a potential barrier or well. Right: Schematic of the theoretical

proposal for the generation of an acoustic black hole. Figure extracted from [210].

Recently, a theoretical proposal by Dario Gerace and Iacopo Carusotto presented such

configuration as promising for generating the analogous of an acoustic Black hole[210]. An

intense superfluid polariton flow is sent onto the barrier. Because of limited transmission

through the barrier, one expects an abrupt reduction of the polariton density on the down

stream side of the barrier (see figure 5.23). This is proposed to realize the analogous of a black
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hole for polaritonic phonons. The region of the barrier provides a horizon between a region of

supersonic and a region of subsonic (superfluid) motion. This configuration is proposed for the

experimental measurement of stimulated and spontaneous Hawking radiation.

Hai Son Nguyen, post-Doc in the group, is now studying this kind of structures and recently

obtained strong indication of the first realization of a polaritonic horizon.

Finally the third main direction is represented by the development of devices based on

polariton non-linearities.

Figure 5.24: Top : On the right, the SEM image of double barrier resonant tunneling diode

structure[31]. On the left we show an example of modulation of the transmission through

the barriers by varying the induced blueshift inside the trap. Down: Scheme of the structure

proposed by Flayac to implement a polariton router. A central trap is pumped and output on

the modulated wire on the side is obtained if the discrete energies of the trap match with the

band structure of the wires.

Particularly interesting results are expected when coupling 1D and 0D structures, subject

of several theoretical proposals[34, 35, 33]. By exploiting the control of barriers and potential

wells, Hai Son Nguyen has recently implemented the first polariton tunneling diode [31]. The

structure is represented in the figure 5.24 below: it consists in a double barrier structure, which

defines a small island in which polaritons are fully confined and thus present discretized states.

When a monochromatic polariton flow is sent onto the double barrier structure, polaritons can

tunnel resonantly through the island only if there exists a discrete polariton state within the

island resonant to the incident flow. Recently Hai Son Nguyen has demonstrated that the

transmission of the device can be optically controlled using a non-resonant control beam which

tunes the island levels by injecting a small exciton population. The device shows strong

non-linearities and a bistable behavior induced by polariton-polariton interactions within the

island. This non-linearity can be used to realize optical gates and optical memories.

A similar architecture was recently proposed by Hugo Flayac, also shown in figure 5.24 in
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which an island is placed in between two periodically modulated wires with different

periods[33]. Controlling the energy of the discrete states of the pillar with respect to the

energy gaps on each side, one can obtain resonant tunneling of polaritons from the island into

one side of the island or the other. Thus the device, shown in the figure below, can be

operated as a router.

Of course for real applicaitions, room temperature is a necessary requirement. The proposed

research directions are only demonstrations of proof of principles in the model GaAs system,

which is limited to cryogenic temperature. Nevertheless, considering the impressive late

improvement of cavity based on large band gap materials, such as GaN[16] or ZnO[17], it may

become possible on a longer timescale to develop polaritonic devices operating at room

temperature.
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Appendix A

Transverse modes switching

In section 5.6.3, we have shown how, by setting the kinetic energy of the signal injected in

the interferometer above the first TE band, the output polarization could be controlled, thanks

to a switching between the first TM and TE mode driven by the phaseshift induced by the

control spot. Both in figure 5.5.2 and 5.19, we can notice how the quenching of the transmission

corresponds to a two lobe spatial features at the output beamsplitter. Such intensity profile

causes a bad coupling with the first transverse mode, presenting a single lobe in the middle

of the waveguide. Since the pumping energy was lower than the energy of the second order

transverse mode of the output waveguide, this spatial features corresponded to quenching of

transmission out of the device.

Let’s see what happens when we pump with an energy higher than the one of the second

transverse mode, as shown in the picture A.1.

Such a band corresponds to a polariton modes with a transverse distribution showing two

antinodes with opposite phase, and one node at the center, differently from the two first lower

bands, as schematized in the sketch of figure A.1.

Because of the gaussian profile of the excitation beam, essentially only the first confined

mode (labelled in the figure TM1 and TE1) are injected in the interferometer, with a similar k-

vector k1 ≈ 2.2µ−1. Such a high k vector, the TE-TM splitting is smaller than 0.2 meV and Due

to the fact that in this situation the TE-TM splitting is therefore smaller (¡0.2 meV) and the

propagation speed much higher (≈ 2.5µm/ps), the discussed effect of polarization precession

discussed in section 5.6.3 is not relevant. In the experimental setup, the detection won’t be

selected in polarization, but all the signal will be collected.

This modes TM1 and TE1 will travel inside the interferometer and then recombine at the

output. In the absence of control beam, this modes will recombine at the beamsplitter and

they will be in phase, and so at the output only first order transverse mode will be excited (see

panel c). But applying the control beam, we can induce a π shift between the two beams. The

spatial and phase profile obtained at the reunification point perfectly match with the second

order transverse mode of the waveguide that now can be excited and it will be the only signal

outgoing the device, with its characteristic 2 lobe spatial profile (panel e).

Inducing a 2π shift the initial condition is recovered (panel g), while all the intermediate

cases present an excitation of coherent superposition of different order states and consequently

the appeareance of spatial oscillations between these modes (panels d and f).
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Figure A.1: (a) Polariton dispersion showing, with the red arrow, the energy of the injected

polariton flow. The bands are labeled according with their polarization and with the order of

confined mode they corresponds to. The white dashed lines indicates the two main wave vectors

(k1 and k2) of the first and second order 2D confined polariton modes. (b) Sketch of the spatial

and phase profile of the first and second order transverse mode in the waveguide of size w. (c-g)

Spatially resolved polariton emission at the output of the interferometer for different values of

the control power.



Appendix B

Correction to the fit of the MZI

interferometer transmission

The fits of the transmission of the MZI interferometer, reported in figure 5.5.2, have been

obtained applying the formula 5.7. The factor β appearing in that formula represents a correction

to the intensity of the arm where the potential barrier induced by the control beam is created,

and results from taking into account two main effects: a partial reflection of the signal by the

induced potential barrier and a decrease in the signal attenuation due to the lifetime and the

slow down of polaritons.

Here we will better detail how this 2 corrections have been estimated:

Correction 1

Considering a squared potential barrier of height V and length L and an incident particle

of kinetic energy Ekin (see panel a in the figure), we know that even if Ekin > V0, a partial

reflection can takes place. The transmission coefficient can be written as:

T =
1

1 + V 2sin2(k1L)
4Ekin(Ekin−V0)

(B.1)

where k1 is the wavevector in the region of the barrier.

In our fit we consider a gaussian shaped barrier V (x): in order to estimate the total

transmission we approximate its shape with a series of squared barriers of size ∆x as shown in

panel b. In each region of center xn we can define a local kinetic energy Enkin = Ekin − V (xn)

and a relative wavevector kn, and a potential barrier between the zone n and n+1 equals to

V n
0 = V (xn+1) − V (xn). This allows us to calculate the transmission coefficient for every step

Tn and then the total transmission will be given by T =
∏
n Tn. Considering the blueshift

dependence on power shown in figure 5.5.2, in panel c we plot the attenuation coefficient due

to reflection against the barrier. This correction, for the parameters used, is found to be less

than 5%.
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Figure B.1: a) Schematic representation of squared potential barrier. b) Approximation

of a gaussian barrier with a sequence of squared barriers. c) Coefficient for correction 1,

corresponding to the fraction of reflected signal by the potential barrier generated by control

laser beam d) Coefficient for correction 2, corresponding to the attenuation of the signal caused

by slow down of polariton in the region modulated by the control power. Parameters used:

Ekin = 0.5meV , σ = 6µm, mp = 6 ∗ 10−5m0, τ = 25ps, ∆x = 1µm.

Correction 2

When particles are traveling in the control region, they propagate more slowly. In the sketch

of panel a, the wavevector on the barrier region is lower, k1 < k0, and so the velocity. In the

parabolic approximation the new velocity is given by v1 = ~
mk1

. This means that the time

spent by this particle to travel in this region will increase with respect to case of absence of the

barrier. The delay will be exactly equal to ∆t = L( 1
v1
− 1

v0
). Considering that polaritons are

finite lifetime particles with lifetime τ , this time delay corresponds to a signal reduction given

by: e−∆t/τ . Similarly to what done before, we now consider a gaussian shape barrier as a series

of squared barrier. In each region of constant potential we can define a given speed vn and we

can compute the total delay as: ∆t = ∆x
∑

n( 1
vn
− 1

v0
) Even in this case we plot the reduction

coefficient estimated for the experimental configuration of figure 5.5.2 as a function of the power

of the control beam. The effect here is more important, and reach a value of around 70%.



Appendix C

Half-solitons

During my PhD I’ve participated to the experimental observation of polaritons Half Solitons,

non linear excitations of a 2-dimensional polaritons gas with mixed spin-phase geometry. The

theoretical proposition was elaborated in the group of Guillaume Malpuech, in Clermont-Ferrand

and the experimental observation has been realized by Romain Hivet at the Laboratoire Kastler

Brossel, in the group of Alberto Bramati. I have collaborated with Romain in several experiments

performed at the LKB and few experimental measurements have been performed also at the

LPN. The obtained results have been recently described in the PhD thesis of Romain Hivet and

they are the subject of an article published in Nature Physics[20] that I report in this appendix.
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Half-solitons in a polariton quantum fluid behave
like magnetic monopoles
R. Hivet1, H. Flayac2, D. D. Solnyshkov2, D. Tanese3, T. Boulier1, D. Andreoli1, E. Giacobino1, J. Bloch3,
A. Bramati1*, G. Malpuech2 and A. Amo3*
Magnetic monopoles1 are point-like sources of magnetic field,
never observed as fundamental particles. This has triggered
the search for monopole analogues in the form of emergent
particles in the solid state, with recent observations in spin-
ice crystals2–4 and one-dimensional ferromagnetic nanowires5.
Alternatively, topological excitations of spinor Bose–Einstein
condensates have been predicted to demonstrate monopole
textures6–8. Here we show the formation of monopole ana-
logues in an exciton–polariton spinor condensate hitting a
defect potential in a semiconductor microcavity. Oblique dark
solitons are nucleated in the wake of the defect9,10 in the
presence of an effective magnetic field acting on the polariton
pseudo-spin11. The field splits the integer soliton into a pair
of oblique half-solitons12 of opposite magnetic charge, subject
to opposite effective magnetic forces. These mixed spin-phase
excitations thus behave like one-dimensional monopoles13. Our
results open the way to the generation of stable magnetic
currents in photonic quantum fluids.

Magnetic monopoles are the magnetic counterparts of electric
charges, characterized by a divergent field. The seminal work of
Dirac1 showed that monopoles are not forbidden by the laws
of quantum mechanics. In particular, he considered particles
characterized by a wavefunction with a nodal line and a non-
integrable phase around it. One route to create an object behaving
like a monopole is thus to engineer a wavefunction with such
characteristics. A model system to do this is a spinor Bose–Einstein
condensate14–16, demonstrating properties such as superfluidity
or persistent currents. In reduced dimensions, not only do these
quantum fluids support topological defects17, such as vortices (two
dimensional; 2D) or solitons (1D) characterized by a node, but an
adequate spin distribution can also provide a vector field with a
non-zero divergence, satisfying Maxwell’s equations for a point
magnetic charge6–8. Monopoles can then be arranged in spinor con-
densates in the form of mixed spin-phase topological excitations,
with amagnetic analogue of theCoulomb force acting on them13.

Exciton–polariton (polariton) condensates seem a well-suited
system to evidence and study such original effects in quantum
fluids. Polaritons are the quasi-particles arising from the strong
coupling between excitons and photons confined in planar
semiconductor microcavities (InGaAs/GaAs/AlGaAs in our case)18.
Polariton fluids are easy to manipulate with standard optical
techniques19–22 and they have recently become a model system
for the study of quantum fluid effects such as superfluidity23,
vortex formation24,25 or oblique solitons9,10. Their spin structure is
especially interesting: polaritons are bosons with only two allowed
spin projections ±1 on the growth axis of the sample, which

1Laboratoire Kastler Brossel, Université Pierre et Marie Curie, Ecole Normale Supérieure et CNRS, UPMC case 74, 4 place Jussieu, 75005 Paris, France,
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Figure 1 | Polariton pseudospin, effective magnetic field and experimental
set-up. a, Bloch sphere representing all of the possible spin configurations
of the polariton gas and the associated polarizations: the poles represent
circular polarization, the equator represents linearly polarized states and
the intermediate latitudes represent elliptically polarized states.
b, Direction of the effective magnetic field created by the TE–TM splitting
for polaritons propagating in different directions. c, Scheme of the resonant
injection of the polariton fluid above a round potential barrier present in the
sample. Half-solitons nucleate in its wake. α is the angle of incidence of the
excitation beam with respect to the normal to the microcavity plane.

couple to circularly polarized (σ±) photons in and out of the
cavity. A coherent superposition of different spin populations
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Figure 2 | Density and phase tomography of the half-solitons. a, Emitted intensity of the polariton gas in σ+ (I) and σ− (II) circularly polarized
components and in the diagonal (III) and antidiagonal (IV) linearly polarized components with respect to the TM polarization of injection. Half-solitons
spontaneously nucleate in the wake of the potential barrier (dashed circle in a-I) and are evidenced as dark traces present only in one circular polarization
component (arrows). The yellow line is a guide to the eye. S1 indicates the half-soliton discussed in the text. b, Corresponding interferometric images
obtained from the interference of the real-space emission with a beam of homogeneous phase. c,d, Density profiles of the σ+ and σ− (c), and diagonal and
antidiagonal (d) polarized emission along the dotted line in a-I–IV. The arrows indicate the position of the inner half-solitons, present only in a given
circular polarization and in both diagonal polarizations. e,f, Associated phase jump (obtained from b-I–IV). The phase jumps observed in
diagonal/antidiagonal polarizations have half the value of that measured in circular polarization, hence the term half-solitons. D represents diagonal and
A antidiagonal polarized emmisions in d and f. The error bars in the estimation of the phase jumps shown in e and f represent±0.08π.

gives rise to polarization states that can be described by a
pseudospin vector S mapped onto a Bloch sphere (Fig. 1a).
Another remarkable feature of microcavities is the presence
of an effective in-plane magnetic field (Fig. 1b) induced by
the polarization splitting between the transverse electric (TE)–
transverse magnetic (TM) polarization modes11. The effective
field interacts with the polariton pseudospin, adding a magnetic
energy term HTE–TM=−S ·�TE–TM to the Hamiltonian (see
Supplementary Information) and it provides the analogue of
a Coulomb force acting on topological monopoles13. Finally,
polariton–polariton interactions are strongly spin-anisotropic of
the antiferromagnetic type26. This is an absolute requirement for
the observation of any stable monopole structure7,8. Indeed, a
topological monopole in a two-component spinor condensate is
stable against its destruction by an in-plane effective magnetic field
if the difference in the interaction energy between the same and
opposite spins exceeds the magnetic energy13.

One kind of spin-phase topological defect already reported
in polariton quantum fluids are the so-called half-vortices27,28.
However, no probing of the monopole behaviour has been
possible yet, because of the disorder-induced pinning28. The 1D

counterpart of a half-vortex is a dark half-soliton, characterized by
a notch in the polariton density of the fluid, and a simultaneous
phase and polarization rotation of up to π/2 in the condensate
wavefunction across the soliton12.

Here, we report on the experimental observation of oblique
half-solitons and on their separation and acceleration caused by
the effective magnetic field present in semiconductor microcavities.
Oblique solitons (or half-solitons in the spinor case) are formed
in the wake of a localized potential barrier present in the path
of a flowing condensate9. They can be seen as the trajectories
of 1D solitons in the direction perpendicular to the flow (x),
travelling across a 2D flow. The second spatial coordinate (y ,
parallel to the flow) represents the time coordinate of the 1D system
(t = y/vf, where vf is the flow velocity). This means that the soliton
trajectory becomes traceable in a steady state regime29. Studying
such trajectories, we demonstrate that an integer oblique soliton
separates into a pair of half-solitons of opposite magnetic charge
accelerated in opposite directions.

In our experiments we create a polariton fluid in a semiconduc-
tor microcavity (see Methods) at a temperature of 10 K by quasi-
resonant excitation of the lower polariton branch with a continuous
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wave Ti:sapphiremonomode laser. Polarization-resolved real-space
images of the polariton fluid in the transmission geometry are then
recorded on a CCD (charge-coupled device) camera owing to the
photons escaping out of the cavity (Fig. 1c). The fluid is injected at
supersonic speed (in-planemomentum of kP=1.3 µm−1, seeMeth-
ods), upstream from the potential barrier formed by a structural
photonic defect present in our sample. Under these conditions, a
circularly polarized excitation beam leads to the formation of pairs
of oblique dark solitons in the wake of the barrier9, characterized
by a phase jump close to π across each notch (see Supplementary
Information). In the present experiments, we create a polariton gas
with linear polarization parallel to the flow (TM polarization, along
the y direction). This is a key feature needed to explore the nucle-
ation of spin-phase topological excitations, which can be evidenced
by analysing the circularly polarized components of the emission.

First, we demonstrate the formation of half-integer solitons.
Figure 2a-I shows the nucleation of two oblique dark solitons to the
right of the barrier wake in the σ+ component of the emission. They
can be identified as dark straight notches in the polariton density.
These solitons are almost absent in the σ− component (Fig. 2a-II).
In turn, in the σ− emission, a deep soliton (S1) clearly appears to the
left of the barrier wake (blue arrow), where only a very shallow one
is present in σ+ (see the profiles in Fig. 2c). The absence of mirror
symmetry between Fig. 2a-I and a-II arises from the specific and
uncontrolled form of the natural potential barrier. The individual
dark solitons in each of the Sz = ±1 states of the fluid appear
as long spatial traces with a high degree of circular polarization
(ρc = (I+− I−)/(I++ I−), where I± is the emitted intensity in σ±
polarization), as shown in Fig. 3a. Interferometric images obtained
by combining the real-space emission with a reference beam of
homogeneous phase (Fig. 2b-I and b-II) give access to the phase
jump across each soliton. For instance, for the soliton S1 observed
in σ−, 42 µm after the obstacle we measure a phase jump of
1θ−=0.85π (Fig. 2e; note that it would beπ for a strict dark soliton
with zero density at its centre9), whereas in the same region the
phase in the σ+ component does not change (1θ+≈0).

A dark soliton present in just one spin component of the fluid is
the fingerprint of a half-soliton12. The mixed spin-phase character
of these topological excitations is further evidenced when analysing
them in the linear polarization basis. In the regions where the
two circular polarizations are of equal intensity (that is, the fluid
surrounding the half-solitons) we can define a linear polarization
angle η= (θ+−θ−)/2 and a global phase φ = (θ++θ−)/2, where
θ+ and θ− are the local phases of each circularly polarized
component12,27. In our experiments we directly access the phase
jump 1φ and the change of η across the solitons by studying
the linearly polarized emission in the diagonal and anti-diagonal
directions (polarization plane rotated by +45◦ and −45◦ with
respect to the TM direction). Figure 2d,f shows that the half-soliton
S1 is also present in these polarizations with a phase jump of
1φ≈0.4π. This confirms that across the half-solitons, φ undergoes
a jump1φ≈0.85π/2≈ (1θ++1θ−)/2, that is, one-half the phase
jump observed in the circularly polarized component in which
the soliton is present. We also expect a similar jump 1η of the
direction of polarization. This is demonstrated in Fig. 3b, where all
the half-solitons present in our fluid (dashed lines extracted from
Fig. 2a-I and a-II) appear as walls between domains of diagonal
(magenta) and anti-diagonal (green) polarization. Mapping the
linear polarization vector in the vicinity of soliton S1 (Fig. 4a), we
deduce a jump of the polarization direction of1η≈0.32π (Fig. 4c),
close to1φ, the ideal expected value.

Analysing the half-soliton trajectory from polarization-resolved
real-space measurements, we study their acceleration in the field
�TE–TM originating from the TE–TM splitting present in the
structure11, pointing in the direction of the flow (y , red arrow in
Fig. 1b). The acceleration arises from the interaction between this
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Figure 3 | Polarization texture of half-solitons. a,b, Left panels, the
measured degree of circular and diagonal polarizations, respectively; right
panels, the calculated patterns from the solution of the nonlinear
spin-dependent Schrödinger equation describing the system in the
conditions of the experiment (see Supplementary Information). The dashed
lines show the trajectory of the inner (grey) and outer (black) half-solitons
extracted from Fig. 2a-I and a-II. The trajectories of the half-solitons appear
as extremes of circular polarization, and as domain walls in diagonal
polarization. The grey arrows in b indicate the direction of acceleration of
the half-solitons induced by the effective magnetic field.

magnetic field and the pseudospin texture of the half-soliton, shown
in Fig. 4b for S1. In the direction perpendicular to the soliton (dot-
ted line), the in-plane pseudospin S is divergent, because it points
away fromS1 on both sides, as expected for amagnetic charge.

We are able to evaluate the force acting on the half-soliton
as the gradient of the magnetic energy with respect to the
half-soliton position x0. The magnetic energy per unit length is∫
−S(x ′−x0) ·�TE–TM dx ′, where the integral is performed along

the x ′ transverse direction, perpendicular to the half-soliton located
at x0. The energy has a positive contribution from the left of the
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perpendicular to the half-soliton (shown in b as green arrows along the
dotted white line). The angle jumps from the antidiagonal to the diagonal
direction when crossing the half-soliton.

half-soliton (S and �TE–TM pointing in opposite directions), and
a negative one from the right (S and �TE–TM having the same
direction). For the magnetic energy to be minimized, a magnetic
force appears, pushing the half-soliton towards the left, increasing
the negative contribution. As solitons are density notches, their
effective mass is negative17 and, therefore, the acceleration is
in the direction opposite to the force. Thus, the half-soliton
S1 that appears in the σ− component of the fluid accelerates
towards the right, as sketched in Fig. 4b. The direction of the
acceleration is opposite for the soliton present in the σ+ component
(see arrows in Fig. 3b).

The monopole dynamics allows an understanding of the
mechanisms of formation of the half-solitons in our experiments.

An integer soliton nucleated right behind the obstacle can be seen as
a superposition of two half-solitons of opposite magnetic charges.
The presence of the TE–TM effective magnetic field makes them
experience opposite magnetic forces, leading to their separation
and to the curved trajectories depicted as dashed lines in Fig. 3,
a behaviour similar to the monopole separation in spin ice under
a magnetic field3. The half-solitons pushed towards the centre
are slowed down, gaining stability and becoming darker as the
trajectory becomes parallel to the field. Those pushed outwards
gain velocity and become shallower until they eventually disappear
(see Supplementary Information and the black dashed lines in
Fig. 3). The trajectories of these expelled secondary half-solitons
are perturbed far from the obstacle axis by the presence of
further solitons nucleated by the large barrier, particularly on the
right side of the images. The monopole behaviour and soliton
separation arewell reproduced by a nonlinear Schrödinger equation
including spin and the effective magnetic field present in our
microcavities (see Fig. 3 and Supplementary Information). The
analogy of half-solitons withmagnetic monopoles goes well beyond
the behaviour reported here under an applied magnetic field. Our
theoretical model predicts repulsive and attractive interactions
between half-solitons depending on their respective charges (see
Supplementary Information).

A remarkable feature of half-soliton monopoles is that they can
be thought of as charged partly photonic quasiparticles, propagating
with a high velocity in a fluid that supports superflow23. Their
generation can bewell controlled by the phase and density engineer-
ing of the polariton wavefunction, their trajectories can be easily
followed using standard optical techniques and their dynamics can
be controlled by applying strain or external electric fields, which
modify the effective magnetic field30. Furthermore, owing to the
developed engineering of the polariton landscape19,20, we open the
way to the realization ofmagnetronic circuits in a polariton chip.

Methods
Sample description. The experimental observations have been performed at 10K
in a 2λ GaAs microcavity containing three In0.05Ga0.95 As quantum wells. The top
and bottom Bragg mirrors embedding the cavity have, respectively, 21 and 24
pairs of GaAs/AlGaAs alternating layers with an optical thickness of λ/4, with λ

being the wavelength of the confined cavity mode. The resulting Rabi splitting is
5.1meV, and the polariton lifetime is about 10 ps. During the molecular beam
epitaxy growth of the distributed Bragg reflectors, the slight mismatch between the
lattice constants of each layer results in an accumulated stress that relaxes in the
form of structural defects. These photonic defects create high potential barriers in
the polariton energy landscape.

Excitation scheme. To create a polariton fluid we excite the microcavity with a
continuous-wave single-mode Ti:sapphire laser resonant with the lower polariton
branch. We use a confocal excitation scheme in which the laser is focused in
an intermediate plane where a mask is placed to hide the upper part of the
Gaussian spot. Then, an image of this intermediate plane is created on the sample,
producing a spot with the shape of a half-Gaussian. Polaritons are resonantly
injected into the microcavity with a well-defined wave vector, in the region above
the defect. In these conditions, polaritons move out of the excitation spot with
a free phase, no longer imposed by the pump beam. This is essential for the
observation of quantum hydrodynamic effects involving topological excitations
with phase discontinuities9.

The momentum of the injected polaritons is set by the angle of incidence α of
the excitation laser on the microcavity. This allows us to control the in-plane wave
vector of the polariton fluid through the relation k= k0 sin(α), where k0 is the wave
vector of the laser field. At the injected polariton momentum k = 1.3 µm−1, the
polariton velocity is vf= h̄k/mpol= 1.5 µmps−1 (mpol= 10−4melectron). This velocity
is higher than the speed of sound of the fluid for the polariton densities of our
experiments, as evidenced by the presence of ship waves upstream of the obstacle in
Fig. 2a (see ref. 23). For this value of themomentum, wemeasure a TE–TM splitting
of 20 µeV, resulting in the effectivemagnetic field sketched in Fig. 1b.

Polaritons are photocreated in our microcavity with TM linear polarization.
This corresponds to a pseudospin pointing in the direction of the flow as marked
by the arrow in Fig. 1a.

Detection scheme. The observations reported in this work require the complete
knowledge of the polariton spin. To gain this, a complete polarization tomography
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of the emission is performed through the measurement of the three Stokes
parameters S1 = (ITE− ITM)/Itot, S2 = (ID− IA)/Itot and S3 = (Iσ+− Iσ−)/Itot,
where Ij is the light intensity emitted with polarization j, and Itot is the total
emitted intensity. This requires measuring six different polarizations: IH , IV ,
I+45, I−45, Iσ+ and Iσ−, which, respectively, represent linear horizontal, linear
vertical, linear diagonal, linear anti-diagonal, left circularly and right circularly
polarized emitted intensity. A combination of wave plates and polarizing beam
splitters is used to image each of the polarization components of the emitted
light on a CCD camera.

Received 13 March 2012; accepted 19 July 2012; published online
26 August 2012
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Physique, 1988.

[51] L.C. Andreani. Optical transitions, excitons, and polaritons in bulk and low-dimensional

semiconductor structures. In Confined Electrons and Photons, pages 57–112. 1995.

[52] E. Wertz. Formation spontanée de condensats de polaritons dans des microcavités à base
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[141] R. de L. Kronig and W.G. Penney. Quantum mechanics of electrons in crystal lattices.

Proceedings of the Royal Society of London.

[142] D.A. Mcquarrie. The Kronig-Penney Model. The Chemical Educator, 1(1):1–10, 1996.

[143] M. Ben Dahan. Transport et relaxation d’atomes de Césium: oscillations de Bloch et
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