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1
INTRODUCTION

The connection between the fundamental understanding of nature and the engineering of
materials with the desired characteristics has revolutionized the way we live and coexist
with nature. The design and manipulation of the mechanical and chemical properties of
materials has led to the creation of various ceramics, metallic alloys and plastics, which
have marked the eras when they were created.
Development of modern physics, particularly the application of quantum mechanics to

the area of solid state physics, allowed manipulating the electronic properties of materials.
Investigation of bulk and surface transport properties of semiconductors like silicon and
germanium by Bardeen, Brattain and Shockley lead to what is considered to be the biggest
discovery of 20th century, the creation of the transistor.
During this progress of material science, light has been mostly used as a tool to probe ma-

terials properties. Various spectroscopic techniques were developed, based on the response
of a material to an electromagnetic field, whether it absorbs, reflects or transmits light in
certain frequency range. Eventually, it finally became possible to also engineer the optical
properties of materials: the field of photonics was born. The result is the development of
technologies such as lasers, light emitting diodes or optical fibers.
Most interestingly, these advances led to a new paradigm, at the heart of many recent

efforts in the scientific community. The goal is to create entirely new types of states of light
and matter, with novel exciting properties, by inter crossing different disciplines, like solid
state physics, photonics, particle physics or mathematics. On this route, it is not unusual to
surpass the fundamental differences between elementary particles, and designed materials
in which (effective) particles show interesting features that combine the properties of both
electrons and photons for example.
Historically, concepts from solid state physics have been regularly transfered to the area

of photonics. In crystals, collective behavior of electrons is determined by the periodic
potential. This principle has inspired periodic arrangements of materials with different
index of refraction, that is, photonic crystals. In these structures the light dispersion can
be engineered, and photonic gaps can be created in a desired frequency range. [1].
More recently, the field of topological photonics is being developed [2, 3]. The idea is

to implement in the photonic world the analogous of topologically non trivial phases of
mater, similar to those achieved in electronic topological insulators [4]. In this way robust
propagation of light, with low losses could to be achieved. The envisioned applications
range from creation of integrated non-reciprocal devices such as optical isolators [5], robust
delay lines [6], or generation of topologically robust correlated photon pairs [7].
On the other side, the fact that light can be controlled with high levels of precision

has inspired efforts to build photonic simulators of various complex physical phenomena.
For example, new topological effects that are hard, or even impossible to realize in solid
state systems have been implemented in photonic systems including Floquet physics [8],
4D quantum Hall physics [9], or Type II Weyl points [10].
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One of the established ways to manipulate light, and even introduce photon-photon
interactions is by strongly coupling it to matter. In fact, light-matter interaction is not
an intrinsic characteristic of a given material, but can be artificially controlled. In 1964,
Purcell demonstrated that the emission rate of a quantum system can be enhanced or in-
hibited by modifying its environment [11]. This idea was successfully applied on quantum
emitters [12, 13] and particularly in the optical range thanks to developments of tech-
niques for confinement of light. The modern epitaxial growth allows confining light inside
semiconductor cavities of different shapes (planar cavity, micropillars, microdisc, photonic
crystal cavities) but also the excitonic modes in semiconductor quantum wells or quantum
dots [14]. In these structures, photons can be emitted, reabsorbed and re-emitted again by
quantum well excitons several times before escaping the cavity. If losses are weaker than
the light matter coupling strength, the strong coupling regime is achieved and the system
is described by quasi-particles with hybrid light-matter nature, called microcavity exciton
polaritons [15].
These are bosonic quasi-particles that combine properties inherited from their photonic

component, such as small effective mass, with those inherited from electrons, such as the
possibility to interact. Polaritons allow direct visualization of their dispersion and spatial
wave functions, as well as information on the phase by analyzing photons escaping the
cavity. They can be probed under resonant and non-resonant excitation and can propagate
over long distances.
Because of these properties, polaritons represent a system of choice to investigate quan-

tum fluids of light [16]. The possibility to optically control their momentum, density, phase
and spin allowed the observation of superfluid motion [17], the generation of topological
defect like solitons [18, 19], and the observation of the optical spin Hall effect [20].
Recently, polaritons emerged as an extraordinary photonic platform to emulate 1D and

2D Hamiltonians. Engineering of desired potential landscape for polaritons is possible by
imposing deep lateral confinement in the desired form. The techniques for lateral etch-
ing of microcavities developed at Centre de Nanosciences and Nanotechnologies (former
Laboratorie de Photonique et Nanostructures), allowed designing 0D structures such as
micropillars (photonic atoms) [21] and benzene molecule [22], 1D wires [23, 24], modulated
wires [25, 26] and 1D or 2D lattices [27, 28].

In 2013, a 2D honeycomb lattice of coupled micropillars was fabricated in our group [28].
In that structure the lowest two bands arise from the coupling of the lowest energy, s−
modes of each micropillar, and emulate the π and π∗ bands of graphene. As in graphene,
around isolated points in momentum space, called Dirac points, the bands have a linear
dispersion analogous to the one describing massless fermions.
Most interestingly, the polariton honeycomb lattice allows going beyond what is already

known about the physics of graphene. It provides a way to study the orbital degree of
freedom and its interplay with the geometry of the honeycomb lattice. This degree of
freedom has been known to play an important role in the properties of certain complex
lattice systems such as transition metal dichalcogenides [29] or topological insulators [30].
In the polariton honeycomb lattice, the system first excited states of each micropillar

resonator have a P -orbital geometry. When coupled in the honeycomb lattice, they give
rise to orbital bands, inaccessible in actual solid state materials and which have attracted
significant attention [31, 27, 32, 33, 34].
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In the present thesis, we engineered new lattice geometries of the polariton lattice can to
explore two main topics. One is the experimental study of the lattice edge states. The other
one is the manipulation and creation of new types of Dirac dispersions and corresponding
quasi-particles in deformed lattices.
In the first chapter, we will provide a short introduction to Dirac physics. In the first

part we will give some insights on how the original Dirac equation was formulated in order
to describe relativistic massless fermions. In the second part we will consider the first solid
state system in which Dirac quasi-particles have been observed, the 2D graphene. We will
also discuss topological properties of Dirac points and define the concept of "winding" that
will be used throughout the thesis to characterize the topological properties of different
lattices.

In the second chapter we will address the physics of polaritons, how they are formed
and what are their main properties. A particular attention will be paid to explain how po-
laritons can be studied experimentally, and how information on their properties is retrieved
in a photoluminescence experiment. Then, we will describe how polariton structures are
designed and fabricated, particularly that of the honeycomb lattice, which will be the
subject of study in the rest of the thesis. We will explore its main characteristics as a
simulator: lattice effective dispersion, propagation and tunability.
The third chapter is the first devoted to edge states. There, we review the properties

of edge states predicted to appear in a honeycomb lattice, as well as their connection
to the bulk properties, that is topological winding. This study provides the first direct
visualization of edge states, both in real and reciprocal space. The momentum space dis-
persion of the edge states associated to the zig-zag and bearded type of edges is proved to
feature unidimensional quasi-flat bands. Intensity of the emission in real space reveals the
localized character of the observed edge states.
In the fourth chapter we first introduce polariton orbital graphene, a hexagonal lattice

in which each lattice site holds degenerate anisotropic px and py orbitals. We then focus
on exploring the edge states in this lattice using the theoretical and experimental tools
presented in the previous chapter. We experimentally find novel edge states with properties
different from the π and π∗ bands of graphene. We also present a theoretical study of
their topological origin realized in collaboration with theoreticians G. Montambaux and
T. Ozawa.

In the fifth chapter, we switch to the study of the lattice bulk properties, and how they
can be manipulated. In particular, we propose a method to implement strain in order to
tailor Dirac dispersions and create new types of hybrid Dirac particles which combine zero,
finite and infinite effective masses. By engineering the strain in the structure, we trigger
topological phase transitions. In s− bands, Dirac cones with opposite windings merge and
open a gap, while a pair of new Dirac cones with equal winding numbers is created at new
positions in the 1st Brillouin zone. Along this phase transition, we evidence, for the first
time, the hybrid dispersion of a photonic semi-Dirac quasi-particle, characterized by a finite
mass for the transport along one direction of reciprocal space and massless-propagation
along the orthogonal one.
Even more remarkably, in p− bands, we can tune the tilt of the Dirac cones and create

strongly tilted cones. A quasi-particle with flat-Dirac dispersion is observed experimentally
for the first time.
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We will conclude the manuscript with a section devoted to conclusions and new direc-
tions and perspectives open by the work presented here.



2
INTRODUCTION TO DIRAC HAMILTONIANS

One of the most surprising results of modern solid state physics is the emergence of mate-
rials whose elementary excitations are governed by Dirac, Weyl and Majorana equations,
originally introduced in the context of relativistic physics. Materials as graphene, topo-
logical insulators or superconductors [35] offer plethora of novel and exciting transport
properties, promising for creation of future robust miniaturized electronic devices or im-
plementation of quantum computing [36, 37].
Many physical phenomena behind these properties, such as Klein tunneling or appear-

ance of edge states in graphene, or topologically protected transport in Chern insulators,
can be captured by models in tight-binding approximation. Experimental realization and
manipulation of corresponding Hamiltonians emerged as a powerful approach for studying
these phenomena. Throughout this thesis we will experimentally address Dirac Hamilto-
nians in the context of half-light half matter polaritons.
The aim of this chapter is to review the main aspects of "Dirac physics", particularly

in two dimensional lattices. Dirac and Weyl equations in their original form, as used to
describe relativistic fermions in particle physics are introduced in sections 2.1.1, 2.1.2.
In order to define the notion of Dirac matter, a brief summary of band theory of solids

is given in 2.2.1, followed by a review of the main properties of the most celebrated Dirac
material, graphene in 2.2.2.
Some general features of Dirac Hamiltonians are presented in section 2.3, as they have

important consequences on the physical properties of the materials they describe. These
include symmetries, 2.3.1, and topological properties, 2.3.2.

2.1 relativistic fermions

2.1.1 Dirac equation

The Dirac equation was developed by Paul Maurice Dirac in 1928. in order to describe
the dynamics of electrons at relativistic speeds [38]. His goal was to develop a quantum
mechanical description compatible with the special theory of relativity, a theory already
accepted at the time.
To understand the challenge he faced, let us first remind how an isolated free particle

is described. Classically its dynamics is given by the following Hamiltonian [39]:

H =
p2

2m , (1)

where p and m are the particle momentum and mass, respectively. To obtain a quantum
mechanical physical observables are exchanged by operators description of the dynamics
of the electron, we can write the Shrödinger equation in x− representation:

i h̄
∂ψ(x)

∂t
=
− h̄2∇2

2m ψ(x), (2)
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where ψ(x)ψ∗(x) describes the probability density of detecting a particle at a given place.
This equation is however, not applicable for particles moving with a speed comparable to
the speed of light. Changing the inertial system, that is, applying a Lorentz boost with a
certain speed, will affect differently the left-hand side of equation2.1.1, which is first order
in time derivative and the right- hand side, which has second order space-derivatives. This
means that the equation is not Lorentz invariant and that the solution will change when
the inertial system is changed, contrary to the postulates of special relativity.
In the context of special relativity both total energy and momenta transform as compo-

nents of contravariant four-vector:

P = (p0, p1, p2, p3) = (
E

c
, px, py, pz) (3)

Even more this vector has invariant length, which determines the energy-momentum rela-
tion of the relativistic particle :

P ·P =
E2

c2 − p · p = m2c2 → E2 = p2c2 +m2c4, (4)

where m is the rest mass of the particle and c is the velocity of light in vacuum.
In order to write an equation consistent with the theory of relativity Dirac proposed to

write the right-hand side of the Shrödinger equation using only the first order derivatives.
He introduced a Hamiltonian in the form:

HD = −i
3∑
j=1

h̄cαj∂j + βmc2 (5)

where i enumerates the three space coordinates, and αi and β are dimensionless coefficients.
Crucially, Dirac concluded that the coefficients αi and β cannot simply be numbers if we
want to keep invariance to spatial rotation and to properly define probability density as
a positive value. He proposed to write the wave function ψ as a column matrix and the
coefficients as matrices. The necessary matrix algebra followed from the energy momentum
relation given by eq. 4, and the postulate of quantum mechanics that a Hamiltonian must
be a Hermitian operator. It reads:

α2
i = β2 = 1, {αi,β} = 0, {αi,αj} = 2δi,j , (6)

where {, } denotes anti commutator. Interestingly, matrices that satisfy these conditions
are the three Pauli matrices, already used in formalizing the theory of electron spin. Still,
4 matrices are needed, if we want to solve the problem in 3+1 time-space dimensions. It
is thus convenient to use the tensor product between Pauli matrices σi and define the
standard representation of the so called γ matrices (γ0, γ1, γ2, γ3) ≡ (β,αi) as:

αi = σi ⊗ σ1 =

 0 σi

−σi 0

 , β = σ0 ⊗ σ3 =

 σ0 0
0 −σ0

 (7)

and

σ1 =

 0 1
1 0

 , σ2 =

 0 −i
i 0

 , (8)

σ3 =

 1 0
0 −1

 , σ0 =

 1 0
0 1

 (9)
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and σ0 is the 2× 2 unit matrix. The newly obtained γ matrices satisfy the Clifford algebra:

{γµ, γν} = 2ηµν (10)

where ηµν is the Minkowski metric tensor.
Finally, using these matrices Dirac wrote the famous equation describing fermions at

relativistic speeds in the covariant form:

(i h̄γµ∂µ −mc2)Ψ = 0, (11)

where ∂µ is the so called four gradient ∂µ = (∂0, ∂x, ∂y, ∂z). The beauty of this equation
lies not only in its elegant form but also in its profound physical consequences. We can
unveil some of them simply by considering the number of solutions corresponding to an
electron in rest. In that case Dirac equation reduces to:

(i h̄γ0∂t −mc2)Ψ = 0. (12)

The four solutions we obtain are:

ψ1 = e−
imc2
h̄

tu1 ψ2 = e−
imc2
h̄

tu2 ψ3 = e+
imc2
h̄

tu3 ψ4 = e+
imc2
h̄

tu4, (13)

with:

u1 =


1
0
0
0

 u2 =


0
1
0
0

 u3 =


0
0
1
0

 u4 =


0
0
0
1

 (14)

The four component column vectors we obtained can accommodate four states. We can
easily verify that the first two have positive energy E = mc2 and the other two negative
one E = −mc2, still in agreement with dispersion relation eq. 4. As it can be rigorously
demonstrated, the two states for each energy value, describe two spin projections of a
spin 1/2 particle [39]. The above solutions are thus called Dirac spinors. Positive definite
probability density can be calculated as ρ = ψ†ψ.
At the time the theory was developed, the interpretation of the negative energy solutions

represented an important problem. Their existence meant that electrons could always
radiate energy by falling into one of them. An arbitrarily big amount of energy could be
obtained in that way.
To solve the apparent paradox Dirac imagined all negative energy states are already

occupied, forming the negatively charged "see" that fills the universe [40]. No new electrons
could then occupy these states due to the Pauli principle of exclusion. At the same time,
one of the negative energy electrons from the sea could be excited to a positive energy
state. In that case it would leave "a hole" at the negative energy, which would have positive
charge.
This interpretation represents the famous theoretical prediction of antiparticles which

had a crucial role in the development of the standard model as well as many concepts of
solid state physics. Still, the explanation wasn’t without its own problems: it implied an
infinite negative charge of the universe. It was only later, when quantum field theory was
developed, capable of explaining inelastic processes and creation of particle-antiparticle
pairs, that the negative energy solutions were understood completely.
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2.1.2 Weyl equation and chirality

Before starting the journey of the use of the Dirac equation in solid state physics and
photonics, lets introduce a slightly different representation of it, convenient for describing
ultra-relativistic or massless particles. It is called the chiral or spinor representation, for
the reasons we will see below.

Let us redefine the matrices αi and β in the following way:

αi = σi ⊗ σ3 =

 σi 0
0 −σi

 β = σ0 ⊗ σ1 =

 0 σ0

−σ0 0

 (15)

In this representation the Dirac spinor can be written as Ψ = (ΨL, ΨR), where two com-
ponent spinors ΨL, ΨR are solutions of the two coupled equations:

(iσ0∂t + icσi∂i)ΨR = (mc2/ h̄)ΨL (16)
(iσ0∂t + icσi∂i)ΨL = (mc2/ h̄)ΨR (17)

Chirality: γMomentum
Spin

γ=1

γ=1
R

σ - σ+

+

σ+ σ -

γ=-1

γ=-1

L

E

p

mc2 m→0

(a) (b)

Figure 1: Dirac and Weyl particles (a) Parabolic energy-momentum relation of a particle de-
scribed by Dirac equation. Both positive and negative energy solution exist. (b) When
cp >> mc2, dispersion becomes linear and particle spin is tied to its momentum . Two
types of solutions, left-handed and right-handed exist, depending on alignment between
momentum and spin.

This form allows us to examine easily the physics of the system in the case when the
kinetic energy dominates the rest energy mc2, that is when cp >> mc2. In that case the
two equations become decoupled, and can be written using only the identity and Pauli
matrices:

(σ0∂t + cσ · ∂r)ΨR = 0 (18)
(σ0∂t − cσ · ∂r)ΨL = 0 (19)

These equations also define the massless Dirac Hamiltonian:

Ĥ = cσ · p̂ (20)
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which is also called Weyl Hamiltonian, by the name of Herman Weyl. He was the first to
notice the two very interesting features of the spinor solutions ΨL, ΨR. First, their energy-
momentum relation is linear, E = ±cσ · p and second, the particle’s spin is always tied
with its momentum [41].

To understand this, lets define an operator that projects the spin along the direction of
the momentum:

ĥ =
σ · p̂
|p| (21)

This operator is called helicity and its eigen values are h = 1, for the so called right-handed
solutions, where the spin vector is parallel to the momentum vector, and h = −1, for the
so called left-handed solutions, where the spin vector is anti parallel to momentum vector.
While it can be also defined for massive particles, helicity is not Lorentz invariant in

that case. For that reason another operator, which fulfills this request is introduced. It is
called chirality and can be defined using γ matrices:

γ5 ≡ iγ0γ1γ2γ3 =

 0 I

I 0

 (22)

Chirality is not strictly speaking a symmetry, as it anti-commutes with the Hamiltonian.
It has well defined eigen vectors:

γ5uR = uR γ5vR = −vR (23)
γ5uL = −uL γ5vL = vL (24)

with eigenvalues 1 and −1 (u and v represent particle, and antiparticle spinor, similarly to
the case in eq. 13). Right handed solutions are particles with chirality +1 and antiparticles
with chirality −1, while the opposite stands for the left handed ones.

In the case of zero mass they construct solutions ΨL, ΨR of the decoupled equations 19.
In fig. 1, a schematic representation of all possible solutions and their chirality,γ, is pre-
sented. We see that the "rigt-hand" and "left-hand" solutions are not identical, but represent
a mirror image of each other in terms of spin. Such feature is the essence of chirality. It is
also worth noting that in the case of massless particles eigenstates of the helicity operator
and chirality operator are the same.
The necessary condition for massless Dirac equation to be applied, a negligible mass

with respect to kinetic energy, restricted its use in astrophysics and particle physics for
a long time. On the scale of condensed matter physics the electron mass of ≈ 0.5MeV

is considerable and the formation of massless Dirac fermions is not intuitive. However,
Dirac-like dispersions can appear when we consider electronic quasi-particles in crystalline
lattices in solids.
To understand their emergence in crystals, let us review the main ideas of one of the

most successful theories in the solid state physics: the band theory of solids.
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2.2 dirac matter: the case of graphene

2.2.1 Basic notions of band theory of solids

The band theory of solids was created in response to the question why some materials
conduct heat and electricity better than others [42]. Its starting point is the fact that
atoms in some solids are arranged in ordered and periodic manner. These solids are called
crystals.
While electrons in isolated atoms occupy discrete, separate energy levels, when many

atoms are close together orbitals overlap and hybridize into extend states. Interestingly,
the resulting bands often have an energy momentum relation which is parabolic, such that
electrons in each of them can be approximated by an electron moving freely in space, but
with an effective mass, possibly very different form the free electron mass.

The situation when complex interactions of particles in many body systems can be
approximated by a free particle with some new effective properties, leads to the concept
of quasi particle. As this concept will be repeatedly used in this thesis we reproduce here
a memorable explanation from a many body physics textbook, written by Mattuck [43].
It states that, as a particle moves in a many body system, it affects, and is being affected
by other particles, and what we observe is the combination of these effects. The situation
is similar to that of a horse surrounded by the dust he agitated by galloping fig. 2.

Figure 2: Quasiparticles. A particle interacting with other particles in a complex medium can be
approximated by a free particle with new physical properties. Taken from [43]

In the case of crystals, periodic potential permits to classify allowed energy bands and
calculate their effective masses. Inside a Brillouin zone of reciprocal space, allowed en-
ergy bands exist, En(k), separated by regions where electronic states are forbidden: the
gaps [42].
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Electron’s wave functions corresponding to these bands have the form of Bloch waves:

ψn,k(r) = eik·run,k(r) (25)

where the function un,k(r) is periodic over the lattice: un,k(r+R) = un,k(r). Here, R
is the lattice vector which determines its periodicity, r is the position inside a periodic
unit cell, and k is the momentum in a Brillouin zone.
In the absence of significant electron-electron interactions, the number of electrons de-

termines the electronic properties of the crystal. In the case when this number is such
that the crystal contains only fully filled bands, and fully empty bands, we will obtain a
semiconductor or an insulator, depending on the width of the gap. If partially filled bands
exist, the material is a conductor. The last fully filled band is called the valence band, and
the partially filled one, the conduction band.
It may occur in some materials that the width of the gap is small, such that the valence

and conduction bands touch or even overlap. Such materials are called semi-metals. A very
particular example of this situation arises in the two dimensional lattice of graphene.

2.2.2 Graphene

Graphene is a single layer of carbon atoms arranged in a hexagonal (honeycomb) lattice
fig. 3. Atomically thin, with the thickness of only 0.035nm, it represents the first two
dimensional (2D) material that was discovered. It was isolated in 2004 by A. Geim and
K. Novoselov in Manchester University [44] who, in this way proved wrong the theorem
that claimed that 2D materials cannot exist due to destabilizing thermal fluctuations in
the third dimension [45].
The researchers of the Manchester group also experimentally proved that graphene is a

Dirac material: its elementary excitations behave as massless fermions described by a 2D
Weyl equation [46].

This particular dispersion, in which bands linearly cross around isolated points of mo-
mentum space is ultimately the consequence of the lattice geometry and the electronic
configuration of carbon atoms [47]. Four out of six electrons in this atom lie in half filled
orbitals, configuration energetically favorable due to Pauli principle. In this way one s−
and three p− half filled orbitals are available to form bonds in carbon, which is the reason
it can create numerous compounds and allotrope modifications.

In graphene, which represents one of the carbon allotrope modifications, the s− and two
p orbitals (px and py) hybridize, and create the strong covalent in plane carbon-carbon
bonds, forming the 2D hexagonal lattice depicted in 3. The "free" electrons in the last, pz
orbital of each atom, stay perpendicular to the lattice plane structure, and are responsible
for the material electronic properties.

2.2.3 Graphene band structure

To calculate the material band structure we can profit from the fact that the hexagonal
lattice is periodic if we define a unit cell that consists of two atoms (gray area in fig. 3).
This means the lattice is composed of two inter penetrating triangular lattices (we can
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label them with A and B) a property that will turn out very important for the material.
This distinction is purely geometrical, as the atoms in sub lattices A and B are identical
carbon atoms.
We can capture a big part of graphene physics if we describe hopping of electrons

between atoms in the lattice using the tight binding approximation. In this model crystal
wave functions can be described as superpositions of electron wave functions of isolated
atoms. The overlap of the wave functions between the nearest or the next nearest neighbor
atoms in the lattice can be interpreted as the probability amplitude that an electron hops
from one atom to another. Even though it doesn’t take the electron-electron interaction
into account, this model is very useful for the description of electrons in lattices [42].
As, in graphene, pz orbitals are responsible for material electronic properties, we will

use them as a basis, and write the tight binding Hamiltonian taking into account the
hopping between nearest neighbors atoms in the lattice. A convenient way to write this
Hamiltonian is by using the so called creation and annihilation operators, introduced in
the formalism of second quantization [48].We find:

H = −t
∑
rA

3∑
i=1

(b̂†(rA + δi)â(rA) +H.c.) (26)

where a(a†) annihilates (creates) an electron sublattice A (equivalent definition is used for
sublattice B), and summation goes over all A sites positions rA and their three nearest
neighbor B sites given by the vectors δi (see fig. 3), defined as:

δ1 = a(0,−1), δ2 = (−
√

3/2, 1/2), δ3 = (
√

3/2, 1/2) (27)

The parameter t represents the overlap between the pz orbitals of two adjacent carbon
atoms, and it is measured to be ts ≈ 2.7eV in graphene [47].

1u 2u

x

y

2 3

1
A

B

Figure 3: Honeycomb lattice Schematic illustration of the lattice. Red and blue sites represent
two inter penetrating sub-lattices A and B. In graphene these atoms on all sites are
identical. Unit cell is given by gray area.
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By imposing periodic boundary conditions we can simulate an infinite lattice, in which
case momentum k = (kx, ky) is a good quantum number [42]. Then, by Fourier transform-
ing creation and annihilation operators, â(ri) = 1√

N

∑
k e
−ik·ri â(k) (and equivalent for

â†, b̂ and b̂†), we obtain a simple 2× 2 momentum space Hamiltonian, written in the basis
of A and B sub-lattice:

H(k) = −t

 0 1 + e−ik·u1 + e−ik·u2

c.c 0

 (28)

≡ −t

 0 fs

f∗s 0

 (29)

Electronic spectrum, obtained by solving the eigen problem of this Hamiltonian, is
plotted in fig. 4. It consists of two bands, as expected for the system with 2 sites per unit
cell, which are symmetric around zero energy: E±(k) = ±ts

∣∣∣∑3
i=1 e

ik·δi
∣∣∣.

Most importantly the two bands intersect linearly at the corners of the hexagonal recip-
rocal unit cell (Brillouin) zone, called Dirac points. There are only two such inequivalent
points K and K’ at positions k = ±K = (±4π/3

√
3a, 0), and others can be obtained by

translation with the unit vectors in reciprocal space.
In pristine graphene the two bands are half filled and the Fermi level lyes exactly at zero

energy. To study the low energy excitations it is useful thus to expand the Hamiltonian
around the touching points, that is to take k = ξK+ q. Here we introduce the valley
index ξ = ±1 to keep track of the two inequivalent Dirac points. In first order in q we
obtain [47]:

H(q) = h̄vF

 0 ξqx − iqy
ξqx + iqy 0

 = h̄vFσ · q (30)

where σ = (σx,σy) are the first two Pauli matrices and vF = −3at
2 is the Fermi velocity

(a being the distance between the carbon atoms).
This is exactly the form of the 2D Weyl Hamiltonian, we have obtained in section 2.1.2

meaning that electrons indeed behave like massless relativistic particles. One important
difference with respect to equation 20, is that the speed of light is replaced with the Fermi
velocity, which is approximately 300 times smaller. The other important difference is that
the role of the spin in Weyl Hamiltonian is played by the lattice isospin or pseudospin,
a degree of freedom related to the existence of A and B sub-lattices. The wave function
still has the form of a spinor, representing the components of the wavefunction on each
sub-lattice:

ψk±,K(q) = 1√
2

 1
±e−iθq

 (31)

with θq = arctan( qxqy ), and the ± sign corresponds to the eigen energies E = ± h̄vf |q|.
Remarkably, relativistic-like behavior of electrons in graphene is not the consequence of
strong spin-orbit coupling, but of the particular lattice geometry. Sublattice isospin couples
to momentum and results in a Weyl Hamiltonian. At the same time, spin-orbit interaction
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Figure 4: Energy-momentum relation in the first Bz. of graphene Valence and conduction
band touch in two inequivalent point, around which dispersion has linear character, as
seen in the zoom.

in graphene itself is very small, which is the reason why we did not consider spin in our
calculation.
It is also important to note that in graphene, there are no real negative energy solu-

tions, as in the case of relativistic particles. The full Hamiltonian of the system requires
contribution from other electrons, which in the approximation we used results in a con-
stant. Nevertheless, electrons in graphene are analogous to massless Dirac fermions as
their spectrum is symmetric around the certain energy level, and they have spinor wave
fuctions.
The experimental realization of graphene deeply changed the field of solid state physics.

Not only a new way to for studying relativistic effects was created, but unprecedented
electronic properties have been evidenced in the material. Electrons in graphene move
with a constant speed independently of their energy, and interact weakly with the lattice
phonons. Record electron mobility and conductivity have been measured, along with the
possibility to change the nature of charge carriers between electrons and holes by tuning the
Fermi level using a gate voltage or dopants [49]. Another impressive transport property,
the conservation of the pseudospin prevents back scattering against a potential barrier
at normal incidence [50]. This effect, known as Klein tunneling, was predicted for high
energy particles and has been observed experimentally in graphene [51]. Unconventional
quantum Hall effect was measured at room temperature [52] and understood to be a direct
consequence of the massless Dirac nature of graphene carriers [53]
Those, as well as mechanical, thermal and optical properties made graphene a competi-

tive candidate for a broad range of applications. It has been shown to improve batteries,
solar cells, electronic transistors, flexible displays or gas sensors, which are expected to be
industrialized in the close future, with the advancement of methods for scalable production
of the material [54, 55, 56, 57] .
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Following the discovery of graphene, important questions both from fundamental and
practical point of view arose. Which properties of the lattice govern the conditions neces-
sary to obtain linear Dirac dispersion [58]? How robust are these features with respect to
the change of lattice geometry or defects?
Usually when bands in crystals are about to cross, a gap opens that is, an avoided

crossing appears due to Bragg scattering of the lattice that mixe different states. However,
it was found that certain lattice symmetries can restrict the form of the Hamiltonian
allowing the bands to intersect in isolated points. This is the case of graphene [59, 60, 61].
Even more, Dirac cones are found not to be only band degeneracies, but stable discontinuity
points in the dispersion with particular topological features. Symmetry, and topological
arguments determine not only the dispersion, but also other important physical properties
such as the shape of the wavefunctions, existence of edge states and the behavior of the
bands under lattice deformation, as we are going to see throughout this thesis.

2.3 general features of dirac hamiltonians

2.3.1 The role of symmetries

It is useful for these reasons to discuss the symmetries of the honeycomb lattice. The first
we can notice is inversion symmetry. It imposes that the Hamiltonian is invariant under
the exchange of the two sublattices A→ B while interchanging k↔ −k.
Another important symmetry is time reversal symmetry. This very fundamental sym-

metry in physics is formally represented with an anti unitary operator T , which satisfies
T H(k)T −1 = H(−k). It is not necessary, for the use in the band theory, that such sym-
metry corresponds to the physical time reversal symmetry. For example, we can notice
that graphene Hamiltonian is invariant under the simultaneous operations of complex
conjugation and k→ −k. This means we can identify complex conjugation K as T .
It can be shown, using simple mathematical arguments[61], that the combination inver-

sion and time reversal symmetry allows the appearance of stable Dirac points in a two
dimensional crystal. It constrains the Hamiltonian in such a way that a solution holding
band degeneracies is allowed to exist.
The obtained form of the Hamiltonian is:

H(k) =
3∑
i=0

f(k)iσi =

 0 f(k)
f(k) 0

 , = f(k)x − if(k)y (32)

In addition to time-reversal and inversion symmetry graphene also possesses chiral sym-
metry. Mathematically, this symmetry is defined as a unitary matrix which anticommutes
with the Hamiltonian:

Γ†H(k)Γ = −H(k) (33)

We have already introduced this symmetry in the same way in the section on the Weyl
equation 2.1.2, to distinguish left-hand and right handWeyl fermions. While the mathemat-
ically equivalent Hamiltonian possessing chiral symmetry also describes graphene lattice,
as we mentioned, the role of spin is played by the lattice pseudo-spin. This means that
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spin-momentum locking present in particle physics translates in graphene as sub-lattice
pseudospin-momentum locking.
In solid state physics, this symmetry is known as the sub-lattice symmetry or the sym-

metry of bipartite systems. These are systems which can be divided in two parts, and the
hopping exists only between sites belonging to different parts, as is the case for graphene
described in nearest neighbor tight binding approximation Hamiltonian.
This symmetry has several important consequences on the physics of graphene. It assures

that the spectrum of graphene is symmetric with respect to zero energy. As a result
wavefunctions describing edge states can be supported only on one sub-lattice, as we will
see in the chapter 4.
Additionally, Hatsugai [62] has shown that the existence of a chiral symmetry implies

not only the feasibility of contact points in the band structure but also the fact that they
appear in pairs without requiring an additional symmetry such as time reversal symmetry
. However, in such a case, the pair of contact points is not necessarily at KD and −KD. In
addition, he showed that the contact points within a pair have opposite chiralities. This
is the 2D version of the more general Nielsen-Ninomiya theorem which has fundamental
importance when simulating standard model phenomena with crystals [63, 64]
Graphene is thus quite exceptional material as it has many symmetries among which in-

version, time-reversal, sublattice (chiral) and particle hole symmetry. The last three have
a special status in solid state physics as they are used to identify and classify crystals
with particular topological properties [65]. Actually, an interesting property of graphene
Hamiltonian is that it presents topological features. For example its Dirac cones are char-
acterized by winding numbers, and the existence of its edge states can be connected to its
bulk properties (bulk-edge correspondence).

2.3.2 Topology in physics

In general, topology is a mathematical discipline which deals with properties of objects
conserved under continuous deformations. If two objects cannot be transformed one into
the other by any continuous deformation we say that they belong to different topological
classes [66]. For example the surface of a sphere cannot be transformed into that of a the
torus without "tearing" it and "gluing" it again, thus they are topologically different.

Further more mathematics teaches us that the topology of a space can have consequences
on objects existing in it, such as vectors. If we want to place vectors all over the surface
of a sphere, we will necessarily create defect-like patterns i.e. vortices fig. 5(a). This is not
needed in the case of a thorus, which is topologically different surface than a sphere. [67].
Conveniently, mathematics also equipes us with recipes to quantify this behavior and

calculate a quantity which labels different topological classes. These quantity is called
a topological invariant, and it can take only integer values [68]. By definition it doesn’t
change with continuous deformations, meaning that it quantifies global properties of the
object in question. In the case of a vortex we can calculate the winding number, which
describes how many times it loops around a central point, and in which direction, fig 5(b).
In the 1980’s topological concepts were successfully transfered to abstract spaces of

particle wave functions. At the time, Thouless and his coworkers tried to understand the
robust quantization of the transverse conductivity plateaus of a 2D electron gas under
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magnetic field, phenomenon known as quantum Hall effect. They realized that magnetic
field changes the topology of momentum space [69]. The robust conductivity quantization,
which showed no dependence on a sample disorder, could be explained in terms of the so
called Chern number, that represents the number of vortices induced by the magnetic field
in each Landau level.

Figure 5: Topology (a) Surfaces of a sphere and of a torus cannot be deformed one into another
by continuous change, they are topologically nonequivalent . (b) Topological objects are
characterized by an integer number called topological invariant. Vortex as a topological
object is described by winding number, which quantifies how many times it turns around
a point in its center. Such an object can be removed only by annihilation with vortex of
opposite sign. Taken from [67]

Topological arguments are now used to establish new classification of phases of matter
(given by topological invariants) and explain numerous phenomena in areas of physics like
superconductivity and magnetism [70, 71, 72].
In band theory of solids it was shown for the first time that to capture the physics

of a system, it is not only necessary to know its dispersion but also information about
the structure of the wave function in momentum space. The global evolution of the k-
dependent wave function over the Brillouin zone, quantified by topological invariants,
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determines certain local properties of the system. In lattices, a very important topological
invariant is the Chern number. It can be defined in gapped spectrum for each band as:

C =
1

2π

∫
∇k × 〈u(k)| i∇k |u(k)〉 · ds (34)

where u(k) is the spatially periodic part of the Bloch wave function, and <> denotes the
inner product in real space. Materials with nonzero Chern numbers are called topological
insulators, and their physics is closely related to that of Quantum hall [73, 74].
The interesting situation happens when topologically inequivalent insulators are placed

right next to each other. As the two Hamiltonians cannot be continuously connected gap
will need to close, and reopen on their interface so that the topological invariant can
changed. In that way, additional states will be created in gap, whatever are the local
properties of the interface. Creation of these type of edge states has been the objective
of numerous studies, particularly in 2D systems where such conductive channels assures
unidirectional transport protected from back scattering on defects.

2.3.3 Topological properties of Dirac matter

Recently, topological properties of gapless systems, have been intensively studied and
better understood [62, 75, 76, 77]. Its main representative in 2D, graphene, is interesting as
it shows topological features even without spin orbit coupling or breaking of time reversal
symmetry, as is the case in topological insulators. As we mentioned in section 2.2.3, it is a
particular isospin-orbit interaction that result in particular properties of its wave function.
The ensemble of touching points in graphene is attributed the zero Chern number. Thus,

we cannot apply theory of topological insulators in this case. However, there is another
relevant non zero bulk invariant, the winding number. We will see throughout this thesis
that important aspects of graphene physics are determined by its topological properties,
that is, they can be related to bulk invariants.

Winding number in graphene describes the winding of the phase of the wave function
around the Dirac point. It’s non zero value makes Dirac point a topological object in two
dimensions [61]. While other quantities are sometimes used to express graphene topological
features (such as Berry phase, or Berry curvature) winding number represent a most
convenient choice as it is gauge invariant [78].
More precisely, winding number of Dirac cone can be found from the behavior of the

spinor wave function around the Dirac point. Let us write the wave function in the basis
of two pseudo spin states

ψ =
1√
2

 e−iφ(qx,qy)/2

±e−iφ(qx,qy)/2

 (35)

Then, for each value of q = (qx, qy) the relative phase of the two components defines the
direction of the 2D pseudo spin vector h, fig. 6. The number of rotations that a pseudospin
vector undergoes when the electronic wave vector rotates fully one time around the Dirac
point is called the (pseudo spin) winding number:

ω =
1

2π

∫
∇φ(q)dq. (36)
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Figure 6: Winding of pseudo spin vector (a) Around Dirac point the vector winds once. This
situation occurs in graphene. (b) In the case of bilayer graphene, wavefunction is also a
spinor, with the winding 2 around the quadratic band touching. (c) 2D electron gas has
winding zero. Figure taken from [78]
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This quantity is gauge invariant (it does not depend on the overall phase of a quantum
state) and thus can be directly calculated from the Hamiltonian, which contains informa-
tion on the pseudospin vector h. By rewriting Dirac Hamiltonian as :

H(q) = h̄vFh ·σ = hx(q)σx + hy(q)σy (37)

we can easily parametrize h:

hx = h · ex = ε cosφ(q) (38)
hy = h · ey = ε sinφ(q) (39)

→ tanφ =
hx
hx

(40)

and find the winding:

ω =
1

2π

∫
∇φ(q)dq =

1
2π

∫ 2π

0

∂φ(q, θ)
∂θ

dθ, (41)

where θ = arctan(qy/qx) goes around the Dirac cone. In the case of graphene, where we
simply have hx = h̄vfqx and hx = h̄vfqy , we get:

hx = vF q cos θ hy = vF q sin θ (42)

and

ω =
1

2π

∫ 2π

0
1dθ = 1. (43)

Winding number around K′ point can be also calculated using definition 36, by taking
ξ = −1. The obtained value ω = −1 means that the pseudo spin vector winds in other
direction around K ′ point.

We have thus obtained that Dirac cones are characterized by non zero windings 6(a).
This result is important in the physics of graphene. The quantity, also called the topological
charge, reflects the stability of Dirac point. As a sort of topological vortex in momentum
space, it can be moved by deformation of the lattice, but cannot be easily destroyed. While
chiral and time-reversal symmetry of the lattice are preserved, the only way for a Dirac
cone to disappear is through a topological phase transition, by merging with Dirac cone
of opposite topological charge.
In chapter 6 we will see under which conditions merging of two Dirac cones with opposite

winding number can happen and how it can be used to tune transport properties in
honeycomb lattice.

Winding numbers also govern the existence of lattice edge states [79]. While edge states
in graphene are not unidirectional like in 2D Chern topological insulators, their existence
and behavior under lattice deformations can be determined by topological arguments. A
detailed review on this subject and the discovery of new weakly topological edge states
are presented in chapters 4 and 5.
Finally, winding number quantity is crucial for understanding the behavior of graphene

under gauge fields. It explains the appearance of half integer quantum Hall effect under
magnet field [78] as well as the emergence of artificial gauge fields when suitably deforming
the lattice [80].
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Winding number can be equally calculated for other systems described by the two
component spinor wave function. For example, quadratic band touching in the spectrum of
low energy Hamiltonian of bilayer graphene also has a non zero winding. The Hamiltonian
reads [81]:

H =

 0 (qx − iqy)2

((qx − iqy)∗)2 0

 (44)

In that case the components of the pseudospin vector are:

hx =
q2
x

2m −
q2
y

2m =
q2

2m (cos θ2 − sin θ2) =
q2

2m (cos 2θ) (45)

hy =
qxqy
2m =

q2

m
(cos θ sin θ = q2

2m (sin 2θ) (46)

The angle φ, given by tanφ = hy/hx = 2 tan 2θ is φ = 2θ and the winding:

ω =
1

2π

∫ 2π

0
2dθ = 2 (47)

This means that the pseudo spin vector winds twice around the band touching 6(b). The ob-
tained value explains, for example the absence of the first Hall plateau in bilayer graphene
[82, 83, 78].

2.4 dirac hamiltonians beyond condensed matter

As a material, graphene represents a valuable playground for exploring interesting phe-
nomena of relativistic fermions, or topological concepts in a relatively simple geometry. In
parallel to the research activities on its properties, a radically different question was posed
after its discovery. Can we transfer those properties to other physical systems, different
from that of condensed matter, or even surpass them in that way? Can it be done with
neutral particles such as photons, in order to design and control the behavior of light in a
new way?
In the last decade the idea of creation of artificial systems for Hamiltonian simulation

allowed fast development in that direction. Artificial systems offer advantages such as the
possibility to tune the lattice geometry, but also easier access to the properties of the wave
functions, all that without the need to match the Fermi energy with the desired energy
region. The study of graphene physics in new regimes became possible with access to a
range of parameters unavailable in natural electronic lattice. Topological phase transitions,
creation of artificial gauge fields as well as realization of exotic topological models with
graphene became experimentally reachable.
In the next chapter we will review some of the successful realizations of graphene simu-

lators. Then, we will present polaritons, half-light half matter particles and the way they
can be used to simulate graphene. The final goal of this thesis is to discover new physics
is this analogue simulator and the way it can be used to design new properties of light.





3
A POLARITON GRAPHENE S IMULATOR

In the previous chapter, we have learned that electrons in graphene lattice acquire par-
ticular properties of massless Dirac fermions. The experimental discovery of this material
allowed to study many phenomena related to these exceptional particles, but also raised
numerous questions about the extension of Dirac physics beyond the original framework
of special relativity. How stable are Dirac points in a crystal, can the Dirac dispersion be
modified? Many of these questions remained opened due to the difficulties to manipulate
and access graphene.
The goal of this chapter is to introduce a polariton hexagonal lattice as a platform

of interacting photons which can be used to create a physical analogue of graphene and
address challenges in Dirac physics in the photonic context.
In the first part of the chapter we will briefly review the main ideas behind analogue

simulation and present state of the art platforms to which graphene physics has been
transposed.
In the second part we will present general properties of the system we use to simulate

graphene. These are microcavity polaritons, mixed light-matter quasi particles obtained
via strong coupling of quantum well excitons and cavity photons. Their main properties
will be presented, especially focusing on their photonic character and how it can be used
to engineer a 2D potential landscape.
In the third part we will introduce the polariton graphene lattice as a system of choice

to implement Dirac physics in the photonics context. In particular, we will show how the
lattice is created by confining polaritons in three dimensions, and how it can be directly
accessed to provide imaging of wavefunctions in both real and momentum space. We will
also explain how lattice parameters, such as the geometry and hopping, can be controllably
tuned in such structure, a feature that will be used throughout the thesis.
Details on the samples used in the thesis and experimental setup will be given in the

last section .

3.1 artificial systems

In the first chapter we have seen that an interesting analogy has been provided by nature
between the free relativistic fermions on one side, and charge carriers in graphene on the
other. What makes such phenomenon possible essentially is the fact that all particles,
within a quantum mechanical description, behave as waves. Indeed, free like propagation
of electrons in lattices is possible due to formation of extended states -waves- in periodic
potentials. This is how electrons in particular in a hexagonal lattice can acquire properties
of free particles such as Dirac fermions.
In the last few decades the idea to use this fact and develop artificial analogues (or simula-

tors) has being intensively developed in different systems, including photonic ones [84, 85].
The objective of these efforts is to create in a controlled way, systems with desired physical



24 a polariton graphene simulator

properties which can be directly manipulated and accessed. As such, simulators offer the
possibility to experimentally study complex phenomena, or systems that are hard to access
or manipulate. Importantly, they also offer the opportunity to explore how properties of
matter and light can be modified or even to design new ones.
What are the main requirements for the realization of a simulator? In principle, it is

sufficient to create a system well described by the same Hamiltonian that describes the
system we desire to simulate. Engineering potential landscape with high precision is thus
a very important task towards this goal. Another ingredient is the interaction between the
particles.
At first, using light to create simulators doesn’t seem like an obvious solution. Photonic

system are fundamentally different from solid state lattices, where the basic constituents,
the electrons, obey Fermi statistics, interact strongly and are most often examined at
equilibrium states at low temperature. On the contrary i) the basic constituent of light,
namely photon obeys Boson statistic, ii) photons do not interact and iii) they can reside
in any realistic device only for a finite time, and some external driving is needed to inject
them in a steady state.
Nevertheless, photons have proved a particularly interesting platform for realization sim-

ulation [86]. This is certainly due to their fundamental properties: photons propagate very
fast and can be precisely controlled in relatively simple experiments. Various techniques
to confine photons and impose the desired potential landscape have been developed while
significant interactions can be introduced through non-linear media. Additionally, photon
spin (polarisation) degree of freedom can also be well controlled and can be used as a
building block for information manipulation, making them important even in the domains
of quantum simulation and quantum computing.
Simulation allows transposing newly discovered physical phenomena from other areas

into photonics. It allows controling propagation and localization of photons, and engineer
photonic dispersions which are some of the central goals in photonics. Historically, the first
class of materials in which modification of optical properties was achieved was inspired
by electronic lattices. These are photonic crystals, structures with a periodic change of
dielectric constant (or equivalently periodic index of refraction). In these structures pho-
tonic gaps are engineered such that light waves of certain range of frequencies are reflected
while others are transmitted [87, 1]. Highly reflective dielectric mirrors made in this way
are commercially used to increase the efficiency of certain LEDs as well as the reflectivity
of mirrors in laser microcavities, for example.
More recently various systems of coupled photonic resonators have been used to further

design properties of light. Particularly, numerous efforts have been made to implement
topological effects in photonics [2]. The possibility to create unidirectional propagation
of light in these structures is expected to bring new solutions for the creation of optical
isolators and delay lines [3], crucial for development of integrated optic devices.
Graphene is a material which displays numerous interesting physical properties, includ-

ing topological, as well as the potential for many other applications. This is why its hexago-
nal lattice has been proposed as a geometry for several artificial systems. Let us shortly re-
view how these analogues meet the simulation requirements and the main results achieved
using them.
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3.2 state of the art graphene simulators

3.2.1 Photonic honeycomb lattices

One of the first graphene simulators was created as an array of evanescentlly-coupled
waveguides arranged in a honeycomb lattice (HCL) fig. 7(a). The equation describing the
diffraction of light in such structure, the paraxial wave equation, is mathematically equiv-
alent to the Schrödinger equation describing time evolution of electrons. Graphene wave
dynamics can thus be probed in this system by observing propagation of monochromatic
light through this waveguide array, which allows observation of the wavefunction (includ-
ing phase). The system was successfully employed to address several aspect of graphene
physics and its implications in optics. Edge states in graphene have been observed [88]
and manipulated [89], and artificial gauge fields have been introduced by implementing
nonuniform strain [90]. The lack of possibility to access the eigenvalue spectrum stays the
biggest limitation of this system.

(a) (b) (c)

(d) (e)

Figure 7: Photonic graphene structures (a) A scheme of a periodic array of waveguides that
are evanescently coupled to one another fabricated using the femtosecond laser-writing
technique which locally increases the refractive index in the silica sample [90]. (b) Hon-
eycomb lattice made by changing refractive index in photorefractive nonlinear crystal
by by optical induction. (c)vThe k-space spectrum of the input beam in the structure
in fig.(b) matching the three marked Dirac points. Selective excitation of Dirac points
allowed experimental observation of pseudospin-mediated vortex generation. (d) Imple-
mentation of HCL with microwave resonators. (e)Density of states directly measured in
structure in fig.(d) allows to detect edge states.
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A similar platform, based on a nonlinear crystal in which index of refraction is varied
in hexagonal geometry has been used to experimentally study the pseudo spin degree of
freedom, demonstrating that it is not merely for theoretical elegance but rather physically
measurable quantity [91]. In fig. 7(b) we see an optically induced honeycomb lattice in
this material and in fig. 7(c) the k-space spectrum of the input beam matching the three
selectively marked Dirac points.
Another very successful platform has been created in the microwave regime using cylin-

drical resonators to create graphene lattice sites [92, 93, 94]. The dielectric cylinders are
coupled by an evanescent magnetic field, so that the wave propagation between the res-
onators is well described by a tight-binding-like hopping term fig. 7(d). The setup allows
for direct access to the local density of states through the reflected signal measured via a
movable loop-antenna, fig 7(e). Moreover, the setup allows visualizing the wave function
associated with each eigen frequency. We will see in the next chapters how this system
was used to study edge states and phase transitions in graphene.

Apart from photonic other systems have also been used to realize analogues of graphene.They
include (i) Optical lattices for cold atoms [95], (ii) nanopatterning of ultrahigh-mobility
2D electron gases (2DEGs) [96], (iii) molecule-by-molecule assembly of honeycomb lat-
tices on metal surfaces by scanning probe methods [97], (iv) mechanical graphene [98]
and others [99].
The most interesting results in terms of topics discussed in this thesis have been achieved

with optical lattices for cold atoms and this is why we would like to mention some of them.

3.2.2 Cold atom honeycomb lattices

Ultracold gases in optical lattices present one of the most advanced platforms for quantum
simulation [100]. Within this setting, potential landscape for atoms and ions can be created
by interfering multiple laser beams. A very important milestone in the field of quantum
simulation has been achieved in cold atom systems with the experimental creation of one
of the basic models for interacting particles in lattices, the so called Bose- (or Fermi-)
Hubbard model [101] and with the observation of the superfluid-Mott transition.

The first cold atoms honeycomb lattice has been realized and investigated using a Bose-
Einstein condensate [102], but no signatures of Dirac points were observed. In later exper-
iments by L.Tarruel in T. Esslinger group a honeycomb lattice has been implemented for
fermionicK atoms [95]. The hexagonal geometry is provided by interferences of three retro-
reflected laser beams as schematically depicted and explained in fig. 8(a). Minima in the
potential (white regions in fig. 8(b)) could be arranged in different geometries, including
hexagonal by tuning the relative intensity of the three beams.
It is interesting to understand how Dirac cones were detected in this system. This

was done by probing the energy splitting between the resulting two lowest-energy bands
through Landau-Zener oscillations. The atom cloud is first prepared in the lowest energy
band of graphene and then accelerated using magnetic field up to the point when it reaches
the edge of the Brillouin zone and is Bragg reflected (making thus one full oscillation in
momentum space). The oscillations for quasi momenta close to the Dirac points differ
from those which are far for them. Figure 8(c) shows data obtained before and after
one oscillation for these two cases. Close to the Dirac cone (green empty circle in the
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figure 8(c), atoms are partly transfered from the first band to the second because of the
vanishing energy splitting at the linear band crossing. Those transfered atoms appear in
the second Brillouin zone, where they are detected. No such transfer is observed far from
the Dirac point (full blue line).
In a more recent work graphene-type hexagonal optical lattice loaded with bosonic

atoms was used to detect the Berry flux localized at each Dirac point [103]. Finally, ultra-
cold atoms in optical lattices periodically modulated in time allowed creation of complex
hopping amplitudes and realization of Haldane model in honeycomb lattice [104].

(a) (b) (c)

Figure 8: HCL with cold atoms (a)Three retro-reflected laser beams of wavelength l51nm create
the two-dimensional lattice potential. Beams X and Y interfere and produce a checker-
board pattern, and beamX creates an independent standing wave. (b) HCL potential can
be realized by adjusting intensities of the lattice beams. White regions correspond to lower
potential energies and blue regions to higher potential energies.(c) Quasi-momentum dis-
tribution of the atoms before and after one Bloch oscillation, of period TB (color scale,
column density of the absorption image in arbitrary units). The cloud explores two tra-
jectories in quasi-momentum space simultaneously, close to the Dirac point (green open
circle) and far from it (blue filled circle).

3.3 introduction to microcavity exciton polaritons

In this section we will present microcavity exciton-polaritons as a system suitable for
creation of analogue simulators of Hamiltonians, and particularly that of a honeycomb
lattice. Exciton-polaritons are mixed light-matter particles that arise from the strong
interaction of quantum well excitons and cavity photons in semiconductor microcavities.
Similarly to photonic architectures, potential landscape can be designed at will by cre-

ating structures with periodic change of index of refraction. Different from other photonic
systems, polaritons provide combined information on real, momentum, and energy spaces
needed to reconstruct the band dispersion and the eigenfunctions. At the same time, the
out of equilibrium nature of the system allows its visualization in luminescence experiments
at temperatures on the order of 10K. Additionally, transport properties of the lattice can
be probed thanks to the property of polaritons to propagate in 2D. Finally, polaritons
interact through their excitonic component and thus present a great potential in accessing
the nonlinear domain which is unfeasible in electronic graphene systems.
For these reasons, polaritons provide an extraordinary photonic platform to emulate 1D

and 2D Hamiltonians, as well as to transpose to the photonic world some of the properties
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of electrons in solid state systems, and to engineer Hamiltonians with novel transport
properties.

3.3.1 General introduction to polaritons

Interaction between light and matter is the main mechanism behind our perception of
the world, dominated by vision. Interestingly, it is also one of the main tools of scientific
investigation, as optical spectroscopy methods are widely used to reveal structure and
properties of matter ranging from cosmological objects to nanomaterials. Conversely, ma-
terial structures have enabled us to discover the general laws governing the dynamics of
light, e.g. refraction, reflection, and diffraction.
Classically, light-matter interaction is described by the macroscopic Maxwell equations

which determine the degree of polarization induced in the material in the presence of an
electro-magnetic field [105]. Quantum mechanical theories give us more details on how
excited atoms emit light. Two regimes of light-matter interaction are possible. In the first,
the so called weak coupling regime, the emission of light by matter is an irreversible process.
Excited atom spontaneously emits a photon and the probability that it gets reabsorbed is
exponentially small. The reason is that the single excited state is coupled to a continuum of
final states, constituted by the atom in a lower energy level and a photon with a direction
and polarization which can take a continuum of possible values [106]. In this case light
and matter behave as separate entities, and this is why we can learn about one by probing
it with the other.

However, particular conditions can be created such that light and matter interact
strongly and mix to an extent that we cannot separate one from each other. This is
the, so called strong coupling regime. The most efficient way to achieve it is by confining
light in an optical microcavity and putting an atom, or other two level systems inside of
it [12]. It this case one matter mode can be coupled to just one light mode, and a photon
can be absorbed and re-emitted several times by the atom before leaving the cavity. The
probability to find the atom in the excited state does not decrease exponentially. The
system oscillates in time between two states: 1) atom in the excited state and 2) atom in
the ground state plus one photon. These oscillations are called Rabi oscillations.
While the strong-coupling regime in semiconductors was first achieved in the bulk GaAs,

without the use of a cavity [107, 108], an important breakthrough arrived in 1992, when
C.Weisbuch and collaborators attained it for the first time in semiconductor microcavi-
ties [109]. In this, and many other works that followed, strong coupling is obtained by
embedding a semiconductor quantum well inside a microcavity, in which one longitudinal
optical mode is resonant with the excitonic transition in the quantum well. If the typical
lifetimes of the photon and the exciton are long enough as compared to the typical in-
teraction strength, the system is in the strong coupling regime. Similarly to their atomic
counterpart, semiconductor microcavities in the strong coupling regime are characterized
by mixed half light-matter eigen states, which are called microcavity exciton-polaritons.
Polaritons inherit properties from both components. From their photonic component

they inherit low mass, about five orders of magnitude smaller then the one of excitons,
and eight orders of magnitude smaller that of electrons. It is thanks to this property that
polaritons in microcavities can propagate at distances up to hundreds of microns, and that
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arbitrary potential landscape on the microscale can be imposed to them, as we will see in
the next sections.
Thank to their excitonic component, polaritons inherit the possibility to via Coulomb

interaction between their fermionic component, but also with the external magnetic field.
Important results in the area of physics of interacting bosons have been achieved in this sys-
tem. They include condensation in a single macroscopic state (Bose Einstein condensation)
at temperatures much higher then that necessary in atomic gases, as well as superfluid
behavior [16]. More recently, strong tunable artificial gauge potentials for two-dimensional
microcavity exciton polaritons was created by application of orthogonal electric and mag-
netic fields [110].
In the next section we are going to review some details on how strong coupling regime

can be achieved in microcavities. We will start by recalling the main techniques of confining
photons in a microcavity, as well as excitons in quantum wells.

3.3.2 Confinement of light

Confinement and manipulation of light can be achieved by designing different cavities [14].
In order to enhance light matter interaction, a small mode volume is required and solid
state structures with dimensions typically of the same order of magnitude as the wave-
length are used. Additionally, long lifetime of photons is achieved by using highly reflective
interferential semiconductor mirrors, rather than metallic ones in which absorption is con-
siderable.
Cavities of various geometries, like planar microcavities, microdiscs or micropillars have

been created with nanometer precision, thanks to the great progress of epitaxial growth
and etching techniques. Behavior of light in those structures can be simply understood
in terms of two main light phenomena. The first is reflection (and refraction) of light
on a single surface between two media with different indexes of refraction, fig. 9(a). The
other important phenomena is the interference produced by such reflections on multiple
interfaces periodically arranged on the scale of the wavelength of light, fig. 9(b).
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(a) (b)

Figure 9: (a)Schematic representation of reflection and refraction of light on the interface between
two media with different index of refraction. (b) multiple interfaces periodically arranged
on the scale of the wavelength of light produce interference effect which significantly
change the way light is reflected and transmitted.

In the first limit, reflection and refraction on a single surface are usually given in therms
of Snell’s law: n1 sin(θ1) = n2 sin(θ2), (or in more general form by Fresnel equations).
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These laws are the consequence of continuous translation symmetry and conservation of
momenta in the plane of the interface. A particular phenomenon, important for confining
the light, occurs in case when n1 > n2 . If θ1 > sin(n2/n1)−1 the law gives sin(θ2) > 1,
which is not possible, and the light is totally reflected. This phenomenon, called total inter-
nal reflection, will have important role when patterning a microcavity into a honeycomb
lattice, as we will see later.

Before going in that direction, we will apply these basic laws on propagation of light
onto structures in which index of refraction changes at distances similar to the desired
resonant wavelengths. This will allow us to understand how a planar (2D) single mode
microcavity, with high quality factor can be designed using dielectric materials. We will
start by the most simple case, a Fabry Perot cavity, then extend its principle of work to
Bragg mirrors, and finally describe a complete semiconductor microcavity.

3.3.2.1 Fabry-Perot cavity

Two transparent plates with reflective surfaces separated by the distance Lcav, as in the
fig. 10(a), make a Fabry-Perot cavity, or an etalon, as this structure is called due to its
particular, well defined transmission properties. These properties are the consequence of
interferences between multiple transmitted and reflected waves that appear when light is
incident on such a structure. Their exact form depends on the parameters of the cavity:
values of reflectivity and transmission coefficients of the plates, r1, r2 and t1, t2 respectively,
cavity width Lcav and its refractive index ncav

(a) (b)

Lcav

r1,t1

ncav

r1,t1

Ei Er0 Er1 Er2
Er3

Et1 Et2 Et3

ϴ

α

Order number S

Figure 10: (a)Fabry Perot cavity’s scheme with metallic mirrors. (b) Reflectance of a Fabry-Perot
cavity as a function of order number and reflectivity of the mirrors.

Let us consider how a monochromatic plane wave, incident on the surface of the cavity
with angle α is transmitted through the structure. We will take ncav > nair. The angle of
propagation inside the cavity will be nair sin(α) = ncav sin(θ) → θ = sin−1( nairncav

sin(α)).
Assuming an incident external field with (complex) amplitude Ei, as in fig. 10(a), the
transmitted field is composed of an infinite number of components of decreasing magnitude
which can be obtained by simply tracing the trajectories of the ray in the figure and
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accounting for reflections and transmissions. In each round trip inside the cavity the wave
gains a phase of φ = 2π(ncavLcav cos(θ)/λ). Then, for the transmitted wave we can write:

Et = Eit1e
iφt2 +Eit1e

iφ(r2e
iφr1e

iφ)...Eit1eiφ(r2e
iφr1e

iφ)nt2 + ... (48)

Et = Eit1t2e
iφ
( 1

1− r1r2e2iφ

)
(49)

For the transmission coefficient we obtain:

T =

∣∣∣∣EtEi
∣∣∣∣ = (t1t2)2

1 + (r1r2)2 − 2r1r2 cos(φtot)
, (50)

where φtot = 2φ. In the case when there is no absorption in the mirrors or diffusion at the
interface reflectance the coefficient R can be found from R+ T = 1. In fig. 10(b) we see
that the reflectivity drops to zero whenever φtot = S× 2π, where S is an integer value. For
the simple case of normal incidence (α = 0), resonance in transmission is attained under
condition ncavLcav = Sλ/2. This means Fabry Perot cavity provides a convenient way to
select particular wavelength, in the case when highly reflective surfaces (mirrors) are used.
The quality factor of the cavity is the measure of the resonant enhancement of the mode.

It is simply defined as the ratio of a resonant cavity frequency, ωc, and the line width of
the cavity mode δωc (full width at the half maximum-FWHM of the reflectance minimum):

Q =
ωc
δωc

. (51)

The Q-factor is a measure of the rate at which optical energy decays from the cavity . It
also gives the cavity photon lifetime τ = h̄Q

ωc
. The quality factor depends on the cavity

mode (and cavity length) we are considering. In the case of Fabry-Perot we have:

Q =
Sπ
√
r1r2

1− r1r2
(52)

3.3.2.2 The effective photon mass

When the cavity is excited not at normal incidence but at a certain angle α with respect to
the normal, the interference condition defining the cavity mode resonance changes slightly.
Let us write the wave vector of the incident wave as k = k||+kz. Upon the change of index
of refraction in z−direction nair → ncav, kz component will change while the parallel one
will be conserved. Taking into account that we have kcav = ncavkair = ncavE/ h̄c, where E
is now the energy of the mode and k2

|| + k2
z = (2πncav/λ)2, we can impose the resonance

condition for the mode S and get:

kcavz ·Lcav = Sπ (53)√(
ncavE

h̄c

)2
− k2
|| =

Sπ

Lcav
(54)
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The dispersion relation of the optical modes is then given by:

EC(k||) = h̄c

√√√√( π

Leffncav

)2

+ k2
|| (55)

For the small incident angles k|| << kz this dispersion can be approximated by a parabola:

EC(k||) =
h̄cπ

Leffncav
+

h̄2k2
||

2mph
, (56)

with mph = h̄π
cLeffncav

. This is a very interesting result, as it suggests that confinement of
the photons between two parallel mirrors results in a finite mass to the photon for photon
in-plane motion.

3.3.2.3 Bragg mirrors

As we pointed out earlier, in order to realize a cavity with high quality factor and high
finesse the use of highly refractive mirrors is needed. Distributed Bragg mirrors (DBRs)
are semiconductor heterostructures which can provide reflectivity coefficient near 100%.

They consist of periodically arranged layers with different index of refraction n1, and n2
and widths L1 and L2 such that n1L1 = n2L2. Similarly to the case of Fabry Perot cavity,
radiation incident on the DBR will be subjected to multiple reflections (transmissions)
as it propagates along the structure, giving rise to an interference process which will be
globally constructive or destructive depending on the radiation wavelength and incidence
angle. One can show that, for a given wavelength λBragg, the periodic structure will present
an enhanced reflectivity for normal incidence when the optical thickness (ni · L) of each
layer is equal to λBragg/4.
In the case of a large number of layers N and normal incidence the reflectivity at the

wavelength λBragg = 2πc
ωBragg

is given by:

R(λBragg) ≈ 1− 4nout
nsub

(
n1
n2

)2N
(57)

with nout the optical index of the external medium and nsub the one of the substrate on
which the structure is grown. The reflectivity increases with the number of pairs and with
the index contrast between layers. Reflectivity curves of Bragg mirrors with 7, 15 and 25
pairs, as a function of the normalized frequency ω/ωBragg are shown in fig. 11(b). The
region of high reflectivity, centered symmetrically around λBragg, is called the stop band.
For the DBRs typically used in our experiments, made of alternating layers of GaAs/AlAs,
with indices of refraction nGaAs = 3.54 and nAlAs = 2.96, 25 pairs are enough to reach
values of reflectivity very close to one (R ≈ 0.9997).

3.3.2.4 Bragg mirror microcavity

We can now create a cavity consisting of two DBRs with a layer in between (a spacer) of
width Lcav = Sλc/2 and index ncav, fig. 11(c). Such a cavity will have a sharp resonance
in the middle of the wide stop band, at wavelength λc. The corresponding reflectivity
spectrum showing a narrow dip corresponding to this mode is shown in fig. 11(d)
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(a) (b)

(c) (d)

Figure 11: Bragg reflector cavity (a) Schematic representation of a Distributed Bragg Reflector
(DBR). (b) Typical DBR reflectivity spectrum for three different numbers of (n1, n2)
pairs. (c) Schematic representation of a Fabry-Perot microcavity made by coupling two
DBRs. (d) Reflectivity spectrum of the microcavity, displaying a dip at the center of the
stop-band, corresponding to the optical mode resonant with the cavity. Taken from [111].
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As the cavity has a separation in energy between the modes inversely proportional to
Lcav, for cavity widths on the order of λc the structure operates as a single mode cavity
for longitudinal modes.
The high reflectivity of DBRs at the stop-band makes semiconductor microcavities with

Q factors up to 100000, corresponding to photonic lifetimes of up to 40ps. The correspond-
ing effective mass for photons in such structures is of the order of mph ≈ 10−5me where
me is the electron mass.

DBRs can be used to efficiently confine photons assuring both increased photonic life-
time and single mode operation. Now we are interested in understanding how light in
microcavities can be strongly coupled to matter to create quasi particles called polaritons.
In particular, we will consider the case in which we insert a quantum well inside the cavity
such that resonant the mode couples to excitonic two-level transitions of the quantum
well.

3.3.3 Quantum well excitons

3.3.3.1 Excitons in semiconductors

In the short introduction to band theory of solids presented in chapter 2, we discussed that
the ground state of any semiconductor is characterized by a completely occupied valence
band and empty conduction band, separated by the gap.

The fundamental excitation in a semiconductor consists in the promotion of an electron
from the top of the valence band to the bottom of the conduction band. In this way all the
valence band states except one remain occupied. It is convenient, to picture this empty
state as a positive charge in an empty valence band. This is the definition of a hole and its
description as a positive charge enables us to consider the valence band masses as positive
in all practical calculations, despite the fact that from the single electron picture they have
negative curvature.
As the excited electron and all the remaining charges in the valence band interact, the

energy of the excited state is lowered. We can describe it in a picture in which the electron
and the hole undergo Coulomb attraction and a bound state called exciton is created in
the gap. The following Hamiltonian can describe the system:

HΨ(re, rh) =
[
(pe)2

2me
+

(ph)
2

2mh
+Eg −

e2

ε|re − rh|

]
Ψ(re, rh) = EΨ(re, rh), (58)

where re, rh, pe, ph andme,mh are respectively position, momentum vector, and effective
mass of an electron and a hole in the crystal. The value of the dielectric constant ε accounts
for the screening effect of the Coulomb interaction due to all the other electrons in the
valence band.

Excitons are somehow analogues to hydrogen atoms, holes playing the role of protons.
The Hamiltonians of both systems have the same expression and the structure of the
energy levels and eigenmodes is the same, resulting in exciton levels 1s, 2s, 2p and so on.
The energy of the excitonic ground state can be written as:

Eexc = Egap −Eb +
h̄2K2

2m , (59)
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where Eb is the electron-hole binding energy, 4.2meV in bulk GaAs, h̄K is the exciton
momentum, defined as the momentum of the center of mass of the electron-hole pair, and
m is the exciton effective mass, given by the sum of the effective masses of electron and
hole, which gives to the exciton its own parabolic band.
The lowest energy exciton wavefunction is the n = 1 (1s) state that reads:

Φ(r)
1

√
πaB

e−r/aB , (60)

with aB = h̄2ε
µe2 the exciton Bor radius, that characterizes the spatial extension of the

exciton.
It is also worth mentioning that the exciton, made of two fermionic quasi-particles,

behaves as a boson for low particle density. Electronic spin, with spin projections on
the z quantization axis J(e)z = ±1/2 combines with hole spin J(h) = ±3/2 , to give
two possible values for the excitonic spin J(exc) = 1 and J(exc) = 2. Note that the
fundamental state of the crystal has J = 0. This picture is valid for particle densities
below the so called Mott density limit, corresponding to the disappearance of a well defined
excitonic bound state. For GaAs QWs this values corresponds approximately to a density
of 1011 excitons per cm2 [112, 113]

3.3.3.2 Confined excitons in quantum wells

Both energy and spatial extension of an exciton are changed if it is confined. In general,
excitons can be confined along one (quantum well), two (quantum wire) or three (quantum
dot) dimensions. In this work we will consider the case of quantum wells, a semiconductor
quantum heterostructure where excitons result to be confined in the growth direction z,
while they are free to move in the (x, y) 2D plane, perpendicular to z.

A quantum well can be fabricated by growing a sequence of three thin 2D layers of
semiconductors, where a material B, with a typical thickness of ≈ 10nm is sandwiched
between two layers of a material A characterized by a higher energy gap. Figure 12 shows
the extrema of the valence and conduction bands as a function of the growth direction z,
displaying an abrupt discontinuity, when crossing the A-B interfaces. This heterostructure
creates a quantum well in which excitons are confined. The thickness of the B layer is
chosen on the order of the size of the exciton.
As a consequence of confinement the overlap between electron and hole wavefunctions is

increased and the exciton binding energy is larger. In the in-plane direction, the dispersion
curve for quantum well excitons can be written:

EK|| = Eexc +
h̄2K2

||
2mexc

, (61)

with Eexc = EBgap +Eeconf +Ehconf −Eb, were Eeconf and Ehconf are the confining energies
of the first electron and hole levels, fig. 12. K|| is the in-plane momentum and mexc is
the effective in-plane mass of the exciton, given by the sum of the free electron and hole
effective in-plane masses. In GaAs based quantum wells, the exciton effective mass is of
the order of mexc ≈ 10−1me, where me is the electron mass. Also, the value of the Bohr
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Figure 12: Semiconductor quantum well. (a) Extrema of the valence and conduction bands as a
function of the growth direction z. The first confined energy levels for electrons and
holes (light and heavy) are represented by dotted lines. (b) In-plane conduction and
valence bands dispersions for a GaAs/AlGaAs quantum well, close to the fundamental
gap. Taken from [111]

radius is decreased with respect to the bulk case, depending on the width of the QW.
These properties are important when coupling an exciton to the cavity mode.

Excitonic transition can be induced optically or electrically. In the context of polaritons,
we are interested particularly in optically induced transitions. In particular, a photon
whose energy exceeds the bandgap energy h̄ω > EBgap, can be absorbed inducing a transi-
tion from the fundamental state of the crystal to a state where one exciton is created.
In dipolar approximation, the Hamiltonian of the exciton photon coupling becomes:

H u − e

m0
A · p, (62)

with A the vector potential, p the momentum operator, −e the electron charge and m0
electron mass. The absorption of the photon is proportional to the matrix element 〈K|A ·
p |0〉 where |0〉 is the ground state and 〈K| the excitonic state.
Some selection rules need to be satisfied in order for the optical transition to take place.

Fist of all energy must be conserved in the transition. The energy of a photon is given by
h̄ck
n . This means that excitons with K|| > krad, where krad satisfies h̄ckrad

n = EX(K|| =

0 + ¯2K2

2M ), are states not coupled to light.
Additionally, in quantum wells, the selection rule regarding momentum conservation is

modified with respect to bulk semiconductors: conservation of the in-plane momentum
h̄K|| is required, instead of conservation of the total momentum. As a consequence, an
exciton is coupled to a continuum of modes of the electromagnetic field, since, once energy,
spin and in-plane momentum are conserved, light with any kz component can excite the
system.
Conservation of the total angular momentum is also required. In particular, since pho-

tons have total intrinsic angular momentum equal to one, it follows that just excitons with
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J = 1 can be optically excited. Excitons with J = 2 can not interact with light and they
are therefore called dark excitons.

3.3.4 Strong light-matter coupling

We have presented the two building blocks of a microcavity structure. Both the QWs
and the cavity play an analogous role respectively on exciton and photon by breaking
the translational symmetry on the z axis and imposing a confinement that discretize the
excitonic and photonic levels. We now discuss the case in which the cavity mode is in
spectral resonance with the excitonic 1s transition. Once excited exciton can relax via the
emission of a photon. This emission can take place in two regimes [114, 115]:

• weak coupling The photon emitted has negligible probability of being reabsorbed
by the same medium (an irreversible process). The regime is also called perturbative,
because the electromagnetic field appears in the Hamiltonian as a perturbative term
ω ∼ A ·p and the first order development gives the spontaneous emission rate (Fermi
golden rule):

Γ =
2π
h̄
| 〈K|ω |0〉 |2ρ(Eph) (63)

where Eph is the photon density of states and 〈Ψ0| and |Ψ1〉 are the ground and
excited state respectively. In this regime the excitation will be dissipated and the
population of excited excitons will decay exponentially.

By acting on the electromagnetic environment, and so on the electromagnetic density
of states, one can modify the transition probability given by the Fermi Golden rule:
this is the Purcell effect [11] , that consists in an increase or a decrease of the emission
probability [116, 117].

• strong coupling It is also called non perturbative regime, and corresponds to
the case in which the photon emitted can be recaptured and re-excite the medium.
In the spectral domain, this oscillations, called Rabi oscillations are revealed by an
energy splitting, called Rabi splitting or normal mode splitting, and by the anti-
crossing of the energy levels. Excitons and photons are no more the eigenstates
of the microcavity but they are replaced by half light half-matter quasi-particles,
microcavity polaritons.

The first theoretical discussion of the strong coupling regime in solid state system
was made by Hopfield in 1958 [118], while it was also largely explored in the field of
atoms in a cavity, with the theoretical work of Jaymes and Cummings [119].

In our case, the strong coupling regime is obtained by embedding one or more semi-
conductor quantum wells in a microcavity, with the optical mode quasi-resonant with the
excitonic transition. In particular, the quantum wells are placed at the anti-nodes of the
electromagnetic field, in order to maximize the coupling, as shown schematically in fig. 13.
When we discussed the quantum well excitons, we saw that for a quantum well in the free
space, one excitonic transition is coupled to a continuum of modes of the electromagnetic
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(a)

(b)

Figure 13: (a) Schematic representation of a semiconductor microcavity with one embedded quan-
tum well. Its position corresponds to an anti-node of the electromagnetic field inside the
cavity. (b) TEM image taken from a real microcavity, with three sets of four quantum
wells placed inside the cavity. Taken from [111]

field, each mode having a different kz component. Since the microcavity imposes the quan-
tization of motion in the growth direction z, it selects one specific value of kz, i.e. just
one optical mode. In that way the coupling between two discrete modes is realized. Of
course this would be strictly true, only if both exciton and photon had infinite lifetime.
The finite lifetime introduces a broadening of the linewidths, meaning that we do not have
exactly two single modes. The systems can be viewed in the picture of two coupled Lorentz
oscillators which are damped. The strong coupling regime is achieved if damping is smaller
then the coupling between the modes.

3.3.4.1 Hopfield coefficients

For the moment, we suppose the coupling of two modes with infinite lifetimes, i.e. delta
functions in energy. We also suppose that we excite just few particles in the system. This
allows neglecting interactions between excitons, i.e. nonlinear terms in the Hamiltonian.
We also consider excitons in pure states of spin (normal incidence, for circularly polarized
light), which allows to use a scalar theory. Under these approximations, the system is equiv-
alent to two coupled harmonic oscillators, one oscillator being the excitonic transition with
wave vector K||, the other a quasi-resonant optical mode with k|| = K||. This description
will allow us to understand more precisely how polaritonic states are formed and what is
their energy. From now on, we will omit the index || to simplify notations,k ≡ k||. We
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write the Hamiltonian using a quantum approach, even if a mean-field classical approach
would give equivalent results:

Hk = Eexc(k)b
†
kbk +Ecav(k)a

†
kak +

ΩR

2 (a†kbk + b†kak), (64)

where b†k, bk and a†k, ak are respectively the creation and annihilation operators for an
exciton and a photon with wave vector k in the 2D plane transversal to the growth axis,
which satisfy the bosonic commutation relations. Eexc(k) and Ecav(k) correspond to the
energies of excitons and photons, given by the dispersion relations in eq. 61 and eq. 56. The
last term in eq. 64 corresponds to the coupling term. In particular, it contains one term
corresponding to the simultaneous creation of a photon and annihilation of an exciton
(emission term) and a term corresponding to the simultaneous creation of an exciton and
annihilation of a photon (absorption term). The coefficient ΩR/2 is the coupling energy
(ΩR is the Rabi splitting) and it has the expression [120]:

ΩR = 2g = 2
√

2cΓ0
ncavLeff

∝
√
fosc
Leff

, (65)

where Γ0 is the radiative lifetime of the excitons at k = 0 in the absence of the cavity.
Leff is the effective length in which the optical mode is confined, Leff = Lcav + 2LBragg,
where LBragg is the length over which the electromagnetic field decays exponentially inside
each Bragg mirror (typically LBragg ≈ λc). fosc is the oscillator strength of the excitonic
transition, a quantity characterizing the strength of its dipolar coupling to the electro-
magnetic field. Therefore, the coupling constant depends on one hand on the oscillator
strength of the exciton, which is increased in a quantum well, due to the enhanced overlap
of the electron and hole wavefunctions, on the other hand on the volume over which the
electromagnetic field is confined. This volume is particularly small in semiconductor mi-
crocavities. Both contribute to achieve high values of ΩR typically of the order of 3.5meV
for a single QW in a GaAs based samples, and even higher for CdTe and GaN based
microcavities.
The Hamiltonian 64 is diagonalized in the following way:

Hk = EUP (k)p
(UP )†
k p(UP ) +ELP p

(LP )†
k p(LP )k , (66)

where operators pk can be found by applying to the photon and exciton operators ak and
bk, the unitary transformationp(LP )

k

p
(UP )
k

 =

−Ck Xk

Xk Ck

ak

bk

 (67)

Ck and Xk are Hopfield coefficients defined as:

X2
k =

1
2

1 + δk√
4 h̄2Ω2

R + δ2
k

 (68)

C2
k =

1
2

1− δk√
4 h̄2Ω2

R + δ2
k

 , (69)
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where δk is the cavity-exciton detuning, given by δk = Ecav(k)−Eexc(k). The Hopfield
coefficients satisfy the relation X2

k +C2
k = 1.

The new eigenstates of the system are called exciton-polaritons. Two branches are ob-
tained, that of the upper polariton (UP) and the lower polariton (LP) and, as explicitly
written in eq. 67. They are mixed particles composed by a photonic fraction C2

k and an
excitonic fraction X2

k . At zero detuning (δk = 0) upper and lower polaritons are both
composed by an equal amount of photonic and excitonic components (X2

k = C2
k = 1/2).

The energies of the lower and upper polaritons are given by:

EUP ,LP (k) =
1
2 (Eexc(k) +Ecav(k)±

√
δ2
k + Ω2

R), (70)

Dispersion curves corresponding to three different values of the cavity-exciton detuning
δ ≡ δk=0, are shown in fig. 14. At zero detuning (fig. 14 (c)-(d)) and at k = 0, where
the excitonic transition and the optical mode have the same energy, the coupling lifts the
degeneracy of modes, and opens an energy gap between the polaritonic states equal to the
Rabi splitting ΩR.

Close to k = 0, for zero or negative detuning the lower polariton dispersion (Fig. 14(c))
is a parabola. Polaritons can be therefore approximated by free particles, moving in the
2D plane of the cavity, characterized by a small effective mass that follows the relation :

1
mpol

=
Xk

m∗X
+

Ck
mph

, (71)

with m2
X the exciton in-plane effective mass and mph ≈ 10−5mel cavity photon mass.

Since m2
X >> mph, the polariton mass can be approximated by mph ≈ mph/Ck, or for

k = 0 mph ≈ mph/2.
Figures 14(a)-(b) show the dispersion curves and the corresponding Hopfield coefficients

in the case of positive detuning (δk = −ΩR), while figs. 14(e)-(f) show the case of
negative detuning (δk = −ΩR). We observe that in the case of positive detuning, the
upper polariton branch has a higher photonic weight, while the lower polariton branch is
mostly excitonic. In the case of negative detuning, the situation is inverted. We also note
that, as the detuning between the excitonic transition and the optical mode is increased,
the effect of the coupling becomes less and less important, up to a point in which the
eigenmodes of the system are the bare cavity and exciton modes.

3.3.4.2 Polariton lifetime

Up to now we have considered exciton and photons to have an infinite lifetime. For finite
lifetimes, photons and excitons are no more single modes, but they are characterized by a
finite homogeneous linewidth in the spectral domain. The comparison of this homogeneous
linewidth with the magnitude of the exciton-photon coupling tells us if the system can
be with a good approximation described by the two-mode description, i.e. if it is in the
strong coupling regime. In particular we can describe the finite lifetime by introducing the
complex energies, Ecav − iγcav and Eexc− iγexc. If we insert these expressions into the ones
describing the energy of upper and lower polaritons, eq. 70, we will see that two separate
energies EUP and ELP exist at zero detuning if ΩR > |γcav(k)− γexc(k)|. In that case the
system is in the strong coupling regime. If ΩR is smaller than |γcav(k)− γexc(k)|, the two
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(d)

(a)

(c)

(e)

(b)

(f)

Figure 14: Left panels: calculated bare exciton and cavity mode dispersions (dashed lines) as well as
polariton dispersions (solid lines) for different cavity-exciton detuning δ in a microcavity
with a Rabi splitting ΩR = 6.6meV . Right panels: corresponding Hopfield coefficients
obtained from Eqs. 68 and 69 Detuning: (a)-(b) +ΩR, (c)-(d) zero, (e)-(f) −ΩR. Taken
from [111].
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energies have the same real part and the degeneracy between photon and exciton is not
lifted. In this case the system is in the weak coupling regime.
The imaginary part of complex energies gives the homogeneous linewidths of the up-

per and lower polaritonic modes, which can be related to the bare photon and exciton
homogeneous linewidths through the relations:

γ(LP )(k) = X2
kγexc +C2

kγcav (72)

γ(UP )(k) = C2
kγexc +X2

kγcav (73)

Polaritons are characterized by quite short lifetimes, of the order of some tens of ps.
The short polariton lifetime is responsible for some features characterizing specifically

polaritonic systems. Most importantly for this work, it defines polaritons as an intrinsi-
cally out of-equilibrium system. Upon optical excitation the system is characterized by
a continuous decay of the population corresponding to photons leaking out of the cavity
fig. 15(b). This property, on one hand is an obstacle for reaching of the thermodynamical
equilibrium. On the other hand, it represents a great advantage, since it allows a direct
way of detection.

Indeed, when photons are emitted through Bragg mirrors both energy and in-plane
momenta are conserved, fig. 15(a), and as consequence they are in a one-to-one correspon-
dence with polariton states inside the cavity.The properties of polaritons can thus be fully
reconstructed by analyzing the emitted photons. The form of the polariton wavefunction
can be obtained by spatially resolving emission from the cavity. Measurements resolved in
angle reveal the in-plane momenta of the emitted photons. Information on energy can be
obtained by spectrally resolving the emission.
Depending on the excitation conditions two main experimental schemes for studying

polaritonic states can be distinguished.

3.3.5 Resonant and nonresonant excitation schemes

• resonant excitation In this experimental scheme the sample is pumped with a
laser whose frequency is tuned to match the energy of a polariton state. In-plane
component of the wavevector of exciting photons from the laser can also be adjusted
to match the in-plane wave vector of polaritons, and make resonant injection efficient
by well defining the angle of incidence. This experiment is preformed in transmission
geometry in order to avoid strong laser reflection. The light coupled to the desired
polariton mode is transmitted through the sample (the cavity and the substrate)
and finally collected and analyzed. The transmission trough the GaAs substrate is
assured by red-shifting the polariton energy, which is achieved by employing InGaAs
instead of GaAs quantum wells. This experimental scheme is very convenient for
studying propagation of polaritons (see section 3.5.3) as well as interaction between
them [121].
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• non resonant excitation Another scheme is achieved via non-resonant excita-
tion. In this case the energy of the excitation laser is set to be ≈ 100meV above
the polariton bands, typically in the first reflectivity dip above the stop band. Upon
excitation, electron-hole pairs in quantum wells are created. Then, they incoherently
relax via longitudinal phonons and create an exciton reservoir, see fig. 15(b). From
the exciton reservoir particles further relax and occupy the ensemble of polariton
states below the energy of the exciton.
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Figure 15: (a) Scheme of the photon emission outside the cavity. In plane momentum is conserved
upon the emission. (b) Scheme of non-resonant excitation of microcavity. For excitation
power below the threshold all bands all populated. Above threshold stimulated emission
takes place at k|| = 0. (c) Polariton dispersion obtained by non-resonant excitation of
microcavity. At k|| = 0 anti-crossing between upper and lower polariton branch is
observed.
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Non-resonant excitation scheme is very advantageous as it allows to simultaneously ob-
tain information on all polariton states. Indeed, using a system of lenses and a monochro-
mator coupled to a CCD camera, emission from the cavity can be resolved in space,
momentum and energy. Details on experimental setup are given in section 3.3.6.
Figure 15(c) shows emission from a planar microcavity in strong coupling regime excited

non-resonantly, resolved in energy and in angle. We can observe the polariton dispersion
consisting of upper and lower polariton branches with characteristic anti-crossing at k = 0.
Because of its advantages this experimental scheme will be used throughout this thesis

to reveal states of graphene simulator.

3.3.6 Experimental setup

We briefly present here the main characteristics of the micro-photoluminescence setup used
in the present work. A scheme of such setup is reported on fig. 16(a).
All the experiments are performed at a temperature of 10K. The sample is therefore

pasted on the cold finger of a ST-500 Janis Cryostat mounted on a translational stage.
The thermal conduction is assured by the use of a vacuum grease (Apiezon N Grease). A
constant flow of Liquid Helium is set in order to maintain the cold
finger at a temperature T = 10 K. The chamber is maintained at a high vacuum, at a

pressure between 10−5 Torr and 10−6 Torr thanks to the use of a Turbo Molecular Vacuum
Pump.
We excite the sample non resonantly using a CW monomode Ti:Saphire laser at 740nm

wavelength. The excitation beam is focused using a high numerical aperture objective
(NA=0.65) with the focal length 4mm. It provides a small excitation spot with FWHM =

2µm. In order to enlarge the size of the excitation laser spot, a telescope consisting of two
lenses is added to the path of the incidence beam when needed. The position of the spot
on the sample is monitored by an additional CCD camera (CCD2) on figure 16. The same
camera was also used to image the surface of the sample under white light illumination in
order to choose the desired lattice.
We collect the emitted photons in reflection geometry with the same objective used for

the excitation. Two variations of the setup are used in order to distinguish between the
real and momentum space imaging.
Fig. 16(b) depicts the collection part of the setup and the optical path when the real

space or near field is selected. The signal collected by the objective is imaged on the
monochromator slit using the lens L3, whose focal length is adjusted to obtain the appro-
priate magnification (in this case 30cm). (An additional telescope with magnification 1
(lenses L1 and L2) is constructed to reduce losses in the long optical path.) In this way a
2D image of the surface of the sample is created at the distance where the monochroma-
tor is placed (green arrows). 1D slice of the 2D image is selected by the slit (parallel to
the y−direction), then dispersed and imaged by a Peltier cooled CCD. Using a motorized
translational stage, the position of the imaging lens L3 is progressively shifted along the
x− direction such that the image of the whole sample can be reconstructed, revealing the
wavefunction distribution at different energies.

A slightly different setup is used to perform the angle resolved measurements and image
the momentum space, fig. 16(b). Actually, upon escaping the cavity, all photons emitted
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at a certain angle are focused by the collecting objective onto the same point of the so
called, "Fourier" plane (black dotted line). As the angle of emission corresponds to the
in- plane momentum of polaritons, Fourier plane represents a reconstruction of the 2D
momentum space of a cavity (or later a 2D lattice) . By adding lens in the setup, a 2D
image of the Fourier plane is projected at the entrance of the monochromator. To preform
properly the angle resolved measurements, the lens has to be placed at the distance equal
to its focal length from the Fourier plane. Once the full 2D image is projected onto the
monochromator, any desired direction of momentum space can be aligned with the slit,
by moving the lens L2 in the direction perpendicular to the slit, or by using a dove prism
to rotate the image. The desired dispersion is then directly imaged on a CCD coupled
to the monochromator. Finally, reconstruction of a 3D matrix whose axis are kx, ky and
the emission energy can be performed. Each matrix element carries the information about
the intensity of the measured signal I(kx, ky,E), providing the full information about the
dispersion.
We note that the polarization of light was filtered in using a pair of λ/2 waveplates and

a polarizing beam splitter.

3.4 engineering of polariton hamiltonians

In the previous section we have introduced microcavity polaritons and we discussed some
of the properties and advantages of the system. In this chapter we will see how we can
impose additional lateral potential to polaritons quasi particles. This will allow to engineer
a potential landscape in this system and design of lattices.
First, we will review some of the techniques reported in the literature, and then we

will explain the procedure employed in C2N which allowed implementation on polariton
honeycomb lattice.

Shaping of potential for polaritons can be achieved by introducing additional, lateral
confinement. Two main approaches have been reported in the literature, one of them relies
on acting on polariton excitonic component and the other on its photonic component.
Different techniques have been developed in different groups following either approach
offering various confinement strengths and trapping geometries, as reviewed in [122].
One of the techniques for creating polariton lattices has been developed in the group of

P. Santos. It involves the use of the appropriate form of surface acoustic waves which create
periodic strain fields, affecting both the photonic and the excitonic component [127, 128].
1D and 2D lattices with modulation depth of few meV have been created using one or
two trains of surface acoustic waves (SAW) which periodically modulate polariton energy,
fig. 17(c,d). Polariton condensation in a dynamic acoustic lattice has for example been
obtained in these lattices [124].
As for the techniques acting exclusively on the excitonic component they mostly rely

on optical manipulation. To explain their underlying mechanism we remind that in the
spot region, in the case of non resonant excitation, an excitonic reservoir is created. The
repulsive interaction between polaritons and exciton of the reservoir results in a renor-
malization of the polariton dispersion with a local shift towards the blue. In this way
local potential is formed. This effect has allowed to study important aspects of polariton
physics [129, 23, 130] but the technique proved to be difficult to scale up and create ex-
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Figure 17: (a) Schematic of condensation in optical lattice potentials (b) Real space emission of syn-
chronized (delocalized) condensate lattice obtained in that way. Both taken from [123]
(c) Schematics of two propagating SAWs, forming a square lattice potential on a po-
lariton sample. (d) Dispersion of the polariton gas below the condensation threshold
under the 2D SAW potential. Taken from [124] (e) Cavity patterning by metalic layer
deposition, [125] (f) Dirac cones in corresponding triangular lattice [126] .

tended 2D potentials. Recently, by spatial modulation of the pumping source, polariton
condensates were imprinted into two-dimensional graph configuration [131]. In a similar
way, weakly disordered lattices are realized, fig. 17(a) in which polariton condensates have
been observed 17(b) [123].

3.4.0.1 Photonic confining potentials

Several procedures have been developed to create a potential acting on the polariton
photonic component. The first was developed in the group of Y. Yamamoto in Stanford
[125, 132]. By depositing a patterned thin metallic layer on top of the sample a local change
in the dielectric constant of a cavity is introduced, shifting the polariton energy by about
200µeV , fig. 17(e). While the weakness of the introduced potential remains a limiting factor
in this system 2D periodic lattices such as a triagonal, [133] and a Kagome lattice [126]
were obtained. The spontaneous build-up of coherence has been observed in different states,
including states close to the Dirac point in triangular lattice, fig. 17(f), [133].
Another technique, developed in the group of B. Deveaud in Lausanne, consists in locally

changing the thickness of the cavity layer during the growth process, prior to the growth
of the upper mirror. 0D confining structures (mesas), have been realized 18(a), [134, 135].
Optical control of the quantized polaritonic modes in a mesa has been reported [136]. More
recently square lattice, made by the similar technique was studied in [137], 18(b).
Etching of both upper and lower mirror was implemented in the group of M. Bayer in

Dortmund and A. Forchel in Wurzburg for the cavities in the weak coupling regime [87]. For
example, a chain of coupled micron sized cavities has been shown to display a characteristic
band structure [138].
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Recently, the groups of S. Höfling and D. N. Krizhanovski have fabricated lattices by
etching the upper mirror of the cavity [32, 33]. Figure18(c) shows a 2D Lieb lattice obtained
in this way and the corresponding spectrum in momentum space.

(e)

(a)

(b)

(c)

(d)

Figure 18: (a) Polariton lattice made by defining shallow mesas in the cavity. (b) Zoom onto the
band gap region of such a square lattice [134, 137] (c) SEM image of a Lieb lattice made
by etching the cavity upper mirror. (b) Lattice emission in energy-momentum space
measured under low-power nonresonant excitation. [33]

3.4.0.2 Etching technique at C2N

A technique which allows creation of deep lateral confining potential in a microcavity was
developed in C2N (former LPN). It is based on a post growth etching of a GaAs based
microcavity.
First, the cavity is grown by molecular beam epitaxy. A photo resist layer is then spin

coated on top of it. Using an electron beam, the pattern corresponding to our desired
design is transfered on the resist before it was developed. The structure is finally realized
by inductive coupled plasma etching (ICP). All the layers of the microcavity down to
the substrate are etched in every area shined by the e-beam, thus imprinting the desired
geometry into the cavity sample.
We would like to emphasize here that the sample fabrication was done by Aristide

Lemaitre, Elisabeth Galopin and Carmen Gomez for what concerns the growth of the
microcavities, and Luc le Gratiet, Abdelmounaim Harouri and Isabelle Sagnes performed
the etching processes.
The technique we used allows to obtain structures with a strong lateral confinement,

thanks to the effect of total internal reflection of light on the interface between regions
with large refractive index difference, in this case the air and semiconductor. The method
does not impose any restrictions on the shape of the structures, except that their lateral di-
mension should not be too small (typically lateral dimension should be larger than 1.5µm)
to avoid non-radiative recombinations on the side walls of the etched structures, which
would strongly degrade the optical properties of the system. 0D, 1D and 2D structures
can be realized with a high degree of flexibility in the geometry shape. In fig. 19(a) we
see a scanning electron microscope (SEM) image of a sample created in C2N facilities, in



3.4 engineering of polariton hamiltonians 49

which a series of 1D wires of different widths and 0D pillars with various diameters are
realized.
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Figure 19: (a) SEM image of an etched sample. 1D wires of various widths as well as rectangular
and circular micropillars are present (b-d) Energy spectrum of cylindrical micropillars,
for three different pillar diameters:20 ÎŒm, 8 ÎŒm and 5 ÎŒm, respectively.

3.4.0.3 Micropillars

Circular micropillars obtained by deep etching represent the building block for creation of
polariton lattices with desired geometry. In this quasi-0D structure with a typical lateral
size of few µm a strong 3D confinement of the optical mode is obtained: in the longitudinal
direction it is obtained thanks to the Bragg mirrors, in the lateral directions thanks to the
large difference in refractive index between semiconductor and air.
The 3D confinement of the optical mode results in a full discretization of the polaritonic

energy spectrum, since both the in-plane wave vector components kx and ky are quantized.
Figure 19(b-d) shows the energy spectrum for three different pillar sizes. The energy levels
are more separated in energy as we consider pillar of smaller lateral size.
Such quantization effect can be simply understood in terms of a massive particle moving

in the infinite cilindrical potential well in 2D of the form:

V (r) =

0 for 0 ≤ r ≤ R

∞ otherwise
(74)

Solution of Shrödinger equation with the above potential gives the allowed energy levels:

En,l = z2
n,l

h̄2

2mR2 , (75)
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where n > 0 and −n ≤ l ≤ n are quantum numbers and zn,l are the zeros of spherical
Bessel functions. The first energy level corresponds to one mode with radial symmetry
(n = 1, l = 1) analogue to the so called s− mode of an atom. The second corresponds to
the degenerate px and py modes n = 2, l = +1,−1. In figures 19(b-d) momentum space
spectra taken along x−direction reveal the single lobe of the s−mode and two lobes of
the px mode confirming this interpretation. Micropillars thus behave like tunable photonic
atoms.

Note that excitons do not feel any confinement as Bohr radius is two orders of magnitude
smaller than the structure.

3.4.0.4 Coupled micropillars

By coupling several micropillars more complex systems can be created. If the cavity is
etched in the form of overlapping pillars their optical modes overlap and photonic cou-
pling is introduced. Figure 20(a) shows a SEM image of the diatomic molecule, realized
in this way. The spectrum of such a structure reveals two molecular modes, one above
and one below the energy of the 1s states of each pillar. In fig. 20(b) we show the experi-
mentally obtained spatial profile of these two modes (see section 3.3.6 for explanation of
experimental procedure). Like in the case of a natural molecule, they show the bonding
and the anti-bonding character: there is zero intensity in between the pillars at the higher
energy. These states are thus obtained by the hybridization of the 1s states and the energy
separation 2J of the two orbitals gives the coupling strength J .

Importantly, the magnitude of J can be tuned by changing the inter-pillar distance. Fig-
ure 20(c) shows a series of dimer molecules in which this parameter is varied and fig. 20(d)
the corresponding dependence of the energies of the bonding and anti-bonding modes. As
expected, the splitting between modes increases as pillars overlap more significantly .

The architecture of overlapping pillars was used in our group to design various polari-
tonic molecules and 1D lattices and observe intriguing physical phenomena. For example,
the structure made of six coupled micropillars arranged in a hexagonal geometry, given
in fig. 21(a), represents a polaritonic analogue of a benzene molecule. In this structure
engineering of spin-orbit coupling effect was achieved [140].

High freedom in the design of the structure allowed to extend the few pillar molecules
to 1D chains and 2D lattices. For example, 1D Lieb lattice was created fig. 21(b) in order
to study flat band physics and the role of interactions [141]. The staggered 1D chain made
of coupled pillars, the so called SSH model, has also been fabricated. Recently, it allowed
to demonstrate the first topological laser [27].
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d=3.7µm
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(a)

(c)
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Figure 20: (a) Scanning electron microscope (SEM) image of the diatomic molecule. (b) Sketch
showing the bonding-antibonding energy splitting equal to 2J and the real-space image
of the first two modes of the molecule, taken by out-of-resonance excitation at low
excitation power. (c) SEM image of a sample containing molecules with different inter-
pillar distance (d) Energy of the bonding and anti-bonding modes for molecules with
different inter-pillar distance from (c) Data taken form [139]

4 μm
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A

(a) (b) (c)

Figure 21: Examples of structures made of coupled micropillars processed at C2N. (a) Benzene
molecule, [140] (b) 1D Lieb lattice, [141], (c) SSH lattice, [27]
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3.5 a polariton honeycomb lattice

Prior to my arrival in the group, a polariton graphene simulator had been realized in C2N
and studied during the post-doc of T. Jacqmin [28]. The sample was created by etching
the microcavity in the form of hundreds of overlapping pillars, arranged in a honeycomb
lattice. Figures 22(a,b) show SEM images of such sample close to the two different edges.
Pillar diameter is 2.75µm and inter-pillar distance 2.4µm. It contains around 30 unit cells
along the two crystallographic axes. Blue circles in figures indicate the position of six
overlapping pillars forming one hexagon, and are there as a guide to the eye. Zoomed
views on the lattice edges are given in figures 22(c,d). In all the figures holes between the
pillars appear darker (and form triangular lattice).

10µm

(a)

(b)

(c)

(d)

10µm

2µm 2µm

Figure 22: (a) SEM image of the corner of the fist honeycomb lattice sample realized in the group.
pillar size iz 2.75µm and inter-pillar distance 2.4µm Blue circles design six pillars form-
ing one hexagon of the lattice. (b) Top view of the corner hexagon (c) Top view of the
lattice close to the edge. Potential minima are at the center of each pillar belonging
to hexagonal lattice. Holes in between pillars, which represent potential maxima, form
triangular lattice visible in the image. (d) zoomed view of the lattice edge from (c)

Lateral intersection at the corner of the sample is visible in fig. 22(a). After the etching,
in the area between the pillars, the whole cavity (visible as dark gray region) is removed,
along with the part of the substrate (light gray region).
In this section we will first provide additional details on the samples, in particular on

the structure of the planar microcavity which was the basis of HCL polariton lattices
presented in this thesis.
Then we will focus on the main properties of the structure as a graphene simulator. As

we have seen in the section 3.4.0.4, coupled pillars are well described by the tight binding
approximation, and it is expected that the polariton dispersion in a honeycomb lattice is
analogue to the dispersion of electrons in graphene. In order to examine this analogy, we
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will first study the sample under non-resonant excitation and comment on the effective
dispersion in the structure.
In the third part of the section we will analyze two other important aspects of the

polariton graphene simulator which I have explored during my PhD work at C2N. First,
we will examine propagation of polaritons in the 2D lattice and demonstrate experimentally
that polaritons do propagate with velocity determined by graphene dispersion relation.
Then, we will discuss one of the most important advantages of the artificial lattices,

the possibility to tune the nearest neighbor hopping parameter between the lattice sites.
Again, this can be achieved by changing the inter pillar distance, a. We will determine
the precise values of a that allow to set hopping parameter such that uni-axial strain in
the lattice is simulated. This will be done by analyzing experimental data and simulations
on coupling strengths in dimer molecules. The obtained parameters are used to create
lattices examined in chapter 6. It is that chapter that we will study how the designed
lattices performed experimentally and what are the limits of the simulator regarding the
tuning of hopping parameter.

3.5.1 The samples

The results presented in this manuscript are obtained from two samples. The first, labeled
C4T44E, was fabricated before I arrived in the group, and was also investigated during
the post doc of Thibaut Jacqmin. Results in chapters 4 and 5 are obtained on this
sample. The other, labeled G9X089F, was grown and designed during my thesis, and used
for experiments presented in chapter 6.

Both samples have the same nominal parameters, and they are grown in the MBE
facilities of C2N by Aristide Lemaitre and coworkers. The table containing the descrip-
tion of each layer in the structure is given in fig. 23. The heterostructure consists of
a Ga0.05Al0.95As λ/2 cavity embedded between two Ga0.05Al0.95As/Ga0.8Al0.2As Bragg
mirrors with 28 (40) top (bottom) pairs. The higher number of bottom mirror pairs is used
as it increases it’s reflectivity, reducing the photon losses into the substrate and allowing
efficient photon detection from the top. Nominally, the quality factor of the structure is
Q = 70000, and resonant wavelength 780nm. During the growth of the spacer the rota-
tion of the GaAs wafer inside the MBE machine was stopped resulting in a wedge in the
layer thickness of the sample. In this way the cavity energy varies by a few meV over the
sample (while the energy of the exciton in the thin QWs stays approximately the same),
and polaritons with different values of detuning can be probed.

The sample contains 12 GaAs quantum wells, 7nm in width. Four of them are inserted
in the first maximum of electromagnetic field in the cavity field. The other 8, divided in
two groups of four, are placed on the first antinode of the electromagnetic field inside the
Bragg mirrors.The high number of quantum wells results in a Rabi splitting between the
upper and lower polaritons bands of ΩR = 15meV .
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Nominal structure Repetition

Material Width 

Upper Mirror

Ga0.8Al0.2As 566.0 Å x 1

Ga0.5Al95As 650.0 Å
x27

Ga0.8Al0.2As 566.0 Å

Ga0.5Al95As 424.8 Å x1

GaAs 70.0 Å x4

Ga0.5Al95As 30.0 Å

Ga0.8Al0.2As 369.5 Å x1

Cavity

Ga0.5Al95As 396.0 Å x1

GaAs 70.0 Å
x4

Ga0.5Al95As 30.0 Å

Ga0.5Al95As 366.0 Å x1

Lower mirror

Ga0.8Al0.2As 369.5 Å x1

Ga0.5Al95As 30.0 Å
x4

GaAs 70.0 Å

Ga0.5Al95As 424.8 Å x1

Ga0.8Al0.2As 566.0 Å
x39

Ga0.5Al95As 650.0 Å

Substrate GaAs - -

(a)

Figure 23: Tabular representation of the microcavity structure
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Optical characterization The first characterization of the sample is done by by
Fourier Transform Infrared Spectroscopy (FTIR) at room temperature. The sample with
a radius of around 5cm is scanned and a map of the energy of the cavity mode is deduced
from the measured edges of the stop bands. Based on this result the region where exciton-
photon detuning is expected to be negative at low temperature is selected, and the wafer
is clived along the crystallographic axis to make a 1× 2cm sample (small enough to be
pasted on the cryostat’s cold finger and be observed at liquid Helium temperature). The
values of negative detuning were selected in order to make sure that a large energy range
is available to observe band structure.
Finally the samples were patterned into honeycomb lattices by e-beam and dry ICP

etching as discussed in sections 3.4.0.2 and 3.5.4.

3.5.2 Polariton graphene dispersion

The band structure of a polariton lattice can be directly imaged in a low temperature
luminescence experiment, in the same way as in the case of a microcavity, (see section 3.3.5).
The sample is excited from the top of the structure, using out of resonance pump laser.
Due to bosonic character of the polaritons, and their out of equilibrium nature, there is
no equivalent of a Fermi level and all states are occupied upon relaxation of excitation
from excitonic reservoir towards polariton bands. The use of low excitation power, about
ten times smaller than threshold power, assures that the sample is probed in the linear
regime and the single particle physics is examined. The far field emission along the desired
direction in 2D momentum space can be energy resolved and imaged on a CCD revealing
the dispersion. The tomography of the entire 2D momentum space resolved in energy
can be reconstructed by recording dispersions along multiple directions. The results we
will present in this section are obtained in the sample labeled C4T44E-R1, at negative
exciton-photon detuning of −17meV .
Figure 24 shows the far field emission intensity along the kx direction, for ky = −2π/3a

(red line in the inset in the upper left corner which shows the first Bz). We can observe
several groups of bands separated by energy gaps. As we expect from the lattice with two
atoms per unit cell there are two lowest bands (s− bands), which arise from the coupling
between the fundamental mode of the pillars (s− modes). At higher energy, we observe
a group of four bands (p− bands), arising from the coupling between the first excited
states of the pillars, which are twice degenerate. The gap between these two groups of
bands is E = 3.2meV , the energy difference between the two lowest-energy states of the
individual pillars. Above those two groups of bands, many others can be seen arising from
the hybridization of higher energy modes of the pillars.
In this section we will concentrate on the s− bands. As the fundamental s− modes of

the pillars have a cylindrical symmetry similar to that of the carbon Pz electronic orbitals
in graphene, we expect the two s− bands to present features analogous to the π and π∗
bands of this material, including the six Dirac (contact) points in the first Bz. Indeed, we
see in the presented dispersion that the two bands intersect linearly around Dirac points
kx = 1,−1 ∗ (π/3a).
The next figure 25(a), shows the measured emitted intensity in momentum space at

the Dirac points energy (zero energy in fig. 24(b)). We observe six isolated bright spots
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Figure 24: Dispersion in polariton graphene Measured momentum space energy resolved pho-
toluminescence at ky = −2π/3a (line 2 in fig. 25), under non-resonant low-power exci-
tation. Inset shows first Brillouin zone. Panel on the left side shows sketch of the real
space distribution of s− and p− modes in a single pillar.
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at the corners of the 1st Brillouin zones (Bz). These are the points in which upper and
lower bands meet. The adjacent Bzs are also seen in the figure. The triangular shape of
the points is due to the trigonal warping known to be present in the honeycomb lattice
spectrum for non-zero energies [47], visible here because of the finite linewidth.
Figures 25(b) and (c) show the measured energy resolved emission along the two perpen-

dicular directions in momentum space (along lines 1 and 2 indicated in fig. 25(a)). They
further confirm the well defined graphene-like dispersion passing through four (line 1) and
three (line 2) Dirac intersections.
Importantly, the system is well described by the tight-binding approximation, as the

confinement energy on each site of the lattice is much larger than the tunneling energy.
We will demonstrate this by fitting the experimentally obtained dispersions with the the-
oretical expression. In the calculation we will include both nearest- and second-nearest
neighbor tunnelings, t and tNN , respectively, in order to account for the asymmetry be-
tween the upper and the lower band, visible in fig. 25(b). Indeed, it is known from graphene
literature [47] that non zero value of tNN breaks particle-hole symmetry in graphene such
that bulk bands become asymmetric. The following dispersion is obtained in this approx-
imation:

E(k) = ±t
√

3 + f(k)− tNNf(k), (76)

where

f(k) = 2 cos
√

3kxa+ 4 cos
√

3
2 kx cos 3

2kya (77)

The fit we obtain using 76 is given with black dashed line in fig. 25(b). It allows to
extract the value of t = 0.25meV and tNN = −0.02meV for the lattice. In this way the
group velocity around the Dirac points can be found: v = 3at/2 h̄ = 1.3× 106m/s.

We have thus confirmed that the polaritons in honeycomb lattice show graphene-like
dispersion and thus feel a potential analogous to electrons in graphene.
In the previous analysis you could note that the data shown in fig. 25(b) do not belong

to the first Bz. If we perform the same measurement along line 3 in fig. 25(a), which does
go through the first Bz, we obtain the result shown in fig. 25(d). We see that the emission
is absent in the upper band (dashed line) within the first Bz, and in the lower band
(solid line) within the second Bz. This phenomenon arises from destructive interference
effects already known in literature. They appear along the high symmetry directions in
momentum space, when the states of the lattice with two (or more) atoms per unit cell are
probed with light. The origin of this effect are different path-lengths from the two atoms
in the unit cell to the detector, combined with the relative phase of the wavefunctions
in the unit cell. Such interference effects have been already considered theoretically and
experimentally for photo-electron spectroscopy (ARPES) of graphene [142, 143] and were
reported in polariton graphene in [28]. In the chapter 5 dedicated to the p− bands of the
polariton honeycomb lattice we will see that this inhomogeneities in the intensity are well
reproduced by calculations solving 2D Schrödinger equation.
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Figure 25: (a) Measured photoluminescence intensity in momentum space at the energy of the
Dirac points. (b) Spectrally resolved far field emission along line 1 in (a). The black line
is a fit to Eq. 76. (c) Same as (b) along line 2 in (a). (d) Spectrally resolved far field
emission along line 3 in (a), passing through the first Bz. Figure extracted from [28]
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3.5.3 Propagation in polariton graphene

Up to now we have demonstrated that microcavity polaritons represent a powerful platform
to a graphene simulator and to access its spectrum in momentum space. An additional
advantage of the system is the fact that polaritons with non zero wave vector can propagate
away from the excitation region in a ballistic way over long distances. GaAs based cavities
proved to be the most suitable to study propagation effects, as propagation lengths longer
than 40µm were observed in numerous works, in our group years before my arrival [23, 25]
as well as in other groups [20, 130]. These results required the use of high quality factor
cavities, up to Q = 105, corresponding to polariton lifetimes longer than 50 ps [20, 25].
Propagation effects can be studied in various experimental schemes. Very often the

resonant excitation scheme is chosen as it allows to properly control the propagation
velocity by injecting polaritons with a chosen wave-vector [144, 145, 146].

Alternatively, propagation has also been studied by the means of non resonant excitation
as it was demonstrated in works by E. Wertz in our group [23, 24].
Propagation is a key potential feature of polariton graphene simulator. It opens the way

to probe and study, for instance Klein tunneling [147].
We have thus performed an experiment with the goal to examine polariton propagation

in graphene samples. The exact same lattice used in the previous section was excited non-
resonantly, using a small laser spot, 2µm FWHM. The power applied was again below
the condensation threshold, such that all the bands are populated. By collecting and
resolving the emission from the lattice in energy, but also in two space dimensions, x and
y, information about the propagation for each value of energy is obtained.
In figure 26(a) we report the emission intensity resolved along the x and y spatial direc-

tions for the value of energy 1585meV (marked by the white dashed line in figure 26(c)).
We can observe that the signal intensity decreases radially with distance from the excita-
tion region(in x = y = 0).

If, indeed, the propagation is the origin of the signal we observe away from the excitation
spot, it is expected to decrease with an exponential law I = I0

r e
−r/r0 . Here, r0 is the

propagation length which depends on the group velocity vg at the observed energy and
the polariton lifetime τ : r0 = vg · τ . We can thus find the propagation length for each energy
from the experimental data, and, by assuming a constant polariton lifetime, deduce the
group velocity vg−exp. Then, this experimentally obtained vg−exp can be compared to the
graphene vg found analytically, which depends only on the lattice constant a and tunneling
t.

To extract the propagation length we measure the emission intensity as a function of
the distance from the spot. We select the region along x− direction (white rectangle in
fig. 26(a)), and analyze the real space spectrum, fig. 26(b). For each energy, we take
the maximum of the signal on each pillar and fit the data with an exponential decay.
In figure 26(c) we plot the measured dependence (black dots) and the corresponding
exponential fit (red line) of the intensity at the energy 1584.5meV , given by the white
dashed line in fig. 26(b). The obtained propagation length at this energy is x0 = 10µm.
Before continuing the quantitative analysis we note some qualitative properties of the

spectrum fig. 26(b). The usual signature of propagation is that x0 is larger for polaritons
with higher group velocity (for higher values of wavevector k) and very small around
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Figure 26: Propagation in honeycomb lattice (a)Spatially resolved emission from the lattice at
the energy 1584.8meV (white dashed line in (b)), excited below threshold in the center
with a 2µm wide spot. Polaritons are created in the center and propagate radially. (b)
Corresponding real space spectrum along direction parallel to the x− axis (white rect-
angle in (a)). (c) Black points represent maxima of the emission intensity on each pillar
on figure (b) for the energy marked with the dashed white line. Red line is exponential
fit to this points, from which we obtain propagation length 8µm
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k = 0, where the polariton group velocity is 0. Indeed, by looking at the spectra along x−
direction, fig. 26(b), we can observe that the emission intensity follows this trend and gives
the characteristic conical shape to the propagation (yellow dashed lines in fig. 26(b)).
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Figure 27: Group velocity Points are the experimental values of the group velocity vg for polari-
tons in the (a) s− bands (b) p− bands extracted by fitting the decrease of the intensity
signal along the propagation. Solid lines represent the group velocities extracted from
the fitted tight binding dispersion (polariton lifetimes of τs = 3.5ps and τp = 4.5ps are
considered for the s− and p− bands, respectively.

The propagation in the honeycomb lattice is expected to be governed by the graphene
dispersion which defines its group velocity. It can be calculated as

vg =
1
h̄

∂E(kx, ky = 0)
∂kx

(78)

using for E(kx, ky) the expression given in eq. 76, with parameters employed to fit polariton
graphene dispersion,fig. 27(a). The analogue analysis is carried out here also for the p−
bands. In the chapter 5 we will study in detail the particular dispersion that describes
these bands, which contains Dirac cones and flat-bands. For the moment we can observe
these features in fig. 27(b) and see how it affects propagation.
The calculated group velocities for s− and p− bands are plotted with green and orange

lines respectively in fig. 27 (c,d) We compare them with experimental vg−exp obtained
by dividing the extracted propagation lengths by a constant lifetime for each of the two
bands, vg−exp = x0/τ . The values τs = 3.5ps and τp = 4.5ps are chosen such that
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the best match between the calculation and the experiment is obtained. The trend of
the experimental vg−exp follows well the calculated curves, confirming that polaritons
propagate according to their graphene-like nature. Note that in energy regions between
the green and orange dashed lines contributions from polaritons with small group velocity
around kx = 3,−3 ∗ kx0 and those with large one close to kx = 2,−2 ∗ kx0 are present,
such that the speed obtained experimentally is an average of those values.
The presented results confirm that propagation of polaritons in a honeycomb lattice is

governed by the engineered dispersion. In that way polaritons represents a great potential
to simulate transport in 2D lattices.
However, let us comment on the values of polariton lifetime used to obtain group ve-

locities in fig. 26(c,d). They are an order of magnitude smaller than the one expected
from the nominal Q factor of the cavity (Q = 70000 → τ = 30ps). Similar results were
obtained by examining several honeycomb lattices indicating that the polariton quality
factor is reduced by the etching procedure of 2D structures. Influence on both excitonic
and photonic component is possible. Most probably it is the exciton that is affected. In
fact, when the sample is fabricated, after the etching procedure, it is passivated, in order
to prevent oxidation. The efficiency of this process might be significantly reduced in the
holes between pillars in the honeycomb lattice, in which case non-radiative absorption is
enhanced in the sample. We consider this explanation the most probable as the quality
factor in other etched structures, like micropillars and wires is not significantly reduced
(it is measured to be 65000 for the 1D wires for example [148]). At the moment, a fur-
ther study is carried out in our group in order to optimize the etching and passivation
procedures and minimize this effect.
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Figure 28: Emission line from a polariton state at kx = 0 measured in the middle of a hexagonal
lattice. Three peaks belong to the π and π∗ s− bands and flat p− band. Red, violet
and green line represent their corresponding Lorentzian fits, respectively. The resulting
widths of the emission lines are 230µeV for the cavity, and 180µeV , 260µeV and 280µeV .

We will now discuss the linewidth measured in a honeycomb lattice. Figure 28(a) shows
energy dependence of the intensity measured in momentum space at kx = 0, ky = ky0 for
the honeycomb lattice excited nonresonantly. Here, we can observe three peaks, two of
them belong to the s− (π and π∗) and the third is the flat-band in the p− bands (see
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chapter 5 ). The fitted FWHM for the three peaks is respectively 230µeV , 180µeV , and
280µeV .

The obtained line widths are larger than those we expect from the uncertainty principle:
∆E = γ

2 = h̄
2τ . Using the expression γ = h̄

τ and the lifetime we obtained from the propa-
gation measurement for the s− bands we get the linewidth γ = 160µeV . This difference
can be understood taking into account the effect that arises upon non-resonant excitation.
In that case rapid changes of the exciton energy lead to the change of polariton energy
and result in broadened linewidths, once that acquisition time in the experiment is on the
order of seconds.
Again, measured linewidths are larger than those measured upon non-resonant excita-

tion in planar cavities and wires [148], that typically have values 90− 120µeV .
Increasing polariton lifetime in honeycomb lattices is thus an important technological

challenge towards improving the emulator.

3.5.4 Tuning the lattice geometry and parameters

One of the crucial advantages of the artificial polariton lattice in general, is the possibility
to control its geometry and hopping parameters. Realization of different types of lattice
terminations allowed to study edge states, to which chapters 4, 5 are devoted. The fact
that photonic coupling in the lattice depends on the pillar size and inter pillar distance,
allowed to controllably tune the hopping parameter in the lattice. In that way, it was
possible to experimentally simulate strain with magnitudes not reachable in electronic
graphene, as it will be discussed in chapter 6.
During my thesis I have designed several honeycomb lattices. For this task it was im-

portant to know the dependence of coupling on the interpillar distance. We carried out
the study on diatomic molecules, measuring dimers with different sizes and inter-pillar dis-
tances. This data is corroborated with the results obtained by solving the 2D Shrödinger
equation. The study revealed how the hopping parameter changes with the inter-pillar dis-
tance in the s− and the p− bands. This two cases are very different as both confinement
and hopping amplitude significantly depend on the shape of the mode.
Let us consider in detail the spectrally resolved real space emission from a diatomic

molecule of diameter D = 4µm and inter-pillar distance a = 3µm, figure 29(a).
In the spectrum, we can recognize the s− and the p− modes separated by the gap

of 1.5meV . As we discussed, the two lowest energy states S1 and S2 correspond to the
bonding and anti bonding s− modes of the molecule. The states P1 and P2 have maxima
in the region between the pillars, and thus are bonding modes of the px and the py states,
respectively, while the states P3 and P4 have minima in between the pillars and represent
anti-bonding modes. We can thus deduce the hopping amplitudes for the s− and the
p− bands, by measuring the splitting between the modes: ts = (E(S2)−E(S1))/2 and
tL = (E(P4)−E(P1))/2. Here, tL is the coupling in the p− bands along the link between
the pillars, or between the px states in our case, see the inset on top of the figure 29(a).
As expected it is significantly larger than the coupling tP between py orbitals equal to
tP = (E(P3)−E(P2))/2.

Before we examine how ts and tL depend on the distance in the pillars, let us compare
the values we obtained with the ones calculated by numerically solving a 2D Shrödinger
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Figure 29: (a) Real space spectrum for a dimer with diameter D = 4µm and inter-pillar distance
a = 3µm. The splitting between the modes gives: ts = (E(S2)−E(S1))/2 = and tL =

(E(P4)−E(P1))/2 =. The inset on the top of the figure is a schematic representation
of coupling between p−modes of a dimer. (b) Corresponding shape of the eigenfunctions
obtained by solving the 2D Shrödinger equation (c) Dependence of coupling in the s−
and the p− bands for a dimer with 3µm pillars. Experimental data is given by dots,
calculation by solid line.
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equation. The equation takes into account a massive particle inside an infinitely high
potential well in 2D, that is:

Eψ = Hψ = (− h̄∇
2

2m + V (r))ψ, (79)

where ∇ is the Laplace operator in 2D and V (r) is a step function with the geometry of
the overlapping circles of diameter D and distance a between their centers. The polariton
mass can be considered as equal to the effective polariton mass in a 2D cavity. It can thus
be found by measuring and fitting the parabolic dispersion of a planar cavity structure at
the same exciton-photon detuning.
In fig. 29(b) the modulus square of eigenfunctions obtained from solving the 2D Shrödinger

equation for a dimer with the same R and a as the one examined in fig. 29(a) is depicted
together with the corresponding energies. The shape of the states in x− y plane clearly
corresponds to those measured experimentally. More importantly, for the given inter-pillar
distance the values of tunneling ts and tL obtained by the simulation and in the experiment
agree within 10% accuracy.

Let us now investigate how changing the distance between the pillars changes the hop-
ping amplitude. The spectra from a series of d = 3µm dimers with different inter-pillar
distances are analyzed and results are presented by dots fig. 29(c). The values obtained
by simulation for the same pillar size are depicted by solid line.
We can see that the experimental data follow well the trend obtained from the simula-

tions. Only when the overlap between the pillars is small, the experimental curve deviates
from the prediction. The possible explanation is that during the etching the sharp shape in
between the pillars is not fully etched, leading to slightly larger value of the coupling. This
explanation is reinforced by the fact that the effect is more significant for the p− bands,
as coupling tL is larger than coupling ts. It was thus important to take into account this
effect when designing the honeycomb lattice.
The next information necessary for the lattice design is how the presented trend changes

when the pillar size is varied. In figure 30(a) we plot calculated dependence of the coupling
on inter-pillar distance, for three different values of pillar diameter D1 = 2.5µm,D2 =

2.75µm and D3 = 3.5µm. The slope of the line is significantly different for the three cases.
As expected for the pillars with smaller diameter the change of hopping parameter is faster.
This fact can be used to suitably choose the lattice parameters depending on the effect
that is studied. Most of our lattices are made with the D = 2.75µm with the intermediate
slope.
Now that the parameters for tuning the hopping parameter in the dimer are known, it is

important to have in mind that they cannot be directly transfered to the HCL. There, each
pillar overlaps not only with one but with three others. For that reason the confinement
in the pillars is different, as well as the hopping parameter between them.
To account for this difference, we have used the value of hopping amplitude obtained

from the first polariton graphene sample, C4T44E. As the pillar size in that sample is D =

2.75µm and the distance a = 2.4µm lead to coupling of ts = 0.25meV and tL = 1.2meV .
The curves in fig.30(a) for the D = 2.75µm are linearly "rescaled" such that they include
the values of hopping ts and tL obtained experimentally in the honeycomb lattice. The
results presented in fig.30(b) are used to design lattices in which strain is implemented, as
will be presented in chapter 6.
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Figure 30: (a) Real space spectrum for a dimer with diameter D = 4µm and inter-pillar distance
a = 3µm. The splitting between the modes gives: ts = (E(S2) − E(S1))/2 = and
tL = (E(P4)−E(P1))/2 =. (b) Corresponding shape of the eigenfunctions obtained
by solving the 2D Shrödinger equation (c) Dependence of coupling in the s− and the
p− bands for a dimer with 3µm pillars. Experimental data is given by dots, calculation
by solid line.



4
DIRECT IMAGING OF EDGE STATES IN POLARITON
GRAPHENE

In the first chapter of this manuscript we recapitulated the main ideas of band theory of
solids. We discussed how Bloch states, extended over the whole lattice, arise as a conse-
quence of translational symmetry in an infinite lattice (or the one with periodic boundary
conditions). We applied this theory, in tight binding approximation, to the honeycomb
lattice in order to calculate the band structure of graphene.
In the second chapter we demonstrated a simulator of graphene Hamiltonian, built using

microcavities in which quasi-particles polaritons are subjected to graphene-like potential
landscape. Due to particular properties of these half-light half-matter quasi particles bulk
properties of a graphene lattice could be directly observed.
The band theory of solids, and our experimental study up to now, however, neglect the

fact that real crystals are finite and thus break the translational symmetry at their edges.
A fundamental property of such crystals is the possibility to host surface states, additional
states that are localized on the surface of the material and can reside in the gap [149].
Surface states can have radically different properties from the ones in the bulk. They

can provide conductive channels in materials which would otherwise be insulators. This
is the case in the quantum Hall effect and other topological insulators [4], materials that
are insulating in the bulk, but conductive at their surface. Such systems became of great
interest due to the "topologically protected", unidirectional surface states, present in two-
dimensional topological insulators, and can provide electrical transport with low losses,
insensitive to defects of the material. Indeed, in the case of 2D systems, surface states
are one-dimensional egde states. They are evanescent in the direction normal to the edge,
with the wavefunction spreading in the parallel direction Importantly, the appearance of
topological edge states can be predicted from the properties of the bulk wavefunctions,
through the so called, bulk-edge correspondence.
Surface states, weather they present topological protection or not, play a very important

role in a wide range of low dimensional materials. Dirac materials, in particular, as we will
see throughout this thesis, often host edge states. They reside close to the Dirac point,
and due to lattice symmetries their wave functions have peculiar properties, such as sub-
lattice polarization, spin polarization or even net spin current [150]. Their appearance can
be related the bulk properties of the wavefucntion, in particular to the non-zero winding
around the Dirac points.
Even though the edge states have raised a tremendous interest both in the case of

three dimensional and two dimensional systems they are hard to study experimentally.
The need of crystals with chemically unperturbed crystalline surface and the necessity to
measure local properties with atomic resolution, as in the case of the 2D materials, hindered
the study of fundamental properties of surface states. In graphene, while it is possible
to prepare different kinds of terminations and visualize them using scanning tunneling
microscopy [151, 152], the existence of electronic edge states has only been evidenced via
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the measurement of the local density of states, which provides information on their energy
and on the curvature of their dispersion, but misses any information on their microscopic
spatial structure and on their momentum distribution [151].
An entirely new way of approaching the problem is introduced with the creation of

photonic simulators which allowed visualizing and manipulating edge states like never
before. In particular, photonic systems allow realizing any type of lattice termination,
even those that are not chemically stable in graphene such as the bearded edge, as will be
explained latter.
In this chapter we will first give a short general review on the appearance and main

types of the surface states in solids. Then, we will focus on edge states in graphene as
they were first discovered, using the numerical tight-biding calculation. The connection
between the edge states and the bulk properties of the honeycomb lattice, i.e. the bulk-edge
correspondence, will be explained in the following section.
In the section 4.4 the main topic of this chapter will be addressed: direct visualization

of graphene edge states both in real and momentum space, using a polariton honeycomb
lattice.

4.1 criteria for the existence of the surface states in 1d lattices

The first theoretical study of surface states dates back to the 1930’s and was done by
Tamm [153]. He considered electrons in a simple one-dimensional periodic square potential
(the so called Kronig-Penney model). When thinking about the possible electronic states
he applied and mathematically demonstrated a simple argumentation: in order for a state
to reside in a gap, and still satisfy the Schroedinger equation with a given potential, it’s
momentum k has to be complex, i.e. of the form p+ iq. This leads to wave functions which
are proportional to e∓qx, which however cannot represent a physically possible state for
an infinite crystal, as they would be unbounded. For a (semi)finite crystal, with an edge
at x = 0, however, a wave function proportional to e∓qx represents a physically possible
solution for x > 0 (inside the crystal). Such wave function has its maximum on the first
atom and decreases exponentially inside the lattice.
Soon after the discovery of the surface states, Fowler [154] and Rijanow [155] showed

that these levels occur in pairs when taking into account the lattice finite on the two sides.
The formation of the edge states in three dimensional crystals, that is of surface states was
discussed first starting from the free electron model by Maue [156] and in more general
potentials and in tight-binding approximation by Goodwin [157]. These works clarified
the main properties of the gap states that were associated with experimentally decaying
wavefunctions in crystals.

The discovery of surface states by Tamm attracted the interest of many researchers.
They tried to understand their nature, how they emerge from the bulk bands and to
explain their origin from the symmetries of the crystal. These efforts eventually led to the
formulation of first bulk-edge correspondence theorems, which connect the Berry phase
of the bulk wavefunctions with the existence of surface states, as we will discuss in sub-
section 4.2.
A first breakthrough in this direction was the theory of edge states developed by Shock-

ley [149]. He realized that two types of edge states can be distinguished. The first type are
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Figure 31: Potentials in one dimensional lattice [149] (a) A 1D potential used by Shockley
(b) Potential with the abrupt change of potential at the edges, typically used for calcu-
lation of edge states in tight binding approximation before Shockley (solid line) and its
correction (dashed line).

those which arise due to the asymmetric termination of a periodical potential, as described
by Tamm. They arise when a perturbation at a solid surface is present, resulting in an
abrubt change of the potential at the surface, as the one given by solid lines in the figure
31(b). This situation takes place in presence of lattice defects, as well as in narrow-band
materials with a large inter atomic distance [149].
The second type are those studied by Shockley himself. He explored the formation of

edge states in a finite one dimensional lattice, assuming one electron per atom, and a
potential that ends symmetrically around the last lattice site, resulting in less abrubt
change of potential at the edges, as the one given in fig. 31(a). The goal was to understand
how the surface levels originate from the atomic levels when varying the lattice constant
from infinity to a finite value. He found that as atoms get close enough such that lattice
bands cross, one state can be expelled from those bands to form a surface state. Figure 32
shows the energy spectrum for a one-dimensional lattice with eight atoms as a function
of the lattice constant and formation of the edge states from the crossing bands that lay
in the middle of the gap. This mechanism is contrasted to the one that takes place when
Tamm- or Goodwin- type potential are used. In that case edge states lie near the band
from which they originate, and can appear in the case of both uncrossed and crossed bands.

Shockley was the first to use symmetry arguments to explain the existence of the edge
states. He also provided the necessary condition for the appearance of the edge states in
tight binding approximation: band crossing. This condition is necessary but not sufficient.
This and many other works that followed, didn’t offer any criteria which could predict if
edge states are going to appear in the gap of a spectrum of a certain crystal.
Such explanation was attempted by Zak [158] in 1985, who found selection rules for

the appearance of edge states based on the symmetry of the band wavefunction (that
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Figure 32: Energy spectrum for a one-dimensional lattice with Shockley potential with eight atoms,
as given in [149]

is corresponding Wannier function). Similarly to Shockley, he emphasized the difference
between crystals that terminate at a general point in the lattice and those that terminate
at a symmetry center. He carried out the demonstration using a one dimensional crystal
with inversion symmetry, (fig. 33) which can be ended in two ways. On the one hand, the
surface is located at one of the symmetry centers of the system potential (or symmetry
plane in three dimensional case), given by the positions xv3 = a/2 and xv1′ = 0, for the
considered lattice. In this case, the potential is perfectly periodic up to the edge and it may
give rise to the Shockley states. On the other hand crystals ending in arbitrary position,
such as (xv2) or at the point of lattice defect xv2′ , both without symmetry, show edge
states which are Tamm states.
The first case, a symmetric ending of the crystal, allows defining the criteria that purely

rely on the symmetry of the bulk wavefunctions.
His reasoning begins with a general statement: to obtain an edge state it is necessary

to ensure the continuous matching between the wavefuntions in the crystal, ψk(x), and
the ones outside the crystal φ(x), as well between their derivatives. In the case of one
dimensional lattice we have:

(d/dx)ψk(x)
ψk(x)

|xv =
(d/dx)φ(x)

φ(x)
|xv , (80)

where xv is the coordinate of the lattice edge. Now, the right hand side of the above
equation is negative at the edge x = xv: the logarithmic derivative of φ(x) is negative
because for a surface state one requires that φ(x) falls off exponentially for x > 0 (outside
the lattice). We can define the quantity:

ρ(k,xv)
(d/dx)ψk(x)

ψk(x)
|xv ≡

ψk(x)
′

ψk(x)
|xv , (81)

which then also needs to be negative inside the gap, if we want an edge state to be formed.
At this point symmetry considerations begin to play a role. Zak shows that ρ(k,xv)

keeps its sign inside a gap for all values of k and that it can change sign only when
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Figure 33: Potential in one dimensional lattice (a) A periodic potential used by Shockley (b)
Potential which is not periodic on the edges, typically used for calculation of edge states
in tight binding approximation before Shockley (solid line) and its correction to periodic
potential (dashed line).

traversing a band. Whether the sign of ρ(k,xv) will change from one gap to the other
depends only on the symmetry of the wavefunction between these two gaps.
As we mentioned, the symmetry of the Bloch wavefunctions is determined from the

corresponding Wannier functions. These localized functions have a symmetry center which
coordinates can take exactly the values of 0 and a/2, with respect to the atomic nucleus
position. Wannier functions can be even or odd for the inversion I with respect to the
their symmetry center.
Now, if the lattice ending at position xv matches the symmetry center of that specific

band, ρ(k,xv) will change the sign and if it doesn’t match it won’t. Provided the knowledge
of sign of ρ(k,xv) in one of the gaps, for example below the lowest energy band, one can
obtain the information about the change of this sign and the existence of the edge states
in all other gaps. The starting information on the sign depends on the specific shape of the
potential, but it is calculated to be positive for usually considered cases of one-dimensional
potentials (meaning that there is no edge states below the first band). After this discussion
provided by Zak the criterion of band crossing used by Shockley is reviewed and considered
to be only a way to change the symmetry of the bands and it is not necessary per se.

While the criterion presented above may link the appearance of the edge states with the
symmetries of the bulk wave function in one dimensional lattices, generalization of such a
method for an arbitrary crystal in two or three dimensions remains a challenge. However,
for a special class of materials, called topological insulators, there exists a theory that
predicts the existence of edge states from the properties of the bulk and establishes the so
called bulk-boundary correspondence [4]. These materials are insulating in their bulk, but
contain conductive channels at their surface. In fact, the topological surface states arise at
the surface between two materials that belong to the two different topological classes [159].
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They are called topological classes simply because it is not possible to transform a Hamil-
tonian belonging to one class to a Hamiltonian belonging to the another by continuous
deformation of its parameters, without closing the gaps. Different classes are characterized
by a different values of a topological invariant, a discrete quantity that can be calculated
from the bulk wave functions. Then, at the interface between a semiconductor with zero
value of the topological invariant and with the nonzero topological invariant, edge states
arise, in order to close the gap and allow the non continuous change of the Hamiltonian.
Obtaining a material which is not topologically trivial (with non zero topological invari-

ant) is not a straight forward task. Physically, it requires either to break the time-reversal
symmetry (for instance when magnetic field is applied to a 2D electron gas, for Hall effect)
or to introduce a strong spin-orbit coupling.
The bands in graphene are not gapped, and therefore the theory of topological insulators

cannot be applied to them. However, we can still define a bulk related topological invariant,
that will allow us to predict the existence of edge states in certain conditions. As we dis-
cussed in the first chapter, topology of graphene is related to the symmetries: time-reversal
symmetry(TRS), the particle-hole symmetry (PHS), as well as the "sublattice" or "chiral"
symmetry (SLS). The Dirac cones, featuring nonzero winding and Berry phase, represent
2D point degeneracy, which is essential in creating topologically nontrivial phases [159]. As
a consequence, edge states in graphene have a topological origin. In order to demonstrate
the bulk-edge correspondence in graphene, we will shortly review here a 1D toy model for
topological insulators, the so called SSH model, widely used in the literature to introduce
the basic concepts of topological invariants and bulk-edge correspondence [160, 73].

4.2 bulk-edge correspondence in ssh model
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Figure 34: (a) The structure of polyacetylene-a polymer with alternating double and single bonds.
This chain can be described using the so called SSH model, a 1D finite lattice with
intercell hopping amplitude t1 different from the intercell hopping amplitude t2. Two
dimerisations are possible (b) t1 < t2 and (c)t1 > t2. The dashed lines represent the
weaker link between the cites. The unit cell is defined with the black rectangle.
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The Su-Schrieffer-Heeger (SSH) model describes a system of spinless, non interacting
electrons in a one dimensional chain with the staggered hopping amplitudes [160, 73]. It
was originally used to describe the chain of polyacetilene, fig. 34(a), but schematically can
be represented by a chain with N unit cells, each of the cells containing two atoms. The
hopping amplitude inside the unit cell (t1) is allowed to be different from the one in between
the unit cells (t2), fig.34(b). Within the tight binding approximation the Hamiltonian of
the model reads:

H = −
N∑
m=1

(
t1a
†
mbm + h.c.

)
−
N−1∑
m=1

(
t2b
†
mam+1 + h.c.

)
, (82)

where a†m and b†m are the creation operators on the sub-lattice site am (bm) in the m-th
unit cell, and N is the total number of unit cells.
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Figure 35: Topological phases of the SSH model. (a), (c) The system is a semiconductor for
both dimerisations, t1 < t2 and t1 > t2. The identical band structure features two
bands separated by gap. b) In the case t1 = t2 the gap is closed and the system is
metallic. (d-f) The topology of the system is given by the number of times the vector
d = (t1 + t2cos(k), t2sin(k)) winds around the origin, when scanning k across the first
Brillouin zone. Two semiconducting phases can be differed: d) the one with the winding
number ν = 0 for t1 > t2 and f) the one with ν = 1 for t1 < t2. Figure taken from [73]

We can first calculate the bulk properties of this lattice by imposing the periodic (Born-
von Karman) boundary conditions. We obtain the Hamiltonian in momentum space, H(k)

in the basis (a(k), b(k)):

H(k) =

 0 t1 + t2e−ik

t1 + t2eik 0

 (83)
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For all the values of the parameters t1, t2 > 0 and t1 6= t2 the eigen states form two bands
separated by a gap of magnitude 2 |t1 − t2|, fig. 35(a,c). However, the Hamiltonian H(k)

exhibits two topologically distinct phases associated to the two possible dimerizations of
the lattice, t1 < t2 and t1 > t2. To reveal this feature we can follow the trajectory of
the vector consisting of the real and imaginary part of one off-diagonal element of H(k):
d = (t1 + t2cos(k), t2sin(k)) ≡ (dx, dy), on a closed loop in the Brillouin zone k = [0, 2π].
As the wavenumber runs through the Brillouin zone, this vector traces out a closed circle
of radius t2 on the dx − dy plane, centered at the point (t1, 0). For the values t1 < t2 it
encloses the origin, 35(f), and for t1 > t2 it does not, 35(d). The number that counts the
number of times the loop winds around the origin is called the winding number ν, fig. 35(f).
It is an integer that determines the two topological classes of H(k): we cannot transform
one class into another without passing through a topological phase transition for t1 = t2,
fig. 35(b, e), when the system is not semiconducting but metallic. For any Hamiltonian
with chiral symmetry, ν can be calculated from [73]:

H(k) =

 0 h(k)

h(k)∗ 0

 , h(k) = dx(k)− dy(k), (84)

using the complex logarithm function log(|h|ei arg h) = log |h|+ i arg h, the winding number
ν is:

ν =
1

2πi

∫
BZ

d

dk
log h(k)dk =

1
2π

∫
BZ

=
d(arg h)
dk

(85)

Interestingly, the ratio t1/t2 governs more than just the properties of the bulk Hamilto-
nian. If we look at the lattice with a finite number of unit cells, and starting from eq. 82
we numerically calculate the eigen states of the finite chain, the results will be different for
t1 < t2 and t1 > t2. The system with t1 < t2 will exhibit zero energy states strongly local-
ized at the outermost pillar. More generally, it can be shown for a wider class of gapped
one-dimensional chiral Hamiltonians, that the topological winding number calculated from
the bulk Hamiltonian is equal to the number of pairs of the zero energy edge states [161].
Note that although the value of ν associated to either dimerization depends on the

definition of the unit cell, in finite size chains the choice is unambiguous since it is defined
by the hopping amplitude between the first and second sites of the chain. This is however
different in the topological insulators in two or three dimensions, where the topological
invariant (Chern number for example) does not depend in any way on the edge.
The bulk-edge correspondence in SSH model will be useful for demonstrating the origin

of the edge states in graphene in this chapter, and understanding of the new edge states
presented in chapter 5.
We would like to point out here that the winding number (in systems with chiral symme-

try) is closely related to another quantity in topological physics, the one-dimensional Berry
phase, or also called the Zak phase. This quantity is sometimes also used in literature for
expressing the bulk-edge correspondence. It is defined as:

ζ ≡ i
∫ 2π

0
〈Ψ| d

dk
|Ψ〉 , (86)
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where |Ψ〉 is the wavefunction of an eigen state. In chiral systems the two component
wavefunction has the form |Ψ〉 = 1√

2

(
1, eiφ(k)

)
, giving the Zak phase:

ζ = −1
2

∫ 2π

0

dφ

dk
= −πν (87)

This means that there is a simple relation between the Zak phase and the winding number.
However, an important difference is that the Zak phase is defined only modulo 2π, and
can only tell if there are odd/even number of topological edge states. On the other side,
the winding number can take any integer value and thus contain more information.

4.3 edge states in graphene

4.3.1 Tight binding calculations

The easiest way to predict edge states in a finite 2D lattice such as graphene is by calculat-
ing the eigenvalues and eigenfunctions of a graphene ribbon. A ribbon is a structure that is
infinite (or with periodic boundary conditions) in one direction and finite in the direction
perpendicular to it. The use of this geometry is convenient because it allows expanding
the wave function into plane waves in the direction where the ribbon is considered to be
infinite and simplify the problem for solving the Schrödinger equation.
There are three fundamentally different ways to end a honeycomb lattice and to make

edges, due to the fact that the lattice is not Bravais (before taking two atoms per unit cell
into account). Those are zig zag edge, depicted in fig. 37(a), armchair edge fig. 37(b) and
bearded edge, fig. 37(c). In this study the edges are oriented along the y−axis in the case
of the zig-zag and the bearded edges and along the x−axis for the armchair edge.

ts

ts

ts

x

y

Figure 36: Graphene nanoribon with bearded edges
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Let us see how we can calculate eigen states of a graphene ribbon. We consider, first
a ribbon with bearded edges, like the one in depicted in fig. 36. The real space graphene
Hamiltonian reads:

H = −t
∑

m-n is even

(
a†m,nbm,n + a†m+1,n+1bm,n + a†m+1,n−2bm,n + h.c.

)
(88)

where a†m,n (b†m,n) are operators that create a particle at sub-lattice A(B), in the unit
cell m,n, that is at positions r(Am,n)( r(Bm,n)). Equivalent definitions apply for the
annihilation operators.
If the periodic boundary conditions are imposed in the direction parallel to the edge

(here, x− direction) the creation operator a†m,n can be expressed as:

a†m,n =
1
N

∑
kx

e−ikxxma†n(kx) (89)

where xm is the x− coordinate of the position vector rm,n ≡ ma1 +na2. Similar expressions
can be found for operators b†n(kx), an(kx), bn(kx)

By inserting these expressions in 94, summing over m and defining θ ≡ (e−i
√

3
2 akx +

ei
√

3
2 akx) = 2 cos(

√3
2 akx) we obtain Hamiltonian in basis (a†n(kx), b†n(kx)) where n counts

the number of unit cells in the direction perpendicular to the edge, n ∈ (1,N):

H(kx) = −t



. . .
0 1 0 0 0 0
1 0 θ 0 0 0
0 θ 0 1 0 0
0 0 1 0 θ 0
0 0 0 θ 0 1
0 0 0 0 1 0

. . .



(90)

which has N ×N elements. The spectrum of a graphene nanoribbon can be obtained by
diagonalizing this Hamiltonian for each value of kx.
In the calculation the difference between bearded and zigzag case is that, to calculate

the bearded edge, one starts from the A sub-lattice and ends at the B sub-lattice. For the
zigzag, one starts from the B sublattice and ends at the A sublattice. In the case of the
armchair edge the ribbon is infinitely long along x-direction and similar expressions can
be obtained.
In figures 37(d,e,f) the band structure of ribbons with zig-zag, armchair and bearded

edges are shown, obtained by numerically solving Schrödinger equation with graphene
ribbon Hamiltonian with N = 50, and taking into account both the nearest neighbor
hopping t and the next nearest neighbor hopping t′ = 0.01t. In figure 37 we can observe
edge bands appear for the zigzag and bearded edges but not for the armchair. They appear
as zero energy quasi flat bands, connecting the Dirac cones (they are flat for t′ = 0). The
regions in momentum space supporting the edge states are complementary. The zigzag
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Figure 37: Edge states in graphene ribbons, the tight-biding calculation. (a-c) Graphene
ribbons with the three different types of edges: zig-zag, armchair and bearded. (d,f)
Calculated band-structure for graphene ribbons with bearded (green) and zigzag (red)
edges. The different blue lines correspond to the projection on the ky −E plane of the
dispersion of the different transverse modes due to the confinement in the x-direction.
The red and green lines show the edge bands corresponding to zigzag and bearded
terminations, respectively. (e) The calculation done for the armchair edge (here, parallel
to the x-direction) does not feature edge states.

edge band appears for kx(zig−zag) ∈ [−2,−1]kx0 ∪ [1, 2]kx0, and the bearded edge band for
kx(bearded) ∈ [−1, 1]kx0, with kx0 = 2π/(3

√
3a) and a being the inter atom distance.

Spatial distributions of the wave functions can be obtained by solving the eigen problem
of the tight binding Hamiltonian. They reveal that the edge states are localized on the
outermost sites, with an exponentially decaying amplitude into the bulk ψedge(x) ∼ e

−x
le .

In the absence of next-nearest-neighbor coupling the penetration length has the following
analytic expression: [162]:

le =
3a

2
∥∥∥ln (2 cos(ky

√
3a/2)

)∣∣∣ (91)

The finite penetration results in a finite width in momentum space for the edge states.
Figure 38(b) shows the kx − ky momentum distribution of the zigzag and bearded edge
states calculated by Fourier transforming with respect to y the spatial distributions of the
edge state for each kx as obtained from the solution of the tight-binding Hamiltonian. The
edge modes are spread around straight lines connecting the Dirac points at the border
of the Brillouin zone, as schematically represented in figure 38(a). The edge states with
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Figure 38: Penetration length of graphene edge states. (a) First Brillouin zone showing the
regions in k space where the edge states are expected. (b) Simulation of the momentum
distribution for zigzag and bearded edge states obtained by Fourier transforming along
the x-direction the calculated spatial wavefunction of the edge states corresponding to
different ky values. Dashed lines show fully delocalized edge states along kx. (c) Pene-
tration length of the amplitude of the edge states wavefunction according to equation
91. As in (a) green color is used to depict bearded edge states, and red zigzag

kx corresponding to the center of the zigzag band (kx = ±1.5kx0) are fully delocalized
in the ky-direction (see dashed line in figure 38(b)). Correspondingly, these states are
spatially fully localized, down to a single site (see figure 38(c)). In the case of the bearded
edge state, maximum spatial localization is attained at kx = 0, with a penetration length
of 2.2a, larger than the maximally localized zigzag edge state. At the Dirac points, the
penetration length becomes infinite, and the edge states merge into bulk modes.

4.3.2 Bulk edge correspondence in graphene

By solving numerically the eigen problem of a ribbon Hamiltonian we can predict the emer-
gence of the edge states for certain type of edges. However, we dont dispose of any criteria
for their appearance, nor information about their behavior under lattice deformation.
Such insights can be obtained by analyzing some general properties of graphene Hamil-

tonian. Indeed, it has already been shown, using various slightly different approaches, that
for graphene it is possible to establish a bulk-edge correspondence similar to the one which
exist in topological insulators [163, 79]. This correspondence will help us to understand
better the edge states which we study experimentally in this chapter, and also to explore
the nature of the newly discovered edge states in orbital graphene, presented in the next
chapter.
In previous section we applied the periodic boundary conditions in one direction of the

graphene lattice, and effectively reduced a two-dimensional problem to an equivalent one-
dimensional problem. Let us have a closer look at the general form of the Hamiltonian 90
we obtained.
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It is not hard to notice that this Hamiltonian has the same form as the one describing
a one dimensional chain with staggered hopping amplitudes, the so-called SSH model. We
can rewrite Hamiltonian 90 as:

H = −t
N∑
m=1

(
a†mbm + h.c.

)
− t

N−1∑
m=1

(
θ(k||)b

†
mam+1 + h.c.

)
, (92)

where N is the number of unit cells in the direction where the ribbon is finite, t the nearest
neighbor hopping, and θ is a function of the momentum k|| parallel to the edge that depends
on the type of edge. For each value of k|| we can easily identify this Hamiltonian with one
given in eq. 82 that describes the SSH model. Hopping amplitude within the unit cell
dimer, t, is the same as the one in honeycomb lattice and the effective hopping amplitude
between adjacent unit cell dimers in the chain is θt.

This means that for each value of k|| we can calculate the winding number ν as in eq. 85
to predict the appearance of edge states. The values of ν are indicated on top of the panels
in the figures 37(d-f). In case when t < θ ν = 0, while if t > θ ν = 1. Non-zero value of
the winding number indicates the region of existence of pairs of edge states in graphene
ribbon with zig-zag and bearded edges.
Here, we have established the direct connection between graphene ribbons and SSH

model in order to understand topological origin of graphene edge states. An alternative
(analogue) approach that leads to this same resultshas also been developed. In [79] the
authors examined directly topological properties of a graphene Hamiltonian in momentum
space:

Ĥs = −t

 0 f∗s

fs 0

 , (93)

with ts > 0 being the hopping amplitude and the factor fs = 1+ eik·u1 + eik·u2 . Here, the
unit cell vectors u1,2 are those who contain the information about the considered edge.
They can be taken as follows: u1 = a1, u2 = a1 − a2 for zigzag edges, and u1 = a1,
u2 = a2 for bearded and armchair, given in terms of the reference vectors a1,2 defined in
Fig. 37(a). The corresponding unit cell dimers are also given in the figure.
The number of zero-energy edge states is determined by the winding of the phase of the

off-diagonal component (fs = |fs| eiφ(k)) for each value of k|| [163, 164, 79]:

W(k‖) =
1

2π

∫
BZ

∂φ (k)
∂k⊥

dk⊥, (94)

where integration is performed over momentum k|| perpendicular to the edge in the first
Bz.
This expression has similar (analogue) form to the one used to calculate winding number

in SSH Hamiltonian in momentum space eq. 84.



80 direct imaging of edge states in polariton graphene

4.4 imaging of the edge states in polariton graphene

4.4.1 State of the art

Creation of artificial systems offers new, advantageous ways to study edge states. Before
presenting our results, we would like to mention other works on this topic.
The spatial and momentum distributions of certain edge wavefunctions have been stud-

ied using coupled waveguides in 2014 [88] by the group of M. Segev and A. Szameit. The
honeycomb lattice was realized by femtosecond-laser writting in fused silica, fig. 39(a).
Then the system is excited at the edge with an elliptically shaped HeNe laser spot, under
a variety of incident angles related to different values of momentum parallel to the edge.
The authors demonstrated that the light emerging from the output facet of the sample is
confined to the edge for the values of momenta where the edge states are predicted in a
honeycomb lattice, fig. 39(b) and spread into the bulk for other values, fig. 39(c).
Figure 39(d) shows the fraction of optical power that remains confined on the edge

of the structure for different values of momenta, edge being defined as the two outer
rows of waveguide lattice. When the lattice is excited at the zig-zag edge we can see
(green line) that the fraction of optical power is strongly increased for the interval ka =

(−4π/3,−2π/3) ∪ (2π/3, 4π/3) where the edge state is theoretically predicted to exist.
The situation is different for the bearded edge (blue line), where the maximum of the
optical power is around ka = 0, related to the bearded edge state in graphene.

While it allowed the first study of graphene edge states using a simulator, coupled
waveguides don’t provide the combined information on real, momentum, and energy phase
spaces needed to reconstruct the band dispersion of the eigenfunctions, and in particular
of the edge states.

Another artificial graphene system in which edge states have been studied is the one of
coupled microwave resonators [94]. In that system, a peak in density of states measure-
ments is observed at zero energy when the signal from the edges is analyzed 39(e). The
authors also demonstrated how edge states can be manipulated by distorting the lattice.
Edge states in armchair type of edge are created in that way, figure 39(f, g).
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a)

b) c)

d)

f)

Coupled waveguides

Microwave resonators

e)

Original lattice Strained lattice

g)

Figure 39: Momentum-resolved measurements of edge states in a photonic honeycomb
lattice. [88] (a) Microscope image of the input facet of a femtosecond-written honey-
comb lattice. Red ellipses mark the input beams for the bearded and zigzag edges. (b,c)
Wavefunction emerging from the output facets for: (b) probe beam launched at zigzag
edge at k = 0, leading to diffraction into the bulk, (c) probe launched at zigzag edge
at k ≤ π/a leading to edge confinement due to the presence of an edge state. Dashed
ellipses mark the expected position of the output beam when an edge state is present.
(d) Fraction of power confined to the edge for the zigzag (green) and bearded (blue)
edges; the peaks indicate strong confinement due to the presence of edge states. Taken
from [88](e) zigzag edge state observed trough density of states (f, g) deformation of the
lattice leads to creation of armchair edge states. Taken from [94]
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4.4.2 Polariton honeycomb lattice

In this section we will present the results of the experimental study of edge states in a
polariton honeycomb lattice.As discussed in chapter 3 the design of the lithography mask
allows controlled creation of the geometry of the edges. Figure 40 shows an optical micro-
scope image of a lattice with the three types of edges: zig zag, bearded and armchair. The
diameter of the pillars is d = 2.75µm and the inter pillar distance a = 2.4µm. We per-
form low temperature photoluminescence experiments after a non-resonant excitation with
Ti:Sapph monomode laser at 740 nm, as described in chapter 3, sections 3.3.5 and 3.3.6.
The sample is at −17meV exciton-photon detuning (measured at k=0), thus correspond-
ing to photonic polaritons. The emission is collected using high NA=0.65 objective and
analyzed, in real and momentum space, using a spectrometer coupled to a CCD camera.

Zig-zag

Armchair

Bearded

x

y

Figure 40: Optical microscope image of the sample. The three considered types of edges:
zig-zag, armchair end bearded are zoomed and compared to the drawing of the corre-
sponding type of the edge.

In the first configuration of the experiment we use a small Gaussian spot with FWHM
of about 3µm, covering approximately one pillar, in order to excite selectively bulk or edge
regions of the lattice and compare the results.

Figures 41 (a-c) shows the momentum-space emission from the bulk, that we have
analyzed in detail in the previous chapter, section 3.5.2. In (a), the emission at the zero
energy is reproduced. We observe again six isolated bright spots at the Dirac points, which
identify the first Brillouin zone hexagon. This map of momentum space will allow us to
better visualize the directions in momentum space of interest when studying the edge
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states. Figure 41 (b) shows the energy-resolved far-field emission along line 1, parallel to
kx at ky = 1.7(2π/3a). As this line doesn’t pass through the Dirac points, two bands
are gapped. The black curve in figure 41(b) depicts the dispersion expected from the
tight-binding approximation with t = 260µeV and t′ = −0.1t (i.e. −25µeV ).
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Figure 41: Zig zag edge, momentum-space emission. (a), (d) Measured photoluminescence
intensity in momentum space at the energy of the Dirac points (E0 = 1569.2meV ) under
bulk (a) and zigzag edge (d) excitation. (b), (e) Spectrally resolved far-field emission
along line 1 in (a) and (d), passing through the second Brillouin zone, for excitation
in the bulk (b) and in the zigzag edge (d). (c), (f). Measured dispersion along line 2
in (b) and (d), respectively. The black lines show fits to the tight-binding honeycomb
dispersion.

4.4.3 Zig-zag edge

We focus now on the situation where the excitation spot is moved to one of the exter-
nal pillars forming the zigzag edge. When we consider the edge of the lattice, translation
symmetry is broken, and momentum perpendicular to the edge is not a good quantum
number anymore. However, certain structure in momentum space is retained (as calcula-
tion in fig. 38 (b) shows), enabling us to still use the tomography technique (as explained
in section 3.3.6) to reveal energy bands in two dimensional momentum space.
Figure 41 (d) shows the luminescence at the energy of the Dirac points for this excitation

configuration. The Dirac cones are now continuously connected by a bright line in the
ky(zig−zag) region while there is a dark region in the middle at the ky(bearded) region, as
expected from figures 38(a), (b). Additionally, along line 3 we observe a spread emission
in kx, indicating an edge mode fully localized in real space. This feature matches the state
marked by a dashed line in the simulation shown in figure 38(b). The overall emitted
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intensity in momentum space in fig 41 (d), is asymmetric with respect to ky = 0, since
polaritons can only flow toward the inner part of the lattice.
When analyzing the energy-resolved emission along line 1, fig. 41(e), two additional

lobes are clearly observed in the gap between the upper and lower bands. Their location
in momentum space corresponds to that expected for the edge states shown in figure 38(a)
(red lines). The measured full-width-at half- maximum of the lobes along the kx-direction
in figure 41 (e) is 0.75kx0, in agreement with the theoretical prediction for the edge
states along the same line in momentum space extracted from the simulation shown in
figure 38(b), within a 20% error (figure to add eventually).

Note that in the presented data, emission from the bulk states is also present when we
excite the lattice at the outermost pillar. This should not be surprising taking into account
the finite density of states of bulk bands near the edge and the Gaussian excitation spot.
The quasi-dispersionless character of the band associated to the edge states can be

evidenced by selecting a cut in momentum space along line 2 in figure 41(d), which contains
the kx(zig−zag) region. Figure 41(f) shows a flat band linking the two Dirac cones. No such
state is present in the bulk (figure 41(c)), where only the corresponding bulk dispersion
is detected. In figure 41(f) only the states with group velocities propagating towards the
bulk(positive slope) emit light, explaining the asymmetry in the emission.

Although bulk bands are asymmetric around E = 0 in our system, the edge states band
stays flat. The origin of this asymmetry can be twofold. One possibility is the presence
of the next nearest neighbor hopping (NNN) t′. It is well known [47] that nonzero t′

breaks particle-hole symmetry in graphene such that bulk bands become asymmetric. NNN
also affect the edge states, they loose their perfectly flat character and become slightly
dispersive, a feature we don’t see in our experiment. However, the magnitude of this
effect obtained from the tight binding calculation for t = 0.26meV and t′ = 0.01t is
50µeV , significantly smaller then the measured linewidth, ≈ 200µeV . Presence of NNN
hopping remains thus possible and we continue using the NNN and the simple tight binding
calculation to achieve a good fitting of the bulk bands.
Another probable explanation is the non orthogonality of the wavefuctions on the two

adjacent overlapping pillars. In fact, the tight binding approximation assumes the use of
a basis of orthogonal wavefunctions on each lattice which are coupled through a certain
hopping amplitude. Physically, the coupling between lattice sites arises exactly due to
overlapping of their wavefunctions. This means wave functions are not orthogonal any
more. While such deviation from the tight binding approximation is also present in the
electronic lattices, it is more pronounced in our photonic system. Calculations that include
this effect [article in preparation] show that it influences the bulk bands but does not
deform the edge state bands.
In addition to momentum-space imaging, our system allows evidencing the localization

of the edge states by looking at the real-space emission. For this purpose, we use a slightly
different experimental configuration, with a large Gaussian laser spot, 20µm in diameter,
covering around 30 pillars. In this way, we are able to excite edge modes on several pillars.
Figure 42(a) shows the emitted intensity at the energy of the middle of the upper bulk band,
0.5 meV above the Dirac points (black arrow in figure 41(e)). They present the expected
honeycomb pattern, with an intensity distribution following the pump spot. Figure 42(c)
shows the real-space emission at the energy of the edge state (orange arrow in figure 41(e)).
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In this case, the outermost line of pillars shows a much stronger emission, present only on
one site in each unit cell (one sublattice). Such shape definitely confirms that the observed
modes correspond to edge states in the system.
The fact that the zero energy edge state wavefunction only exist in one of the two sub-

lattices is a noticeable feature of graphene lattice. It is a consequence of chiral symmetry
(SLS). This symmetry, as we discussed in chapter 2, makes the whole spectrum of a lattice
symmetric with respect to E = 0. In the bulk, pairs of states have the energies E and −E,
and are present on both sub-lattices.
A different situation happens at the edges. Chiral symmetry, which is also called sub-

lattice symmetry, given by the symmetry operator Γ̂, allows to can define orthogonal
sub-lattice projectors P̂A and P̂B:

P̂A =
1
2 (1 + Γ̂), P̂B =

1
2 (1− Γ̂), (95)

where 1 represents the unity operator on the Hilbert space of the system. Note that for
projectors: P̂A+ P̂B = 1 and P̂AP̂B = 0. For the zero energy edge state we can then write:

Ĥ |ψn〉 = 0 ĤP̂A/B |ψn〉 = Ĥ(|ψn〉+ Γ̂ |ψn〉) = 0, (96)

meaning that the edge states can have support only at the one sub-lattice, as we observe
experimentally.
Experimental observation of edge states real space patterns can be further supported by

simulating the polariton honeycomb lattice using a driven-dissipative model. This model
describes more accurately our simulator than the simple tight-binding calculation. To
implement it, we added to the tight-binding Hamiltonian a monochromatic resonant pump
and cavity losses of γ = 0.1t for all lattice sites. The Schröedinger equation in that case
reads:

i h̄
∂

∂t
ψ =

(
H − iγ2

)
ψ+ Fpe

iωt, (97)

where H is the tight-binding Hamiltonian. We calculate the steady state with a pumping
beam Fp at h̄ω = E0, with the Gaussian envelope that covers the whole sample with an
incident momentum k = (1/(2

√
(3)), 3/2)ky0, corresponding to the center of the segment

connecting the Dirac points where the zigzag edge state is expected. In that way simulation
describes the transmission through the sample when exciting the lattice on resonance with
a CW laser of frequency ω. It is, however expected to also describe well the spatial profile
of a steady state under non-resonant excitation in a reflection geometry, which we measure
experimentally.
The result is shown in figure 42(d), revealing the edge state fully localized on the outer-

most pillars, as expected from equation 91. The same simulation at the energy of the bulk
bands shows emission from the whole lattice, as depicted in figure 42(b).
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Figure 42: Zig zag edge, real-space emission. (a), (c) Measured real-space emission at the
energy of the bulk band (a) (energy marked with a black arrow in figure 41)(e)), and
at the energy of the edge state (c) (red arrow in figure 41(e)). Dashed lines show the
half maximum intensity of the excitation laser spot. The lower part of the panels shows
an optical microscope image of the edge. (b), (d). Simulations of emission of a driven-
dissipative polaritonic honeycomb lattice coherently pumped at an energy corresponding
to bulk states (b), and at the energy and momentum of a zigzag edge state (d).

4.4.4 Bearded edge

Bearded terminations have also been predicted to exhibit edge states[162]. The experi-
mental investigation of this type of edge band is not straightforward in carbon graphene
where dangling bonds specific to this kind of termination are chemically unstable. Thus,
it has been studied mostly theoretically and using graphene analogues [94, 88]. To study
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the energy-momentum dispersion of this kind of edge state, we have fabricated a lattice
containing bearded edges, with pillar diameter of d = 2.5µm, and interpillar distance
a = 1.76µm, giving the same tight-binding tunneling amplitudes as in the lattice with
the zigzag edges. However, the smaller pillar diameter results in non-radiative losses that
give rise to a larger linewidth (∼ 350µeV ). Experiments are performed under the same
conditions as described previously, in both real and reciprocal space configurations.
Figure 43(a) shows the momentum space at the energy of the Dirac points when exciting

the bulk of the lattice using a small excitation spot, (3µm). Again, we are able to identify
the six Dirac points of the first Brillouin zone with gaps between them. They are less
pronounced than in fig. 41 due to the broader linewidth. The bulk dispersion along line
1 defined in figure 43(a), containing the ky(bearded) region, is shown in figure 43(b). The
expected shape of the bands is observed, with crossings at two Dirac points. When the
probe is placed on the edge of the sample, different patterns are observed. The momentum-
space map at the Dirac point energy shows an enhanced emission in the ky(bearded) region
in fig. 43(e)), revealing the edge states band. Its full-width-at-half-maximum along the
kx-direction at ky = 0 is 0.50kx0, with kx0 = 2π/(3a), in excellent agreement with the
prediction in figure 38(b), where this value is 0.45kx0. The dispersion along line 1 (fig. 43(f))
shows now a flatband connecting the two Dirac points in the momentum-space region
corresponding to ky(bearded).

To study the spatial location of the state we perform measurements and simulations of
the real-space emission under excitation with a large pump spot (20µm). Figure 43(h)
shows a simulation of the emitted intensity when exciting the edge state at ky = 0. The
observed bearded edge state resides on the sub-lattice corresponding to the bearded ending,
and it penetrates several lattice sites into the bulk, as expected from equation 91. In
the experiment (figure 43(g)), we observe bright spots on the outermost pillars of the
lattice. This emission is absent at the energy of the bulk modes (figure 43(c)), and thus
it corresponds to the edge state. The penetration depth is, however, difficult to estimate
experimentally due to the emission from the bulk modes from the crystal at the same
energy.
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Figure 43: Bearded edge. (a), (e) Measured photoluminescence intensity in momentum space
at the energy of the Dirac points, in the bulk (a) and on the bearded edge (e). (b),
(f) Spectrally resolved far-field emission along line 1 in (a), passing through the region
where edge states are expected, in the bulk (b) and on the bearded edge (f). (c), (g)
Measured real-space emission at the energy of the bulk band (black arrow in (f)), and
at the energy of the edge state (red arrow in (f)). E0 = 1578.1meV . Dashed lines show
the half-maximum intensity of the excitation laser spot. The polarization of detection is
parallel to the edge (vertical). (d), (h) Simulations corresponding to resonant excitation
of bulk and edge modes respectively.

In the case when the excitation spot is placed in the armchair edge, no edge states have
been observed. This is consistent with the predictions based on the winding number 35.

4.4.5 Polarization effects

One of the specific characteristics of polaritons, different from other photonic simula-
tors like coupled waveguides or microwave resonators, is their significant polarization-
dependent properties. The polarization-dependent penetration of the electromagnetic field
in the Bragg mirrors forming the cavity results in a TE-TM splitting between linearly po-
larized modes, whose magnitude increases quadratically with the in-plane momentum [165].
This splittion is responsible for the so-called optical spin-Hall effect [166, 167, 168]. Addi-
tionally, the polarization-dependent hopping between coupled micropillars [169] has been
shown to give rise to a spin-orbit coupling effects. In hexagonal photonic molecules this
gives rise to a fine structure which could be revealed in polariton condensation regime [140].
It is thus to examine polarization effects in polariton HCL. Figure 44(a) reproduces

figure 41(b) showing the energy-resolved far-field emission upon small spot excitation
located at the center of the lattice. Here, we select the emission linearly polarized parallel
to the direction of the edge (y), as in all the results we have presented so far. When selecting
the opposite linear polarization direction, fig. 44(b) we do not observe significant effects.
The reason is that the period of the lattice is big enough to restrict the first Brillouin zone
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to small values of in-plane momenta where the TE-TM splitting is expected to be smaller
than the measured linewidth.
Nevertheless, we do observe significant polarization effects when analyzing the emission

from the edge states. When selecting linear polarization perpendicular to the edge, fig-
ure 44(d), we observe that the edge state is located at a lower energy ∆E = 160µeV , with
respect to the polarization parallel to the edge as given in the figure 41(b) and reproduced
here in fig. 44(c). Similar polarization splittings have been reported in 1D polariton mi-
crowires [23, 170]. The splitting may arise from the interplay between two effects. First,
the asymmetric photonic confinement along and perpendicular to the edge could induce a
linear polarization splitting of the confined photonic modes. Second, the finite-size etched
structure may give rise to strain crystal fields resulting in the splitting of the excitonic
modes with polarization directions along and perpendicular to the strain field. In the con-
sidered structure, a strain mismatch between the x- and y-directions could take place close
to the edge of the honeycomb lattice. Given the significant value of ∆E, the excitonic origin
of the splitting seems the most likely. Indeed, photonic confinement effects are expected to
result in polarization splittings of 5− 10µeV in this kind of structures [22], much smaller
than the linewidth. Note that the strain field might penetrate a few sites into the lattice,
thus affecting the energy of the bulk bands close to the edge.
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Figure 44: Polarization effects. Measured dispersion along line 1 in fig.41, when the excitation is
performed on the middle of the lattice (a,b) and on the zigzag edge (c,d). Linear polariza-
tion of detection is parallel (a,c) and perpendicular (b,d) to the edge. ∆E indicates the
energy splitting between the modes with opposite linear polarizations, detected when
the excitation is performed on the edge (c,d). No such splitting is present when the
lattice is excited in the middle.
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4.5 conclusion

In low dimensional systems such as graphene, the samples often have small size, and their
electric and magnetic properties can importantly change with the appearance of the edge
states.
In order to understand the nature of edge states in graphene, a short review of the theory

of the edge states in the finite size crystals was given in the beginning of this chapter.
As a system characterized by symmetries such as particle-hole, time reversal and chiral

symmetry, graphene features edge states with particular properties. They are different from
the Tamm states, associated with the lattice defects, and can be classified as the Shockley
states [171]. Thanks to the symmetries of the crystal, graphene ribbons can be mapped
to the one dimensional topological insulator (the SSH model), which allows to predict
appearance of the graphene edge states, that is, to establish a bulk edge correspondence.
This bulk edge correspondence is however, different from the one in Chern insulators, as
it depends on the type of the edge.
We have used a polariton graphene simulator to directly observe the localized states

associated with graphene edges. Clear identification of the different kinds of edge states
was possible thanks to the realization of the zig zag and bearded type of the edges in
the simulator lattice. Unique visualization of such modes, combining the information on
energy and momenta of their wavefunctions, as well as on their spatial form, is obtained
trough real-space and far-field imaging of polaritons. Zig zag and bearded edges show zero
energy states, connecting the graphene Dirac cones are occupying complementary ranges
of momenta parallel to the edge. In real space the eigen functions take nonzero values only
one of the two sub-lattices, as imposed by the chiral symmetry of the crystal.
The theoretical and experimental techniques presented in this chapter will be employed

to study newly discovered, orbital edge states in polariton honeycomb lattice, which are
the topic of the next chapter.



5
ORBITAL EDGE STATES

The physics of graphene is remarkable in its simplicity. Only two electronic bands, isotropic
and cylindrically symmetric, provide the richness of its properties. However, in most other
lattices, in both 2D and 3D, unconventional properties originate from higher energy, orbital
bands, characterized by a more elaborate geometry. For example, non-trivial topological
phases of matter, are in most cases the consequence of band inversion. Transport properties
of superconductors, 2D materials or strongly correlated systems also depend strongly on
their orbital configuration. Many of these systems are hardly understood, and very difficult
to study due to the complicated band structure. Creation of emulators bring not only new
prospects in the efforts to study these systems, but also the possibility to use the orbital
degree of freedom to construct states with new properties [172].
In this chapter we will employ polariton HCL to study the orbital version of graphene.

This structure was proposed theoretically for the first time in 2007 by Wu and co-workers,
who considered a honeycomb lattice with px,y orbitals in each lattice site [173, 174]. Ex-
perimentally, it was first reported in the polariton-based graphene simulator created in
our group [28].
In the first part we will review both the theoretical proposal and the first experimental

observation of orbital graphene. The central part will be devoted to the discovery and
detailed study of edge states in this system.
First, we will explore experimentally the emission from the zig zag edge and demonstrate

the existence of two types of edge states, flat and dispersive ones. Then, we will analyse
theoretically the Hamiltonians describing the orbital graphene ribbons with different edge
types in order to explore weather the discovered edge states have topological origin and
are (weakly) topologically protected as in the case of graphene.
Finally, experimental observation of dispersive (i.e propagating), edge states in the arm-

chair type of edge will be presented.

5.1 short introduction to orbital degree of freedom

In addition to charge and spin, electrons in the lattice present an orbital degree of freedom.
This degree of freedom reflects the fact that for any atom, the probability of finding an
electron in a specific point of the region around it, depends on the electron’s energy
and angular momentum, given by the discreet quantum numbers n ∈ N0 and l ∈ [0,n],
respectively. The corresponding wavefunctions have very different geometry 45 are called
orbitals, labeled with letters s, p, d, f , .., corresponding to the angular momentum quantum
number l = 0, 1, 2, 3, 4... .

When atoms are coupled in a lattice electrons keep some properties originating from
their orbital nature. As we have seen in previous chapters, in the case of deep lattices, the
tight binding approximation can be employed and electronic states can be described as
superposition of atomic states. Two formalisms can be used for that purpose. Usually, a
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Figure 45: Atomic orbitals

system is described in terms delocalized one-particle Bloch orbitals ψn,k(r), labeled by a
crystal momentum k lying inside the Brillouin zone, and a band index n. Another type
of description, in terms of the set of localized orbitals called Wannier functions is also
possible. These functions, labeled by a cell index R and band-like index n can be obtained
from Bloch bands by unitary transformations. They allow to better capture some of the
physical properties that emerge as the consequence of various spatial forms of electron
clouds [175].
Understanding the orbital degree of freedom, and how it combines with those of spin

and charge, has helped obtaining models that capture the essence of many complicated
materials. A few examples are transition metal oxides, super-conducting cuprates and
ferromagnets [176, 177]. More recently, the interest in orbital degree of freedom has taken
a new thrust due to the rapid emergence of two-dimensional materials [178], such as black
phosphorus [179, 180, 181], and two-dimensional transition metal dichalcogenides [29],
whose bands originate from spatially anisotropic atomic orbitals.

Significant efforts have been made toward understanding edge states in these materials.
They have been observed in MoS2 flakes [182], and recent works aim at quantifying their
impact in the transport properties [183]. They have been shown to play an important role
in lateral hetero-structures of 2D materials, which represent potential building blocks for
device applications [184]. In that work, the interface states were studied using scanning tun-
neling microscopy, facing considerable challenges in creating atomically sharp and straight
interfaces. Edge states in orbital modes have also been studied theoretically in connection
to d−wave superconductivity [163, 185], and spin-orbit coupling in superlattices of nano-
crystals [186], systems very hard to realize experimentally with tunable parameters.

A photonic simulator of orbital bands would represent, in that sense, a new way of ap-
proaching these topics, and studying the microscopic properties of orbital edge states [187].
In a more general framework, it would provide a platform to simulate some aspects of or-
bital bands which are essential in various topological insulators with band inversion [30].
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5.2 orbital graphene

We have seen that in graphene, only the pz orbitals contribute to its properties, as s− and
px,y orbitals hybridize and form the in plane covalent bonds, responsible for the material
mechanical properties.
However, in 2007 a structure was proposed in which the particular geometry of the

honeycomb lattice is combined with the strong spatial anisotropy of the p orbitals. It is
obtained by taking into account px and py orbitals in each lattice site. These two orbitals
are degenerate, have two lobes in orthogonal spatial directions, (see fig. 45) and anisotropic
phase distribution (fig. 46(a)). As a result, a band structure with new distinct features is
obtained.

(b)
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Figure 46: (a) Sketch of orbital graphene: px and py orbitals (blue and red, respectively) are present
at each site of a hexagonal lattice. They are coupled along the link (tL) and perpendicu-
lar to it (tT ). For both orbitals, there is a π phase difference between the lobes, marked
here with + and −. (b) Corresponding dispersion, obtained in tight-binding approxima-
tion, reveals four bands: two of them are flat, and the other two are dispersive featuring
linear intersections.

To reveal it, we construct the eigen problem for the one-particle spinless tight-binding
Hamiltonian. In this case, we can distinguish the hopping via orbitals projected to di-
rections parallel and perpendicular to the links connecting the lattice sites, tL and tT ,
respectively (see Fig. 46(a)). The Hamiltonian reads:

HP = −
∑
(m,n)
{tL(â†(m,n) · eL1)(eL1 · b̂(m,n)) + (tLâ

†
(m+1,n) · eL2)(eL2 · b̂(m,n)) (98)

+(tLâ
†
(m,n+1) · eL3)(eL3 · b̂(m,n)) + tT (â

†
(m,n) · eT1)(eT1 · b̂(m,n))

+(tT â
†
(m+1,n) · eT2)(eT2 · b̂(m,n)) + (tT â

†
(m,n+1) · eT3)(eT3 · b̂(m,n))}+ h.c.

where
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and

âm,n ≡

 â(m,n),x

â(m,n),y

 bm,n ≡

 b̂(m,n),x

b̂(m,n),y

 ,

where, a(m,n),x is the annihilation operator of an electron in px orbital in the unit cell
given by the position vector rm,n ≡ ma1 +na2 on the A sub-lattice, and m,n are numbers
of unit cells in x− and y− direction, respectively. Other operators a(m,n),y, b(m,n),x and
b(m,n),y are defined in a similar way. For each of the three nearest neighbor links (purple
lines in fig. 46(a)) the unit vectors eLi and eT i, i = (1, 2, 3) are directed respectively
along and orthogonally to the link direction. In the Hamiltonian, they serve to extract the
projections of the P state respectively along and orthogonal to the link.
To express the Hamiltonian in momentum space, an infinite lattice is assumed (or peri-

odic boundary conditions are imposed in x− and y− direction) and the corresponding op-
erators in momentum space are found by means of the Fourier transform of Hamiltonian 98.
We also assume, for the moment, that only tL is significant, while the effect of a nonzero
tT will be discussed in a later section. In the basis of operators (ax(k), ay(k), bx(k), by(k))
we can write the following 4× 4 Hamiltonian:

H(k) = −tL

 02×2 Q(k)†

Q(k) 02×2

 , (99)

with

Q(k)) =

 f1 g

g f2

 , (100)

where f1 = 3
4 (e

ik·u1 + eik·u2), f2 = 1+ 1
4 (e

ik·u1 + eik·u2), and g =
√

3
4 (eik·u1 − eik·u2), u1,2

are primitive vectors, and tL < 0, to account for the antisymmetric phase distribution of
the p-orbitals. To later describe finite size samples, we make a choice of unit cell dimer
and primitive vectors such that it allows the full reconstruction of the lattice including
its edges. As in the case of s− bands, (see previous chapter, end of section 4.3.2) we take
the primitive vectors as follows: u1 = a1, u2 = a1 − a2 for zigzag edges, and u1 = a1,
u2 = a2 for bearded and armchair, given in terms of the reference vectors a1,2 defined in
Fig. 46(a).
The diagonalization of Hamiltonian( 99) gives rise to four bands with interesting features,

plotted in figure 46(b). Two of them are dispersive and intersect linearly around K and
K ′ points, giving rise to Dirac cones, similarly to the s− bands. The other two have a
flat character, they lay above and below the dispersive ones, and touch them at one point,
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making the whole dispersion gapless. Analytical expressions for the energy of the dispersive
and the flat bands, Ed and Ef , respectively read [173]:

Ed = ±
2
3 tL|detQ(k)| ≡ ±2

3 tL|fp| (101)

Ef = ±3
2 tL (102)

p− bands, thus keep the main feature of graphene dispersion, the Dirac cones, but offer
even richer physics. For example, the touching between the flat- and dispersive band was
theoretically studied in [188, 189] and was shown to support creation of nematic and
quantum anomalous Hall phases in the case of nonzero interactions between the electrons.
As discussed in the first chapter 2, in micropillars px,y orbitals are well separated from

the s− bands giving the unique opportunity to study orbital physics, inset left in fig 47. In
polariton honeycomb lattice the coupling of these orbitals results in four bands separated
by a 0.7meV gap from the lowest energy s− bands, that represent exactly the orbital
graphene 24. Experimentally, orbital graphene dispersion was observed for the first time
during the first study of polariton HCL in our group, and reported in [28].
In figure 47(a) we present the experimentally obtained momentum space spectrum of

p− bands in polariton HCL, taken along the direction passing through the Γ point of the
second Bz, (ky = 2π/3

√
3a). We can observe that the lowest observed band indeed shows

a flat character, while the two intermediate dispersive bands form Dirac cones in K and
K ′ points. The bands are well reproduced by the tight binding calculation (tL = 1.2meV
and tT = 0, 102), given in the figure 47(c).

Some differences between the calculation and the experiment are observed. The higher
band is not flat as it is expected. A possible explanation was already discussed [28]. By
taking into account a weak hopping also for the p− states orthogonal to the link tT ,
the flat band gets deformed (while still touching the dispersive band in a single point).
In 47(d) we plot the tight-binding dispersion obtained by taking tL = 1.2meV , tT = 0.2
to demonstrate this effect. The assumption of increased hopping for the upper bands is
reasonable for our system as the tunneling probability varies exponentially with the barrier
height relative to the state, and thus increases strongly for higher energy states.
The dispersions presented in figures 47(c,d) are obtained by Fourier transforming the

spatial wavefunctions calculated in the tight binding approximation. They account for the
interference effects which are at the origin of the brightness variations we observe discussed
and which were discussed in chapter 3, section 3.5.2. For this particular cut, the emission
is found to be the strongest below the energy of the Dirac cones, both theoretically and
experimentally. For these reasons, when analyzing this type of dispersions, we will always
focus on the energy region below the Dirac points.
The spatial properties of lattice eigenfunctions are also different in the p− bands with

respect to the s− bands. Due to the spatial anisotropy and particular phase properties of
the p− orbitals, the form of the wavefunction can be very different from the honeycomb
geometry. Figure 47(b) shows the real space emission under non-resonant excitation (30µm
FWHM spot), at the energy of the flat band for which intensity maxima sit between the
pillars, and are arranged in a geometry of the so called Kagome lattice.
Using our simulator we are able to go beyond bulk physics of orbital graphene and

explore p− bands edge states.
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Figure 47: A polariton orbital graphene (a) a SEM image of a micropillar. (b) The correspond-
ing far field emission. Sates s, p, d are well separated (c) A scheme of HCL with px, py
orbitals at each lattice site. (d) A scheme of the corresponding reciprocal lattice. (e) Mo-
mentum space luminescence from the bulk of polariton HCL for ky = 4π/(3a) (black
dashed line in (d)). K and K’ mark the positions of the Dirac cones. Flat band is visible
in the lower part of the spectrum. (g, h) Dispersion for the same cut in momentum
space obtained by the tight binding calculation taking (g) tL = 1.2meV and tT = 0,
and (h) tL = 1.2meV and tT = 0.2. (f) Real space image at the energy of the flat-band,
E −E0 = −1.5meV (see spectrum (e)). The centers of six pillars are shown in white
disks. The Kagome geometry of the emission lobes is underlined with white lines (the
panel (f) is taken from [28])
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5.3 experimental observation of zig-zag edge states

We are first going to examine the zig-zag type of edge. We perform the same type of
experiments as in the case of s− bands edge states. Dispersion is imaged in a luminescence
experiment upon non-resonant excitation. Under the exact same conditions, we excite,
using 2µm FWHM spot, first the bulk (to obtain the result presented in fig. 47(a)), and
then the outermost pillar on the edge. The measured dispersion is shown in fig. 48(a).
In addition to the bulk modes, new bands are evidenced, marked with yellow and white

dashed lines in the figure. Those marked in yellow are flat and show up at the center of
both the first and adjacent Brillouin zones, at the energy of the Dirac crossings. Those
in white dashed lines lie between the bulk dispersive and flat bands and have a marked
dispersive character. All new states are delocalized in momentum space, in the direction
perpendicular to the edge, appearing at the very same energy for any value of ky (not
shown here) suggesting they are spatially localized in this direction. This is different from
the bulk bands in fig. 47(a), which change energy when probing different values of ky and
are extended in real space.
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Figure 48: (a) Momentum space luminescence upon excitation on the zigzag edge for ky = 4π/(3a).
Yellow and black dashed lines surround photoluminescence from edge states. E0 = 1573
meV and tL = −1.2meV. (b) Tight-binding calculation of the band structure. Blue lines:
bulk energy bands at kx = 4π/(3a); red lines: edge states obtained for a nanoribbon
with zigzag edges. All calculations are for tT = 0.

We note that a splitting is observed in the lowest flat band and in the edge states at
around kx = 1.8 · (2π/3

√
(3)) in fig. 48(a). It may be due to a polarization dependent

confinement of the outermost micropillars, discussed in the previous chapter, and the
transverse electric-transverse magnetic (TE-TM) splitting characteristic of semiconductor
microcavities [190] .
The final confirmation of the localized nature of the newly discovered states is given by

resolving spatially the emission at their corresponding energies. Again, this is done using
an excitation spot of ≈ 20µm FWHM in order to excite the edge and partly the bulk
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of the lattice, allowing us to visualize the geometry of wavefunctions along the edge and
inside the bulk.
Figure 49(a) depicts the real space emission intensity at the energy of the Dirac cones,

where the new dispersioneless state is found. The emission is strongly localized on the
outermost edge row and as in the case for the s− bands edge states, present only on one
sub-lattice, reflecting the chiral symmetry of the system. Differently from the case of the
s− bands, the maximum of emission is away from the center of the pillars, and originate
only from px orbitals.
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Figure 49: Real space emission upon excitation on the zigzag edge. Edge state at the energy of Dirac
cones has nonzero amplitude on only one sub-lattice as observed from (a) experiment,
(c) simulation. Dispersive edge, probed at the highest energy (kx = 1.8 · 2π/s

√
3a, see

fig 48) has nonzero amplitudes Ax and By. A hexagonal lattice is sketched on top of
the data to mark the position of the center of the micropillars.

The situation is different for the real space emission at the energy, 0.6 · ∗(E −E0)/tL
(center of the gray dashed circle), where the new dispersive state is present,(see (fig. 48(a)).
The real space emission, given in fig. 49(b) is clearly localized at the edge, but this time
both sub-lattices contribute to its shape. More precisely, the emission from the outermost,
A pillars, has the shape of the px orbitals, while emission from the B pillars that of the py
orbital, resulting in the particular shape of the edge state.
The interpretation of the experimental data can be supported with tight binding calcu-

lations. In fig. 48(b), we plot in blue lines the bulk modes, which are the analytic result
given by eq. 99 for the value (kx = 2 · 2π/3a) and are fully delocalized. Edge states can
be calculated by considering a nanoribbon with zigzag terminations on both edges and pe-
riodic boundary conditions along the direction parallel to the edge, following the method
analogous to that described for ribbons in section 4.3. The solutions for exponentially de-
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caying eigenfunctions are given with red lines in fig. 48(b). We can see that the spread in
momentum and the position in energy match quantitatively the experimental observations,
particularly for the modes at and below the Dirac cones.
Spatial form of the calculated wavefunctions at energies corresponding to those of the

figures 49(a,b) is given in fig. 49(c,d), respectively. It reveals the shape of the edge states
that matches well the experimental data. The calculated wavefunction shows nonzero
coefficients only for px component on A sub-lattice in 49(c), and for px component on A
sub-lattice and py on B sub-lattice in fig. 49(d).

We have thus evidenced new edge states in zig-zag edge in orbital graphene. Numerical
calculations can reveal the edge states that are expected to appear in other types of edges.
Results for nanoribbons with zigzag, bearded, and armchair edges are summarized in
fig. 50. Two kinds of edge modes are visible: (i) bands of zero-energy modes in the central
gap, present in zigzag and bearded edges, and (ii) dispersive modes in the upper and lower
gaps in all three types of edges, and in the middle gap of the armchair termination.
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Figure 50: Calculated eigenmodes in the first Brillouin zone for a nanoribbon as a function of the
wave vector k‖ parallel to the edges, with (a) zigzag (k‖ = kx), (b) bearded (k‖ = kx)
and (c) armchair (k‖ = ky) terminations. Blue curves: bulk spectra for different values
of the transverse momentum k⊥. Red and green curves: edge states. For bearded edges,
the inset shows the uncoupled py orbitals that give rise to a pair of edge states spreading
over all k‖.

How can we understand the origin and the nature of these states? Are they connected
to the properties of bulk states wavefunction, that is, does there exist a bulk-edge corre-
spondence for these states?

5.4 bulk-edge correspondence for zero energy edge states

To answer these questions, in the framework of this study a theoretical investigation was
carried out by T. Ozawa, from BEC-CNR center in Trento, Italy and G. Montambaux
from LPS in Orsay.
The zero-energy edge modes which recall strongly the edge modes in the π and π∗ s−

bands of regular graphene, whose existence can be related to the winding number of the
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wave functions in momentum space. For s− sates the winding number was calculated
following:

W(k‖) =
1

2π

∫
BZ

∂φ (k)
∂k⊥

dk⊥, (103)

where φ(k) is the phase of the off-diagonal component of the Hamiltonian fs = |fs|eiφ(k),
and the one-dimensional integration over k⊥ is performed along a loop around the Brillouin
zone in a direction perpendicular to the considered edge [79].
This analysis can be extended to more general situations, by analyzing the symmetries

of the Hamiltonian. Schnyder and co-authors developed a ten-fold way classification of
topological insulators for which bulk-edge correspondence can be established [65]. The
topological insulators are classifed according to three symmetries: time-reversal, particle-
hole, and chiral symmetries, that we already defined in the first chapter of the thesis.
By fixing a value of k‖, the dependence of Hamiltonian 99 on k⊥ can be regarded as

a one-dimensional model in the, so called, BDI (chiral orthogonal) class which contains
time-reversal, chiral and particle-hole symmetry. Indeed, let us examine the symmetries
of our H(k). First, we can notice that it is invariant under the simultaneous operation of
complex conjugation and k → −k. Denoting the complex conjugation as K, this means
we have:

KH(k)K−1 = H(−k), (104)

which means we can take the time-reversal symmetry operator as T = K. (As discussed,
the "time-reversal symmetry" here does not need to correspond to the physical one).
As for the chiral symmetry, we can note that the matrix σz ⊗ I2×2 = diag(1, 1,−1,−1)

anti-commutes with the Hamiltonian:

σz ⊗ I2×2H(k)(σz ⊗ I2×2)
−1 = −H(k), (105)

This means that we have the chiral symmetry C = σz ⊗ I2×2, but also the particle hole
symmetry, P = σz ⊗ I2×2 · K, which satisfies PH(k)P−1 = −H(−k).
It is also important that our time-reversal symmetry and the particle-hole symmetry

have the property T 2 = P2 = +1 which puts our model in the class BDI of the ten-fold
classification of topological insulators, as that of the SSH model.
For this class, the number of pairs of zero energy edge modes is given by the winding of

the phase φ obtained from fp ≡ detQ = |detQ| eiφ(k) as discussed in [191]. In our case Q
is given with the expressions 99, 100.
We calculate the winding using φ(k) and expression 103. In figure 51(d,e,f) we show the

value ν
(
k‖
)
, for the p−bands as a function of momenta parallel to the edge k‖ for the three

type of edges considered here. In the figures, colored regions represent the rectangular first
Bz., in red areas the calculated winding number is even, while it is odd in green ones.
To illustrate the calculation of winding number in a more intuitive way, we plot in each

of the panel of fig. 51(d,e,f) the arrows corresponding to calculated angles φ(k). Now we
can trace the directions these arrows point to, along a line in the first Bz (that is starting
from one edge of Bz and going to the other) in direction parallel the edge (ky for zigzag
and bearded edges in our case). If we choose, for example a line in the red region of
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fig. 51(d), we can see that all along ky arrows point in the same direction, to the left. In
this case winding ν = 0. If, however we pick a direction inside the green colored area,
arrows change their direction along the path. They rotate for 360° between the edges of
the first Bz, making one full loop and giving winding ν = 1.
The winding number W

(
k‖
)
matches with the number of the zero-energy modes calcu-

lated by diagonalization of the Hamiltonian, fig. 50(a,b,c).
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Figure 51: Winding of the phase φ(k) for p-band graphene (top row) and orbital s-band graphene
(bottom rows). The winding number W(k‖) is indicated, k‖ being the direction of the
wave vector along the edge. The colored region is a rectangular Brillouin zone. In the
pink regions, the winding numberW is even while it is odd in the green regions. Both in
s- and p-bands, the regions in momentum of existence of edge states are complementary
between the zigzag and bearded edges. Additionally, they are complementary between s-
and p-bands for the same kind of edge. There is an additional p-edge state at the bearded
edge for all values of k‖, resulting in an additional winding of the phase. For armchair
edge winding has value zero for both s- and p-bands for all values of k‖ indicating the
absence of zero energy edge states.

An interesting feature of fig. 51 is that the regions in momentum space where the
zero-energy modes are present in the zigzag edge (k‖ ∈ [−2π/(3

√
3a), 2π/(3

√
3a)]) are

complementary to the regions in which they are present in s-band graphene for the same
kind of edge (k‖ /∈ [−2π/(3

√
3a), 2π/(3

√
3a)]). A similar situation takes place for the

bearded edges: in the p-bands, pairs of edge modes appear in the region in k-space com-
plementary to the regions where they appear in the s-bands.

The complementarity in the position in momentum space of zero-energy edge modes
between s-bands, and p-bands, can be understood by analyzing the symmetry of Hamilto-
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nians given by eq. 99 for the p- and eq. 93 for s-bands. The expressions fp and fs, whose
winding determines the existence of zero-energy edge modes, can be related analytically:

fp (zigzag) = 3
4e

ik·(a1−a2)fs (bearded) (106)

fp (bearded) = 3
4e

ik·a2fs (zigzag) (107)

where fs/fp (zigzag/bearded) are written using the choice of unit cell that corresponds to
the zigzag/bearded edge [79]. A consequence of eq. (106) is that the winding of the phase
of fp (zigzag) is the same as of fs (bearded) (the vector a1 − a2 is parallel to the edge,
so the prefactor of the right hand part of eq. (107) gives no winding in the orthogonal
direction).
A similar situation takes place for eq. (107): in addition to the exchange of the position

between zigzag and bearded edge states, of respectively, s- and p-bands, the phase factor
eik·a2 provides an extra winding over the whole Brillouin zone, and gives rise to an extra
pair of edge state for all values of kx, in the bearded edges of the p-bands. Physically,
this edge states arises from dangling py orbitals fully localized in the outermost pillars,
uncoupled to the bulk, as sketched in the inset of fig. 50(b), and adds to the pair of edge
states discussed above.
The armchair edge does not have any zero-energy edge mode and is characterized by

the winding zero along the whole k‖.

5.5 dispersive edge states

5.5.1 Analytical calculation of dispersive edge states

One of the most distinctive features of fig. 48 and 50 is the observation of additional
dispersive edge modes between the dispersive and the flat bands of the bulk. These modes
are present for all values of k‖ and for all the investigated types of edges.

We can obtain analytical expression of the dispersive edge modes by looking for solutions
of finite size Hamiltonian with an exponential decay into the bulk (ψ(x) ∼ e−x/ξ, ξ
being the penetration length). The calculation procedure is analogous to the one used to
calculate analytically edge states in graphene which can be found in Refs. [162, 94] and was
done by T. Ozawa and G. Montambaux. The treatment relies on consideration of a real
space graphene ribbon Hamiltonian for each type of the edge. By imposing solutions with
exponential decay, the Shrodinger equation is reduced to only few independent equations
and the same number of unknowns. We have summarized this procedure for the case of
the s− bands and generalized it for the p− bands in the supplementary of the paper [192].
We reproduce it in this manuscript as an appendix, 7.1.

By applying this method to zigzag and bearded edges, we find the following eigen
energies for the p− bands edge modes:

Ezigzagdisp.edge(k‖) = ±tL
√

3
2

√
2 + cos (

√
3k‖a) (108)

Ebeardeddisp.edge(k‖) = ±tL
√

3
2

√
5− 2 cos (

√
3k‖a)√

2− cos (
√

3k‖a)
. (109)
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The penetration length of the edge states can also be extracted from these calculations.
They are found to be:

ξzigdisp.edge(k‖) = (ln cos (
√

3
2 k‖))

−1 (110)

ξbearddisp.edge(k‖) = (ln
cos (

√
3

2 k‖)

2− cos (
√

3k‖)
)−1. (111)

As evidenced in fig. 50, dispersive edge states exist also for armchair terminations, which
do not contain any edge modes in the case of regular electronic graphene. The analytic
calculation for the armchair edges requires the use of two different penetration lengths [147].
We thus take the advantage of our photonic simulator to explore these novel edge modes.

5.5.2 Experimental observation of armchair edge states

Chiral symmetry of the bipartite honeycomb lattice does not allow the formation of flat
zero-energy edge states in the armchair edge, following eq. 96 and calculation of the winding
number. This is however not true for the dispersive edge states, predicted to appear in all
the gapped regions between the flat- and dispersive- band..
Fig. 52(a,b) shows the measured dispersion along the direction parallel to the armchair

edge ( for kx = −2 · 2π/2
√

3a, black dashed line in fig. 52(e) ) when the lattice is excited in
the bulk and at the armchair edge, respectively. In both figures black dashed lines represent
the tight-binding calculation of the bulk modes for this particular cut in momentum space.
In figure 52, for excitation at the edge, we observe the two main groups of edge modes: one
is close to the zero energy (red dot), in between the dispersive bulk bands, and the other
is in between the flat- and dispersive- bulk bands (green and blue dots). Both groups are
more clearly visible below zero-energy.
We will compare the obtained experimental results with the driven dissipative simulation

of polariton lattice. We search the steady states of the equation:

i h̄
∂

∂t
ψ =

(
Hp − i

γ

2
)
ψ+ Fpe

iωt, (112)

similar to eq. 97, in which Hp is now the real space Hamiltonian of p− band graphene.
We assume losses at a rate γ = 0.2tL for all lattice sites. To simulate the bulk lumines-

cence we place the coherent pump Fp, with a certain frequency ω, at the central site of the
ribbon, far from the edges. The time-independent amplitudes for the A and B sub-lattice
sites are then obtained for steady states of eq. 112.
To reconstruct the dispersion, the distribution obtained from the above equations is

Fourier transformed and the procedure is repeated for different frequencies ω of the pump.
Figure 52(c) shows the Fourier transformed intensity as a function of ky for kx = −2 ·
2π/2

√
3a for different resonant pump frequencies.

As we can see, the main features of the experiment are well reproduced by the simulation,
including the destructive interference in the upper dispersive band around ky = 0. This
point crosses a high symmetry direction along which odd real-space eigenfunctions interfere
destructively in the far field. We perform a similar calculation with the excitation spot
placed at the edge with the armchair boundary instead of the central site of the lattice.
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Figure 52: (a-b)Measured momentum-space luminescence along the ky direction for kx =

−4π/(3
√
(3)a) (black dashed line in (e)) when exciting the bulk (a) or the edge (b) of

a ribbon with armchair terminations. (c-d) Momentum space distribution for the same
value of ky obtained from a driven-dissipative tight-binding simulation for excitation in
the bulk (c) and at the edge (b).
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The computed intensity pattern is plotted in fig. 52(d), and reproduces well the edge states
observed experimentally in fig. 52(b).
Interestingly, both experiment and the tight-binding calculations in fig. 50(c) suggest

an additional edge mode within the bulk energy band (green dot), figures 52(c) and 53(b).
Despite the fact that it is at the energy of the bulk modes, simulations shows that it is
fully delocalized in momentum space, along the kx direction, perpendicular to the edge.
We use our photonic simulator to explore the spatial distribution of these novel edge

modes. Figure 53(a-c) shows the real space emission from the photonic simulator excited
close to the armchair edge for three emission energies, corresponding to the three different
dispersive edge states indicated in fig. 52(b). Again, we employ a pump spot of 20 µm in
diameter, allowing the measurement of the wavefunctions of the edge modes, which pene-
trate several microns into the bulk. For the lowest-energy dispersive edge state (fig. 53(a)),

3µm
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Figure 53: Real space emission from dispersive edge states in an armchair termination. (a-c) Mea-
sured photoluminescence when selecting the energies indicated with circles in Fig. 52(b).
(d-f) Corresponding tight-binding eigenfunctions. A hexagonal lattice is sketched on top
of the data to mark the position of the center of the micropillars.

the emission is localized in the second to the last row of micropillars, with a gradual de-
crease towards the bulk. These features along with the lobe structure are well reproduced
by the plot of the tight-binding solution for the edge state at the corresponding energy
[kx = π/(3a); fig. 53(d)]. Figure 53(b) shows the emission pattern for the lowest-energy
edge mode in the central gap. In this case, the outermost pillars show the highest inten-
sity, in a pattern significantly different from the modes shown in figs. 53(a) and (d). It
is worth noting that in the experiment, the energy of the emission is filtered with the
use of a spectrometer, but no particular in-plane momentum is selected. Therefore, bulk
modes contribute to the emission at the energies studied in figs. 53(a)-(c), explaining the
differences with the calculated individual eigenfunctions depicted in figs. 53(d)-(f).

Finally, when selecting the emission at the highest energy of the mode within the bulk
bands, (green dot), the experiment and tight-binding calculations shown in fig. 53(c),(f)
attest the significant localization of these modes in the edge region.
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In conclusion, in this chapter we provided a detailed experimental characterization of the
zero-energy and dispersive orbital edge states in excited bands of a photonic honeycomb
lattice. The zero-energy modes are well described using topological arguments based on the
symmetries of the bulk Hamiltonian. Whether any topological argument can be applied
to the dispersive edge modes is an intriguing question which is not clarified yet.
Our experiments and theoretical analysis could offer insights into multimode lattice

systems such as transition metal dichalcogenides [29] or mechanical lattices of springs
and masses, which have been predicted to show similar dispersive edge modes [191, 58].
Taking advantage of the intrinsic nonlinearities of polaritons, honeycomb lattices of coupled
micropillars appear as excellent candidates to explore nonlinear bulk and edge states with
orbital structure [172].
Another important aspect of orbital physics is the behavior of the bands upon lattice

deformations. The change of lattice geometry can affect both bulk and edge states. It
can cause the change of the topology of the bands, significantly modifying the properties
of the material. The idea to use pressure on bulk materials, or strain in 2D lattices in
order to induce superconducting or topological phase transitions has been already tested
[193, 194, 77]. However, achieving the desired level of control and magnitude of pressure
or strain proved to be very challenging in electronic lattices.
In the next chapter we will examine how new types of quasi-particles with anisotropic

transport properties can be obtained in a polariton honeycomb lattice by controllably
tuning the tunneling probability between the lattice sites.



6
UNCONVENTIONAL DIRAC CONES IN STRAINED
HONEYCOMB LATTICE

6.1 introduction

In the work presented in the previous two chapters we have used a polariton simulator
to explore edge states of the honeycomb lattice. We discovered new edge states in the
orbital graphene and established the connection between their existence and the lattice
bulk properties.
In this chapter we will focus on bulk properties and show how we can modify the bulk

dispersion. In this way we will be able to create new types of Dirac dispersions and foster
unconventional transport regimes for polaritons.
In the first section 6.2, we will follow the recent development in both electronic and

artificial Dirac systems which led to discovery of new type of Dirac dispersions. Quasi-
particles corresponding to these dispersions are characterized by exotic transport and
magnetic properties. They attracted significant attention due to their potential for creation
of future photonic and electronic devices on one side, and the possibility to simulate
gravitational effects on the other. Then, in section 6.3 we will review in more details a well
known result, the study of manipulation and merging of Dirac cones in graphene.
More precisely, when a uniform strain is applied to the lattice, the distance between

Dirac points with opposite topological charges in the Brillouin zone is reduced and even-
tually they can be annihilated to open a gap. A particular point of interest for our study
will be the fact that at the critical point of this transition, from the Dirac to a gapped
phase, a so called semi-Dirac dispersion arises: linear in one direction, and parabolic in
the other.
By engineering of hopping parameters in the polariton honeycomb lattice we will be

able to implement the uni-directional strain and directly observe, for the first time in a
photonic system, a semi-Dirac dispersion, section 6.4.2.
In the sections 6.5 and 6.6, we will extend the study to orbital polariton graphene and

explore the modification of the p− bands degeneracies under strain. We will demonstrate
realization of the second possible type of topological phase transition in two dimensions:
the one in which Dirac cones with equal topological charges are created. Most interestingly,
the tuning of Dirac dispersion trough this phase transition will allow us to create new type
of critically tilted Dirac cone.
In this way it will be shown that the polariton honeycomb lattice is a convenient platform

to engineer and combine different types of Dirac photons.

6.2 unconventional dirac cones

In the first chapter, Introduction to Dirac physics, we have seen how the symmetries of
the honeycomb lattice shape the form of the Hamiltonian allowing the conduction and the
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valence band to cross linearly around Dirac points. The quest for other materials featuring
Dirac cones advanced slowly due to the necessity of the particular form of Hamiltonian
to prevent avoided crossings. Once these conditions are fulfilled, however, Dirac points
appear as robust objects. Manipulation of the honeycomb lattice and its band structure
has engendered numerous efforts both for fundamental reasons and potential applications
in devices.

Discovery of new materials and development of artificial lattices in the last few years,
allowed important advancement in this direction resulting in better understanding, and
creation of new gapless topological phases. It was shown that Dirac points and the disper-
sion in their vicinity can be modified and manipulated.
The emergence, modification, or annihilation of Dirac cones represents a Lifshitz tran-

sition. Originally, this term was used to describe a discontinuity of the chemical potential
µ at T = 0 in metals that would lead to an abrupt change of Fermi surface, giving rise to
anomalies in the electron properties of metals [195]. Now, it is used to label a transition in
electronic crystals in which the topology of the Fermi surface is changed. Lifshitz transi-
tions have been extensively studied, for a broader class of materials by Volovik [196, 195].
His work has attracted significant attention recently because it describes the emergence
of new materials exhibiting Dirac cones, namely, topological semi-metals [197, 76].
For example, the so called Weyl semi-metals display a linear dispersion in all three direc-

tions of momentum space around the point of intersection of the bands. They are obtained
by breaking inversion or time reversal symmetry in the system which lifts the degeneracy
of the three dimensional Dirac cone. They are symmetry protected and as a consequence
they hold non trivial topological properties that lead to variety of novel phenomena includ-
ing surface Fermi arcs [198], chiral anomaly, negative magnetoresistance [199], nonlocal
transport [200], anomalous quantum Hall effect [75].
It was also shown recently that all Dirac/Weyl cones in both 2D and 3D can be divided

in two distinct groups and that the topology of the Fermi surface is what defines each
category.
Dirac cones in graphene, for example, belong to the Type I or "classical" Dirac cones.

They have a Fermi surface which is a point (as a geometrical object, a point is topologically
equivalent to a closed line). The density of states at the energy of Fermi level in this case
is zero.

This is, nevertheless not the only possible case and a different type of Dirac cones exists.
Let us write the effective Hamiltonian of a Weyl or a Dirac cone in general form, which
includes σi Pauli matrices and also the identity σ0 matrix:

H(k) =
∑
i,j
kivijσj (113)

Here i ∈ (x, y, z) and j ∈ (0,x, y, z), ki’s are wave vectors and σj ’s are the identity and
the Pauli matrices. The coefficients vij (j 6= 0) are proportional to the velocity of the
quasi-particle in each momentum or spin direction. As we will see below vi0 will result in
"tilt" of the cone. This Hamiltonian can be applied also in two dimensions, which is the
case we will concentrate on. Then we have i ∈ (x, y) and j ∈ (0,x, y). In both 2D and 3D
cases the energy dispersion relation corresponding to the above Hamiltonian can be found
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by solving its eigen problem, that is by solving the time independent Shrödinger equation.
It reads [201]:

ε =
∑
i

(kivi0 ±
√∑
j 6=0

(kivij)2) = T (k)±U(k) (114)

If all the vi0 are equal to zero we obtain an anisotropic Type I cone as the one depicted
in fig. 54(a).

Type I Dirac cones

a) b)

Figure 54: Type I Dirac cones. Fermi surface is a point. a) Isotropic Dirac cone b) Tilted Dirac
cone

In the case when one of the coefficients vi0 is non-equal to zero the Dirac cone is
tilted, fig. 54(b). This energy dispersion which exhibits Weyl fermions with several differ-
ent velocities, is predicted to appear in the quasi-two-dimensional organic semiconductor
α− (BEDT −TTF )2I3 [202, 203], as well as in hydrogenized graphene [204]. Tilted Dirac
cones have been proposed for their non isotropic transport properties to be used for valley
filtering in p−n junctions [205] and generation of photo current [206] otherwise forbidden
in the ideal two-dimensional Dirac spectrum by symmetry.

A particular situation occurs when one of the terms vi0 is large enough such that
|T (k)| > |U(k)|. This happens precisely when

(
vx0
vxi

)2
+
(
vy0
viy

)2
> 1. In that case, a strongly

tilted or Type II Dirac cone is produced. Its corresponding Fermi surface is then not a
point, but a cone, that is an open line (see red line in fig. 55(a)).
As Fermi surface separates occupied from empty states in crystals, its shape directly

influences their density of states, electronic and magnetic properties. The density of states
at the Fermi level in the case of type II Dirac points for example, is necessarily different
from zero.
The new type of Dirac points is interesting for another reason. If we consider that the

Dirac cones represent analogues of the relativistic Dirac particles, the above condition,
|T (k)| > |U(k)|, indicates a Lorentz boost with a speed larger than the speed of light.
As Lorentz invariance is violated in that case, creation of Type II Dirac cone would be
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the realization of a particle inconsistent with the standard model. In the context of gen-
eral relativity Type II Dirac cone spectrum is predicted to emerge behind a black hole
horizon [207].

Type II Dirac cones

a) b)

Figure 55: Type II Dirac cones. Once the tilt in a certain direction is strong enough, bands
cross zero energy at more than one point. a) Fermi surface is a Dirac cone. b) In the
critical point of the transition Fermi surface is a line.

Still, it is possible to attain this regime in solid state systems, where the Fermi velocity is
orders of magnitude smaller than the speed of light. Type II Weyl points have been realized
between electron and hole pockets in semi-metals with strong spin-orbit-like coupling. For
example, in bulk transition metal dichalcogenides MoTe2 [208], PtSe2 [209], or in the
superconductorPdTe2 [210]. Equally, it is possible to engineer them in photonic lattices
as recently achieved in works [211, 10].
Very recently, a particular attention was given to the situation that is predicted to appear

at the point of the critical tilt between Type I and Type II cones. This happens precisely
when

(
v0x
vix

)2
+
(
v0y
viy

)2
= 1. In that case a Dirac cone with particular properties is created.

It is characterized by a Fermi surface in the form of a straight line, as depicted with red
line in fig. 55(b). Zero and infinite effective masses of a corresponding quasi-particle are
combined along one direction of momentum space.
Because of its distinct properties this kind of dispersion is also named Type III Dirac

cone. It has been argued recently, for example, that it represents an interesting candidate
for simulating gravitational effects in the laboratory . Specifically, due to its particular
anisotropic dispersion Type III Weyl points have been proposed for solid-state realization
of the black-hole-horizon analogue in inhomogeneous Zn2In2S5, to simulate black hole
evaporation with high Hawking temperature [212].
While the study of strongly tilted (Type II and Type II) linear dispersion was up to now

mostly concentrated on 3D systems, a question arise weather these unusual quasi particles,
can be realized in two dimensional systems? This would allow to attain strong modification
of Klein tunneling, magnetic properties, collapse of Landau levels and modified particle-
particle interactions.
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6.2.1 Merging of Dirac cones

Tilting of Dirac cones is not the only way they can be manipulated. They can also merged
during a Lifshitz transition. In graphene, it has been shown that by changing the relative
strength of the three nearest neighbor hopping parameters, Dirac points can move in
momentum space and eventually annihilate.
A general theoretical framework for merging of Dirac cones in 2 dimensions is provided

in seminal works of G. Montambaux and co-workers [213]. Two universal scenarios of
merging have been provided depending on topological charge attributed to each Dirac
point.
As discussed in chapter 2 Dirac cones are characterized by a winding number (topological

charge) ω. This quantity describes the winding of the phase of the wavefunction around
the cone. It can be found directly from the Hamiltonian in the vicinity of Dirac point:

H(q) = h̄vFh ·σ ≡ hx(q)σx + hy(q)σy (115)

as:

ω =
1

2π

∫
∇φ(q)dq, (116)

where φ is defined through components of the vector h = (hx,hy):

tanφ =
hx
hx

. (117)

Dirac cones with opposite topological charges can neutralize and open a gap, character-
ized by zero winding. Exactly at the merging transition a particular semi-Dirac dispersion
is created. Linear along one direction of momentum space, and quadratic in the orthogonal
one, this dispersion corresponds to quasi-particles with interesting anisotropic properties.
They are massless in one spatial direction, but possess a finite effective mass in the orthog-
onal one. Unusual consequences have been predicted this of semi-Dirac dispersion, such as
square root dependence of density of states on the energy, or modification in the spacing of
Landau levels [214]. Recently, signatures of such dispersion have been evidenced in doped
black phosphorus using ARPES measurements [215].
On the contrary, if Dirac points with equal charges merge, it will not be possible to open

a gap, but only to modify the Dirac cones. This is the type of transition that occurs in
bilayer graphene, for example. In that case a quadratic band touching, characteristic for
low energy bilayer graphene, can be transformed into two Dirac cones with equal charge.
This type of transition will be discussed theoretically and experimentally in more details
in section6.5.3.
Lifshitz transitions are thus a route towards creation of new types of Dirac dispersions.

But how can they be triggered? In the case of 2D lattices an important change in geometry,
and thus significant modification of their transport properties can be achieved by applica-
tion of strain. Under strain, the distance between atoms is altered, and so is the hopping
amplitude strength between the atoms leading to a reshaping of graphene dispersion and
even a Lifshitz transition. The fact that strong in-plane carbon bonds in graphene allow re-
versible tensile elastic strain up to 20%, encouraged research on the possible effects of this
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modification. In the next section we will analyze few significant results from the literature
on the effects of strain on graphene.

6.3 strain and graphene

Depending on the form and the magnitude of strain, various effects on the dispersion of
graphene are possible [216]. Anisotropic strain inevitably alters the lattice isotropy, thus
changing qualitatively the lattice dispersion.
One striking effect, for example is the possibility to create artificial gauge fields. A

non-uniform strain, with a gradient in magnitude, effectively introduces a term in the
Hamiltonian equivalent to a vector potential. The result is the formation of a pseudo-
magnetic field in the vicinity of the two inequivalent Dirac points [217]. The sign of the
field is opposite for each of them such that the net magnetic field is zero. In spite of this,
Landau levels are formed, as confirmed in graphene by the STM measurements [218, 219].
Introduction of artificial gauge fields is a particularly important task in the area of

photonics, where the use of real magnetic field is not viable. It represents a milestone
towards the achievement of topologically non trivial phases. By implementing strain in
honeycomb lattice Landau levels for photons have been observed in coupled waveguides
by M. Rechtsman [90] and co-workers, and a proposal has been made for the observation
of the helically propagating edge states by G.Salerno et al. [220, 221].

6.3.1 Uniaxial strain

A different modification of graphene band structure takes place under uniform strain. This
transformation corresponds to a relative change of the hopping parameters t1, t2 and t3
inside the lattice unit cell. In the first theoretical consideration of such deformation by
Pereira [222], it was shown that the position of the Dirac points can be changed, that is,
they can be pushed away from the K and K′ point. If the magnitude and the angle of
deformation are in a certain range, Dirac points can also merge, giving rise to a gapped
dispersion. This situation represents a phase transition: a semi-metalic phase is replaced
with a semiconductor phase.

For the orientation of the lattice shown in fig. 56(a) strain applied along y−axis will
cause t1 6= t2 = t3 . Labeling t′ ≡ t3 and t ≡ t1 = t2 we can introduce a parameter
β = t′/t and generalize the form of the graphene Hamiltonian given in chapter 2:

Hs = ts

 0 fs

f∗s 0

 , fs(k) = t(β + eika1 + eika2) (118)

where:

ka1 =
3
2kya+

√
3

2 kxa , and ka2 =
3
2kya−

√
3

2 kxa. (119)

We can define:

Ky =
3
2kya , Kx =

√
3

2 kxa (120)
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Figure 56: Uni-axial strain in honeycomb lattice. a) Scheme of the lattice under the strain
along y−direction, parallel to the one of the bonds. Hopping parameter along that bond,
t′, is changed with respect to the hopping parameter along the other two NN links, t. b)
Evolution of Dirac points. For t′/t > 1 they move away from K and K′ points, along
the direction perpendicular to the strain, and finally merge in M point for t′/t = 2.
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and write fs in a convenient form:

fs = β + 2 cosKxe
iKy (121)

The spectrum of the s− bands graphene then becomes:

εs = ±ts |fs| = ±ts
∣∣∣β + 2cosKxe

iKy
∣∣∣ (122)

The position of Dirac points can be easily found from the previous expression by making
εs = 0:

Ky = 0 , cosKx = β/2. (123)

From the equations, we can see that, as the parameter β increases, the two inequivalent
Dirac cones in graphene are displaced from K and K′. They get closer together, and
eventually they merge when β = 1 (t′ = 2t) at the M point of momentum space fig. 56(b).
This phase transition can be understood in terms of the topological charge (winding)

attributed to each Dirac point. Opening of the gap, characterized by the zero winding, is
the result of merging of Dirac cones with winding +1 and −1.

6.3.2 The Universal Hamiltonian I

The merging scenario has been described by G. Montambaux and coworkers [213]. They
have introduced the so called universal Hamiltonian, which governs the fusion of Dirac
cones with opposite topological charges in two dimensions independently of the atomic or
microscopic parameters of the particular system they appear in.
In the vicinity of the transition, the Hamiltonian describing the transition can be written

in the general form [61]:

H+−(q) =

 0 ∆+− + q2
x

2m∗ − icyqy
∆+− + q2

x
2m∗ + icyqy 0

 , (124)

where
∆+− =

1
2 −

1
β

and cy and the effective mass m∗ depend on the macroscopic parameters of the lattice,
that is of the form of fs. The spectrum corresponding to this Hamiltonian reads:

ε = ±

√(
∆+− +

q2
x

2m∗
)2

+ q2
yc

2
y. (125)

The transformation of the dispersion with the change of parameter ∆+− < 0 is given in
figure 57. The phase featuring two Dirac points, is obtained for ∆+− < 0 (when choosing
m∗ > 0 without loss of generality). Increasing the gap parameter reduces the distance
between Dirac points 2qK = 2

√
−2m∗∆+−, and shifts the energy of the saddle point

between them. As ∆+− increases from negative to positive values, the energy of the saddle
point increases and transforms into the hybrid semi-Dirac point at ∆+− = 0. For ∆+− > 0
a gap with the magnitude 2∆+− finally opens.
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Figure 57: Merging of Dirac cones with opposite charge. Evolution of the spectrum when the
quantity ∆+− is varied and changes in sign at the topological transition. The low-energy
spectrum stays linear in the qy direction. Taken from [213].

While the geometry of the proposed uniaxial deformation is simple enough to imagine
its implementation in graphene, the strain magnitude needed to reach the transition is
estimated to be around 20%, which is slightly beyond the limit of breaking the bonds
between atoms in graphene. This is why this transition has been observed for the first
time in artificial systems, namely, in a hexagonal optical lattice in cold atoms [Tarruell et
al.] and in an array of coupled microwave resonators. In the latter experiment, shown in
fig. 58, the merging of Dirac cones was revealed from the measurement of the density of
states [93].
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Figure 58: Topological Transition of Dirac Points in a Microwave Experiment Experi-
mental DOS for (a) the regular graphene (β = 1), (b) and (c) anisotropic structures
with β = 1 and β = 1, respectively. The dashed red lines indicate the Dirac frequency
νD. The gray zone shows the band gap with edge states at νD. Taken from [93].
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6.4 topological transition in polariton graphene

As we already demonstrated a polariton HCL allows to observe Dirac dispersions in a
direct manner. This will give us the opportunity to directly observe deformation of the
dispersions during the topological phase transition in graphene. Even more importantly,
it will allow us to study the modification of orbital bands, as will be presented in the last
sections.

6.4.1 Engineering of hopping parameters

Engineering hopping parameters in a honeycomb lattice consisting of micropillars is a
relatively straightforward task. The coupling between pillars is given by their size and
distance (chapter 3), both of which can be controlled by designing the e-beam lithography
mask.
We have modified the hopping parameters of the honeycomb lattice in order to imple-

ment the uni-axial strain described in the previous section. A mask with different sets of
lattices is designed. In each set, the size of the pillars is fixed, as well as the length d of
two out of three links each pillar shares with other pillars (see inset of fig. 59(a)). Then,
the length d′, of the third link is changed from lattice to lattice, leading to different values
of the anisotropic coupling t′ 6= t.

In fig. 59(b) we see a scanning electron microscopy image of a sample containing two
sets of lattices mimicking strain i.e β < 1 ( t′ < t, columns of lattices a and b ), and two
set of lattices mimicking compression i.e. β > 1 (t′ > t, columns c and d). Each set begins
with an isotropic lattice with pillar size D = 2.75µm and interpillar distances d′ = d. The
values of D, d and d′ are given in the table in fig. 59(c).

To image the dispersions, standard luminescence experiments with non resonant exci-
tation, using a 3µm excitation spot, are performed at 10K. The lattices have an exciton-
photon detuning, measured at the lowest band at the Γ point, between −17meV for all
the lattices in column a, and −14 for all the lattices in column d (the columns are placed
perpendicularly to the direction of the gradient of cavity energy).
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Figure 59: Engineering of hopping parameters in polariton honeycomb lattices Scanning
electron microscope image of the sample. a) Hopping is changed by varying the distance
between the pillars d′ with respect to the distances d (defined in inset) b) Sets of lattices
designed to simulate strain (a,b columns) or compression (c,d columns) in the lattice.
(c) Corresponding lattice parameters. The values of t and β were obtained from fits to
the experimental dispersions.

6.4.2 Realization of semi-Dirac dispersion

In order to study topological phase transition that occurs in graphene, we select a set of
compressed lattices. We start from the isotropic lattice 1-d in fig. 59(b), with inter pillar
distances d′ = d = 2.3µm.

Figure 60(a) shows its dispersion along the kx direction (for ky = 4π/3a), (line 1 in
fig. 60(f)). As expected, two Dirac cones are located at K and K′ points. The correspond-
ing tight binding fit is shown with white lines. In the fit, the nearest and the next nearest



6.4 topological transition in polariton graphene 119

neighbor hopping parameters take the values t = 0.17meV and tNNN = 0.015meV , re-
spectively.
A very different situation is found on fig. 60(c) showing the dispersion of the lattice 2-d,

with the reduced distance d′ = 2.1µm, along the same direction. Along the kx direction
upper and lower bands show a quadratic touching around the M point (kx = 0).
The hybrid nature of this dispersion is evidenced when imaging the dispersion along

the perpendicular ky direction in fig 60(d). In order to avoid the dark regions in the first
Brillouin zone, we image the dispersion along line 2 (orange line in fig. 60(f)). Clearly, we
observe linear band intersections around ky = (−3, 0, 3)kx0, all corresponding to the M
point. We evidence thus, the dispersion of the semi-Dirac phase, reached when the value
of the strain parameter in the fit is β = 2.
Further modification of the band structure with the reduction of distance d′ is shown in

fig. 60(e), for the lattice 4-d with d′ = 1.7µm. It leads to the opening of a gap of magnitude
0.65meV , and fitted strain parameter β = 3.4.
We note that, when fitting the data we obtained not only increased t′, but also slightly

increased values of the couplings t and tNNN (see the table in fig. 59(b)). This isotropic in-
crease of couplings is reasonable taking into account that approaching the pillars decreases
the confinement in them.
We also notice that there is a small mismatch between the theory and the experiment

in figs. 60(c,e). The most probable reason for that is the increase of non orthogonality
of the wave functions in the pillars (see chapter 2) in the compressed lattices. The more
the pillars overlap, the less the lattice can be described using wave functions of isolated
atoms, as it is done in the tight binding approximation. Still, for the presented bands the
deviation is not large, and there is no qualitative change of the shape of the bands.
The results discussed in this section represent the first direct observation of a phase tran-

sition between semi-metallic and insulating phases in two dimensions. We demonstrated
that our system is very suitable for designing the dispersions in two dimensions. The rel-
atively rapid increase of coupling with the pillar to pillar distance allows to explore a
wide range of regimes. Tuning of strain parameter 1 < β < 4 is achieved by changing the
distance between the pillars by 30%. The critical point β = 2 is reached with a change
by only 10%. Additionally this rate can be adjusted by modifying the size of the pillars
(see section 3.5.4, fig. 30). The platform is thus very promising for implementing more
complicated forms of deformation such as the nonuniform strain, which leads to formation
of an artificial gauge field in the lattice.
Yet, even without going into more complicated geometries than the uni-axial strain, we

can observe new kinds of transitions in polariton HCL. This is possible by making use of
the orbital degree of freedom which is the subject of the next section.
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Figure 60: Topological transition in polariton graphene Intensity in the far field for the
lattices with varied ratio β = t′/t (as defined in b)). a) Isotropic lattice (β = 1) featuring
two Dirac cones. c,d) β = 2. Semi-Dirac dispersion is observed , quadratic along kx and
linear along ky direction. e) β = 3.4 The gapped phase. f) Map of momentum space at
zero energy is used to mark the position of the high symmetry points.
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6.5 strain in orbital graphene

Different approaches, such as nanomanipulation, use of spin-orbit like coupling or pressure
(i.e strain) have already been used on solid state matter in order to tune orbital band
structure and evidence new kind of topological phase transitions.
In particular, with the discovery of new types of linear dispersions in solid state systems,

these efforts opened new frontiers in the search of of quasi-particles whose propagation
can be related to that of relativistic particles [201, 223]. Type-I and Type-II Weyl semi
metals have been found or proposed in three dimensional transition metal dichalcogenide
crystals with spin-orbit like coupling TaAs, WTe and MoTe2. These features occur be-
tween electron and hole pockets, that is between the N-th and (N+1)th bands, where N
is the total number of valence electrons per unit cell [224, 225, 208].
The ability to tune higher orbital bands in a simulator increases the chances of discover-

ing and understanding new topological phase transitions and quasi particles. Transposing
of new types of Dirac dispersions to bosons and particularly to photons allows studying
them in new regimes, without the necessity to match the Fermi level with a point in the
dispersion.
The rich yet simple band structure of orbital graphene provides a new playground for

Dirac manipulation. It holds Dirac points, as well as band touching between a dispersive
and a flat-band (see chapter 5). In this section we explore how these band degeneracies
can be modified. Again, we will study uni-axial strain in the lattice, that is the case when
d′ 6= d, as depicted in the beginning of this chapter, fig. 59). In p− bands this will lead to
a change of the hopping parameter tL along that link, and we can define βp = t

′
L/tL.

In particular, p−bands Hamiltonian can also be written in the off diagonal form:

Hp = tL

 0 Q

Q∗ 0

 , Q =

f1 g

g∗ f2

 , (126)

where f1, f2 and g, already introduced in chapter 5, can now be rewritten as:

f1 =
3
4s , f2 = β +

s

4 , g =

√
3

4 d (127)

with:

s = eika1 + eika2 , d = eika1 − eika2 . (128)

The spectrum consists of four bands, ±εf and ±εd. In the case of βp = 1, f and d denote
the flat and the dispersive bands, respectively. When βp 6= 1 there is no flatband but an
important relation holds:

εf εd = |detQ| (129)

With

detQ = f1f2 − g2

=
3
4e

iKy
(
2βp cosKx + eiKy

)
.

(130)
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Finally, the position of the zero energy Dirac points in the p−band is given by εd = 0⇒
detQ = 0⇒ f1f2 = g2. Therefore, we obtain from 130:

1 + 2βp cosKxe
−iKy = 0 (131)

that is

Ky = 0 , cos(Kx) = −1/(2βp). (132)

It is also possible to find the winding number that describes Dirac cones in p− bands,
as well as the dispersive-flat band touching, for each value of parameter βp. The procedure
to calculate it was developed by Gilles Montambaux, from Laboratoire de Physique des
Solids in Orsay during the collaboration initiated with this work. We provide details on this
calculation in appendix .1. It consists of finding the effective 2× 2 Hamiltonian Heff (k)
in the vicinity of the desired point in momentum and energy. It is shown that Heff can be
written in terms of two Pauli matrices, and that it is thus possible to calculate the winding
corresponding to it. We display the obtained values of ω for each band degeneracy in panels
1,2 shown on the left and right sides of figures 61.

Fig. 61(a-e) shows the deformation of the dispersion in the set of 5 lattices, column
(1-5)a in fig 59(b), for which the parameter βp = t′L/tL is gradually decreased. All the
figures show momentum space luminescence along the kx direction passing through the Γ
point in the second Bz., that is, for ky = 4π/3a.
We start with the dispersion of an isotropic, non deformed honeycomb lattice, with a

pillar size of 2.75µm and pillar to pillar distances d = d′ = 2.4µm. In fig. 61(a) we can
recognize Dirac cones around (E −E0)/tL = 0 and the dispersive-flat band touching at
E = (E −E0)/tL = −1.5 (yellow and red dashed rectangles, respectively).

The white lines are obtained by tight binding simulation in which parameters tL and
βp are fitted to experimental data. For the isotropic lattice we obtain tL = 0.90meV and
βp = 1. In panels 1 and 2, next to the figures, we show calculated dispersions in the
two dimensional momentum space for the regions inside the rectangles, where we want to
follow the dispersion deformation.

6.5.1 The zero energy region

We will first concentrate on the region around zero energy. Figure 61(b) displays dispersion
measured on first deformed lattice, in which d′ = 2.6µm. We can see that Dirac cones in
K and K′ points changed their position in momentum space and that they are closer to
each other. The dispersion is well fitted using the parameter βp = 0.75.

When reducing βp Dirac cones move close to each other (see fig. 61(c) for d′ = 2.65µm
and βp = 0.55). In the next lattice, d′ = 2.7µm, Dirac cones completely merge, revealing
the quadratic band touching, fig. 61(d), similarly to the case of the s−band, discussed in
the previous section.
The analogy is further confirmed if the distance d′ is set to 2.72µm: quadratic bands

start to separate opening a gap, fig. 61(e). The opened gap proves to be small compared
to the polariton linewidth (200meV ) to be clearly observed. However, the experimental
data is well fitted using βp = 0.45, which displays two quadratic bands separated by the
gap around zero energy.
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Figure 61: Modification of band structure in orbital graphene a) Intensity of far field emis-
sion for lattices in column (1-5)a in fig 59(b) at the energy of p− bands. E0 = 1570meV ,
ky = 4π/3a. Tight binding fit to the data is represented with the white lines in central
panels, and in the insets 1 and 2, for the two regions of interest defined by red and
yellow dashed rectangles in (a). Values of βp < 1 obtained from the fit are given in each
panel.
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To confirm that the gap opening takes place in the most deformed lattice, we will
compare the intensity of the spectra around the M points (kx = 3 · 2π/(3

√
3a)) where

the cones merge (blue and red lines in figures 61(d) and (e) respectively). In fig.62(a) we
display the intensity measured along the blue dashed line: we see only one peak present at
the E = 0. The situation is different in fig.(b), which reveals the intensity along the red
dashed line, where we resolve two peaks, confirming the opening of the gap.

The scenario evidenced here represents a topological phase transition due to the merging
of Dirac cones with opposite winding, described in details in the previous section. The
moving of Dirac cones in momentum space we detect here is exactly the same as the one
presented in fig.56(b). Indeed, in collaboration with Gilles Montambaux we have shown
that the universal Hamiltonian I (eq. 124) is a good approximation for p− bands graphene
under the effect of uni-axial strain around zero energy, see the appendix .1.

I [a.u.]

(E-E0)/t_L

-2            -1              0     1             2              

(E-E0)/t_L

-2            -1              0     1             2              

1

0 0

1

a) b)

βP=0.5
βP=0.45

Figure 62: Gap opening a) The intensity of emission along the blue dashed line in fig. 61(d). Only
one peak is visible at zero energy. b) The intensity along the red dashed line in fig. 61(e).
Two peaks around zero energy prove the gapped phase is achieved for βp = 0.45.

There is, however, an important difference between the phase transition transformation
in the s−bands and in the p−bands: the direction of transformation necessary to achieve
the modification. For s− bands the lattice was "compressed" in order to increase the
parameter βp. For p− band on the contrary, the necessary deformation corresponds to
stretching the lattice, that is to the decrease of the coupling t′L with respect to the coupling
tL.

To understand this difference we can analyze the two Hamiltonians, for s− and p−
bands and in particular the equations defining the position of Dirac cones eq. 123 and
eq. 132, respectively. The comparison between the two equations shows that the motion
of the Dirac points under the uni-axial strain in the p− bands is exactly the opposite to
the motion in the s−bands. In the s−bans, Dirac points move and merge when βp = 2. In
the p−bands, they move and merge when βp decreases to the value βp = 1/2.
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6.5.2 Creation of tilted Dirac points with equal charge

We will now go back to fig. 61 and concentrate on the low energy region, indicated by
the red dashed lines in fig. 61(a). There, we will monitor the reshaping of the touching
between the dispersive and the flat band.
As soon as the modification of the hopping t′L 6= tL is introduced, the dispersion is

significantly modified. The two lower energy bands now intersect linearly around two
points, one on each side of the Γ point. A pair of new Dirac cones is created. In the
ensemble of figures 61(b-e) we can explore the evolution of this new Dirac points with
the change of parameter βp. As the deformation is increased both the position and the
energy of the Dirac points change. They move away from the Γ point while their energy
rises. Tight binding calculations reported in white lines and the panels next to the each
figure, help us following this evolution.
Looking more carefully at the measured and calculated dispersions, we can observe that

the new Dirac cones are different from the ones we find at zero energy. They are tilted
along the ky direction (see green dashed lines in figs. 61(b-e), which traces the bisection
of the crossing bands at the Dirac cone). When they appear, for βp = 0.75, the tilt is very
strong, and it is reduced as the lattice deformation is more important.
To further explore the properties of these new Dirac cones, we report their dispersions

in two orthogonal directions, ky and kx, for the fixed value of the parameter βp = 0.5.
Figure 63(a) reproduces figure 61(d) and shows the dispersion in kx along Line 1. Fig. 63(c)
shows the dispersion in ky measured along Line 2. In figure 63(b) we observe the linear
crossing of the bands in the vicinity of ky = 1 (red dashed square). A linear dispersion is
present both along kx and ky directions, thus confirming the observation of tilted Dirac
cones as the one depicted in fig. 63(d).

6.5.3 The Description with the Universal Hamiltonian II

How can we explain the transformation of the dipersive-flat band touching into a pair of
Dirac points? Is such a transition controlled by conservation of some topological quantities?
These questions are answered in collaboration with G. Montambaux. He developed a
procedure for determining the winding properties of the Hamiltonian close to the band
degeneracies in a multi-band system, in a similar manner as described in the previous
section, to understand the merging of the Dirac cones. In that case, an effective 2× 2
Hamiltonian was deduced to describe the region of around p− bands Dirac points at zero
energy.
Now, we will deduce the effective Hamiltonian around the Γ point, that is around the

energy region (E−E0)/tL = −3/2. As explained in appendix .1, we start by the diagonal-
ization of 4× 4 p− bands Hamiltonian of the non deformed lattice at the Γ point, where



126 unconventional dirac cones in strained honeycomb lattice

1+1+

1.5

0

-1.5

βP=0.50

kx/(2π/(3√3a)

(E
-E

0
)t

L

-4 -2         0       2 4

Line1

1.5

0

-1.5

ky/(2π/3a)

Line2

-3   - 2    -1     0     1  2   3              

a)

kx

ky
E

b)

d)

K K’

Γ

c)
Line2

Line1

Γ
K’K’

kx

ky

c)

1st Bz

2nd Bz

Γ Γ Γ

Figure 63: Tilted Dirac cones. βp = 0.5 a) Dispersion along kx direction. A pair of tilted Dirac
cones is created in low energy region of p−bands when the lattice is strained (red
dashed rectangle). b) Dispersion in perpendicular direction, trough one of the Dirac
points (line 2 in c)). Linear intersection is observed. c) A scheme of lattice momentum
space d) Visualization of the new Dirac cones in two dimensional momentum space
(tight-binding calculation)



6.5 strain in orbital graphene 127

f1 = 3/2 and f2 = 3/2 and g = 0. We obtain the following eigen functions of the 4 eigen
values (f1, f2,−f1,−f2):

1√
2


1
0
1
0

 , 1√
2


0
1
0
1

 , 1√
2


1
0
−1
0

 , 1√
2


0
1
0
−1

 (133)

We can then rewrite the full Hamiltonian using this basis, but separating the subspaces of
energies 3/2 and −3/2. The Hamiltonian reads:

HΓ(k) =


Rf1(k) Rg(k) −iIf1(k) −iIg(k)
Rg(k) Rf2(k) −iIg(k) −iIf2

iIf1(k) iIg(k) −Rf1(k) −Rg(k)
iIg(k) iIf2(k) −Rg(k) −Rf2(k)

 ≡
H+ C
C† H−

 , (134)

where I and R represent imaginary and real parts of functions f2, f2 and g. We can
thus introduce an effective 2× 2 Hamiltonian associated to the subspace of energy −3/2.
Following the procedure described in the appendix .1 one can find the effective Hamiltonian
at the second order:

Heff (k) = H− +
1
3C ·C

† (135)

After expanding the terms f1, f2 and g around the Γ point up to the second order term in
k, we obtain:

Heff = H0σ0 −
3
16

k2
x − k2

y 2kxky
2kxky k2

y − k2
x

 (136)

with H0 = 3
2 −

3
16 (k

2
x + k2

y), and σ0 is a 2 × 2 unit matrix. Now, we can examine the
properties of this Hamiltonian. The presence of the σ0 term is related to the tilt of the
Dirac cones observed in figs. 61 and 63. However this term doesn’t affect the topological
winding of the cone. This is why we will neglect it for the moment and rewrite second
term of the above Hamiltonian in a more convenient form, using σ matrices:

H = hx(k)σx + hz(k)σz (137)

As we can see it contains terms proportional to two sigma matrices. But in contrast to
the case of zero energy Dirac cones in both s− and p− bands these are not σx and σy but
σx and σy. This means that the vector h = (hx,hz) winds in x− z plane when k makes a
circle around the Γ point. If we write kx = |k|sinθ, kz = |k|cosθ, and |k| ≡ k, components
(hx,hz) become: hx = k2 cos θ sin θ = k2 sin 2θ and hz = k2(cos θ2 − sin θ2) = k2 cos(2θ).
The winding of h(k) when k makes a full turn around the origin can be found from
tanφ = hz/hx = tan 2θ, section 2.3.3:

ω =
1

2π

∫ 2π

0
2dθ = 2 (138)



128 unconventional dirac cones in strained honeycomb lattice

Now that we have found the topological charge around the undeformed band touching
we are interested in discovering what happens in the case when βp 6= 1. We thus include
f2 = βp + 1/2 into the calculation and the effective Hamiltonian becomes:

Heff = H0σ0 −
3
16

k2
x − k2

y + δ 2kxky
2kxky k2

y − k2
x − δ

 (139)

Here we have H0 = 1 + βp
2 −

3
16 (k

2
y + k2

x) and the merging parameter is defined as δ =
8
3 (βp − 1).
The Hamiltonian we obtained to describe the deformation in the p− bands has exactly

the form of the universal Hamiltonian describing the splitting of a quadratic point with
charge +2 into two Dirac points of charge +1 [226]. It has already been applied to explain
the transition in bilayer graphene when the quadratic touching is transformed into a pair
of Dirac points without opening of the gap. It can be written in the general form:

H++ =

(
∆++ +

q2
x − q2

y

2m∗ σa +
qxqy
m∗

σb

)
(140)

We can see that Hamiltonian 139 can be obtained by taking a = z, b = x, m∗ = 8
3 and

∆++ = δ/2m∗.
The modification of bands around the Γ point in orbital graphene represents thus the

realization of second the possible scenario for merging (or emergence) of Dirac point in
two dimensions.

6.6 engineering the critical type i i dirac points

6.6.1 Compression in orbital bands

In the previous sections we have evidenced two scenarios for the creation and annihilation
of Dirac points in two dimensions. The classification of transitions is performed in terms
of winding of Dirac cones. Hybrid dispersions with the direction dependent properties
were generated through these transitions. We have experimentally observed the creation
of Dirac cones whose tilt depends on the strength of the deformation by changing the
ratio between hopping parameters in orbital graphene, βp < 1. However, the critical point
necessary for the creation of type II Dirac points, for which the corresponding Fermi level
would be an open line and not a point, was not reached. We will see now that this is
possible by compressing the orbital graphene, that is for βp > 1.
Figure 64(a) shows dispersion of a non deformed lattice, this time along the ky direction,

at kx = −3kx0 (across the line 1 depicted in fig. 64(b)). The pillar size is 2.75µm and pillar
to pillar distances d′ = d = 2.6µm. We can observe also the dispersive-flat band touching
at (E −E0)/tL = ±3

2 . It is well described by the tight binding calculation (white lines),
particularly in the low energy region which we are going to examine (the upper part is
modified due to the nonzero tT , see 5.2)
Figure 64(c) shows the intensity of emission along the same direction in a deformed lat-

tice, d′ = 2.4µm. A very particular situation takes place: around two points in momentum
space a flat-linear intersection is created.
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Figure 64: Critical type II Dirac points a) Measured dispersion of an isotropic lattice along
ky direction (line 1 in b)). c),d) Dispersion of critical Type II Dirac point for βp = 1.5,
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Let’s look closer to the dispersion of one of such intersections, for example the one
inside the red dashed rectangle in fig. 64(c). We can see that along the ky direction zero
and constant velocities are combined. It means that the quasi particle described by this
dispersion has combined zero and infinite massed in the ky direction, and it can move only
in one sens along the y axis. This is exactly the situation predicted to happen in critically
tilted Dirac cones expected to appear in the transition between Type I and Type II cones,
as we introduced in the beginning of this chapter.

To explore the direction dependent properties of these observed Dirac cones, we plot
the emission intensity along the kx direction, (along the Line 2 in fig. 64(b)). The red
dashed rectangle, fig. 64, marks the region around the Dirac cone we have analyzed above.
We observe a linear crossing of the bands, meaning that we have indeed realized a critical
Type II Dirac dispersion as the one visualized from tight binding calculation in fig. 64(e).

The results we obtained represent the first observation of this kind of dispersion. They
can also be interpreted as the first observation of critical Type II Dirac quasi-particles. Still,
certain precaution has to be taken when dealing with the analogy between quasi particles
in solid state, or photonic systems and a free elementary particles, such as Dirac or Weyl
particles, predicted by the standard model. While in the limited region of momentum
space the two might have equivalent dispersions the analogy is not absolute. For example,
in lattices Dirac cones appear in pairs. This is the case in graphene, for example, where
two inequivalent Dirac points are labeled with the valley index. The analogy holds as long
as no scattering between valley occurs. In the case of Type I Dirac cones, this is achieved
by staying in the vicinity of zero energy (at least if an additional valley mixing mechanism
is not introduced).
While in electronic lattices probing electrons with particular wave-vector, and avoiding

valley mixing mechanisms can be very challenging, it is facilitated in polariton systems.
Both energy and momentum of polaritons can be directly controlled in resonant pumping
configuration. Scattering rates are low in state of the art samples with small density of
defects allowing to potentially probe only one cone.

6.6.2 The strong compression limit

The specific simulator we used in the experiment, however doesn’t allow us to successfully
implement compression stronger then βp = 1.6. When pillars are approached to reach
βp = 2, coupling of the p − bands with the lower s− and higher d− bands becomes
significant. The energy difference between bands is reduced, leading to deformation of the
p− bands dispersion. With the pillar size we used 2.75µm the separation between the
bands in an non deformed lattice equals 1.5meV , and for compressed lattices it reduces
to 0.3meV .
A way to overcome this problem could be the use of pillars with smaller diameter. In this

way the energy distance between s, p, and d bands is increased, and mixing of the bands,
which becomes important when pillars are strongly approached in compressed lattices, is
minimized.
To complete the study of the behavior of orbital graphene bands upon compression,

we provide results obtained by numerical simulation, in tight-binding approximation. Full
deformation of the semi-flat Dirac dispersion under the uni-axial compression, that is for
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the range of deformation parameter 1 ≥ βp ≥ 2.5 is given in figures 65(a-d). The figures
display dispersions obtained along ky direction, passing through the Γ point in the first
Brillouin zone.
They reveal that the critical Type II Dirac cones are created by the moving of the

dispersive bands away from the zero energy, while the energy of the flat band stays fixed
at E−E0/tL = ±3

2 . Under this transformation, a pair of flat-Dirac cones is created around
the Γ point, as we demonstrated experimentally. Then, as the deformation increases, Dirac
cones from the adjacent Brillouin zones become closer together to each other, until they
finally merge, fig. 65(c). The value of the deformation parameter when the merging occurs
is βp = 2. Dispersive and flat-band then touch again in a single point, this time at the
M point. When the anisotropy of hopping parameters is increased above this point a gap
opens and the system is described by four separate bands, fig. 65(d).

Following this evolution we can notice that the critical Type II Dirac cones are created
for βp > 1 according to the second type of topological phase transition, without opening
of the gap, but annihilated at βp = 2 according to the first one. The full transition from
these two situations has been described in detail from a theoretical point of view in a
recent work [227].

6.7 conclusion

In conclusion, by engineering the hopping parameters in a honeycomb lattice we have
directly evidenced two types of topological phase transitions in 2 dimensions.
The first one describes transition from the semi-metalic phase with two Dirac cones of

opposite topological charge, into a gapped semiconductor phase. At the critical point of
this phase transition a semi-Dirac dispersion for photons is created.
In the second scenario Dirac cones with equal charge emerge from the dispersive-flat

band touching without opening of the gap. Dirac dispersions with tunable tilt are created
in this case, including the critically tilted Type II cone. While we have not been able to
observe pure Type II Dirac cones, recent theoretical works point out lattice geometries
where they could be experimentally implemented in photonics [211].

Our system represents, thus, an extraordinary platform to tailor the properties of pho-
tonic dispersion. Taking into account the ability of photons, or polaritons, to propagate in
the lattice, the doors are opened for studying, [212, 205] their exotic transport properties.
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Figure 65: Creation and merging of critical type II Dirac points a-d) p−bands graphene
dispersions obtained with tight binding calculation reveal full evolution of critical type
II Dirac points for βp > 1. a,b) They are created in pairs around Γ point in each Brillouin
zone. By increasing βp, they approach and finally merge in M point. c) Four separated
bands are obtained for β > 2.



7
CONCLUS ION AND OUTLOOKS

In this thesis, we have studied the physical properties of cavity-polaritons in two-dimensional
honeycomb lattices. The etching technique of microcavity structures developed in C2N al-
lowed to create a lattice potential deep enough to access both s− and p− bands. The
structure is well described by the tight-binding approximation: effective dispersion of the
lowest s− bands mimics the one of electrons in graphene. Additionally, higher energy
p− modes allow exploring dispersion featuring both Dirac cones and dispersive-flat band
touchings, unavailable in graphene.
The out of equilibrium nature of the system provides direct experimental access to the

system global band structure in low temperature luminescence experiments.
In the first experiment presented in this thesis, we explored the states at the edge of the

lattice. Edge states predicted for graphene could be studied without the influence of edge
impurities and instabilities that appear in the electronic lattice. We have evidenced their
flat dispersion in zigzag and bearded edges as well as the geometry of their wavefunctions.
Their location in momentum space corresponds well to the predictions obtained in the
literature using topological arguments (i.e. by applying bulk-edge correspondence) and
their wavefunction shape to the predictions attained by consideration of lattice symmetries.
In orbital graphene, we have evidenced for the first time different types of edge states.

Non dispersive zero energy states connecting the Dirac points are found in regions of
momentum space complementary to those of the edge states in the s− bands. Their origin
and position in momentum space are explained in terms of topological arguments, a result
obtained in collaboration with theoreticians G. Montambaux and T. Ozawa.
Additionally, dispersive, i.e conducting, edge states appear in the gaps between the

flat- and dispersive- bulk bands. Analytical expressions for their dispersion is found for
the zigzag and bearded types of edges. Moreover, in contrast to the zero-energy states,
dispersive ones have been experimentally found also in armchair edge. Weather topological
arguments can be applied to these edge states is an open question and the topic of an
ongoing study.
In the last chapter of the thesis we have focused on the bulk properties of the lattice.

We demonstrated a way to tune Dirac cones and thus tailor the transport properties of
the corresponding quasi particles.
Uni-axial strain was implemented in polariton honeycomb lattices by changing the dis-

tance between pillars along the lattice armchair direction. In this way, topological phase
transitions are triggered. In s- bands, Dirac cones characterized by opposite topological
windings merge, giving rise to a semi-Dirac dispersion, linear in one direction, and parabolic
in the orthogonal one.

Under the effect strain, the band structure of orbital graphene represents a sandpit for
creation of new Dirac cones, with different topological and transport properties from those
in graphene. We have been able to observe tilted Type I, as well as critically tilted Type
II Dirac dispersions.
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Figure 66: Creation of polariton topological insulator (a) SEM image of the polariton
graphene simulator with the schematic representation of application of magnetic field
and unidirectional edge state. (b) Spectrum of polariton topological insulator, red lines
represent unidirectional edge state [228, 229]

The results obtained in this PhD work illustrate the power of polariton emulators for
addressing a variety of physical phenomena at the frontier between photonics, Dirac matter
physics and topological physics. Several research perspectives can be envisaged along three
main directions.
The possibility to observe edge states is very important in the perspective of creating a

Chern insulator in polariton graphene, as detailed in two theoretical proposals [228, 229].
By applying a magnetic field on polaritons, a polariton Zeeman splitting can be induced
and time reversal symmetry can be broken. In presence of a Zeeman splitting and TE-TM
splitting-present in the micro-cavities, Dirac cones in the honeycomb lattice have been
predicted to open a topologically non trivial gap. Unidirectional edge states, protected
from back scattering on defects and impurities, are predicted to emerge. Creation of such
states at optical frequencies is a long sought goal in the very active field of topological
photonics [159]. The practical difficulty lies in the necessity to create effective magnetic
field for photons, a problem that has been successfully solved for microwave and telecom
frequencies in gyromagnetic crystals [230, 231].
Implementation of this proposal in the optical frequency range would allow realization of

compact optical isolators as well as other photonic devices immune to disorder. Polaritons
represent a system with which a topological insulator could be realized. In addition their
excitonic content offers the exciting possibility of exploring nonlinear effects [16]. Possi-
bly unfeasible in natural graphene, phenomena such as soliton solutions of the nonlinear
Dirac equation expected for instance in the armchair edge [232] could be experimentally
addressed. With the creation of a polariton topological insulator another great perspec-
tive is the exploration of topological phases of interacting photons, a very interesting
topic of both photonics and solid state physics [233, 234].
The second topic is the study of exotic transport properties imposed by anisotropic

Dirac cones. For example, it has been predicted that the Klein tunneling is modified in
tilted Dirac cones, fig.67. For particles around cones with opposite chirality, perfect trans-
mission is achieved in two separated directions. The feature could be used to perform
valley filtering and beam splitting, as explained in [205].
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Figure 67: Klein tunneling of tilted Dirac-Weyl fermions Barrier versus angle maps of trans-
mission probability without a) and with b,c) the effects of tilted energy dispersion.

Additionally, our results open new perspectives for the engineering of interfaces with
different types of Dirac dispersions. This route has been recently proposed for simulating
gravitational effects in the laboratory. Achieving critically tilted Type II dispersion (in
the reference called Type III) is at the heart of the proposal for creation of solid-state
analogue of a black hole horizon [235].

Type III

Type I

Type II

Figure 68: Black Hole Horizon with a Type-III Dirac Semimetal a) Schematic illustration
of the solid-state analogue of black hole horizon in an inhomogeneous Zn2In2S5 with
controllable structural distortion. The red arrows indicate quasi particle propagating
directions in each region. b) The dependence of the dragging velocity v on the z coordi-
nate.

The third perspective would be to superimpose honeycomb lattice- with the optically
induced- potentials for polaritons. Creation of localized potentials for polaritons trough
their interaction with the optically induced exciton reservoir has been widely implemented
in microcavity systems [23, 26]. This would allow for example, to engineer fully localized
states in graphene [236], or to study symmetry breaking predicted to appear for charged
and massless Dirac fermion in an attractive 1/r Coulomb potential [237].
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7.1 analytical expressions for the energy of the dispersive edge
states
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To obtain the analytical expressions for the energy of the dispersive, non-zero energy
edge states in zigzag and bearded edges we look for the exponentially decaying solutions
of the tight-binding Hamiltonian of a nanoribbon. To illustrate the procedure we apply
it first to the simpler case of s-bands graphene [94]. The first step is to reduce the two-
dimensional problem of a nanoribbon to an equivalent one-dimensional problem, that is,
to reduce our s-band honeycomb problem to the SSH problem. This is done in section 4.3,
where we obtained Hamiltonian 90.

Now, we search for eigenvalues of this Hamiltonian corresponding to eigenfunctions
which are exponentially decaying into the bulk: |AM | = |A0|e

−3a
2ξ M ≡ |A0||Ω|M . Here A0

is the amplitude of the wavefunction on the first site of the chain, M counts the number
of unit cells from the edge and ξ is the penetration length. In order to have a decaying
wavefunction, we need to have |Ω| < 1. Analogue expressions can be written for the B
sites. Figure 69 shows bearded and zigzag ribbons and the equivalent 1D chains, with
corresponding hopping and wavefunction amplitudes for the edge states.
After imposing the exponentially decaying solution to the problem, the Schrödinger

equation for bearded edges has the form:

−ts



0 1 0 0 0 0
1 0 α 0 0 0
0 α 0 1 0 0
0 0 1 0 α 0
0 0 0 α 0 1
0 0 0 0 1 0

. . .





A0

B0

A0Ω

B0Ω

A0Ω2

B0Ω2

...



= E



A0

B0

A0Ω

B0Ω

A0Ω2

B0Ω2

...



(141)

This system of equations has four unknowns: A0,B0, Ω and E. However, we can normalize
the wavefunction to the amplitude A0 of the outermost site. Therefore we have only three
unknowns left. They can be found by taking the first three equations from the set of
equations (141):

εA0 = tsB0

εB0 = tsA0(1 + αΩ)

εA0Ω = tsB0(α+ Ω) (142)

All the other equations contained in Eq.(141) are equivalent to the set (142). Using the
condition |Ω| < 1 we obtain the regions in momentum space where the zero energy edge
states exist, Ref. [94]. For the bearded edge we have B0 = 0 and:

Ω =
−1
α

=
−1

2 cos(
√3
2 aky)

2| cos
√

3
2 aky| > 1

(143)
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Figure 69: (a) s-bands honeycomb lattice nanoribbons with bearded and zigzag edges (b) Equiva-
lent dimer chains. Hopping amplitudes are given on the links between the chain sites,
and amplitudes of the edge states wave functions below the chain sites.

corresponding to the region marked in green in the upper-right panel of Fig. 51 in the
chapter5, where the winding number has value 1.
To obtain expressions for the energies of the dispersive edge states in the p-bands we

follow the same procedure. In this case, due to the existence of two modes per site, the
reduction to the 1D problem involves two coupled chains corresponding to the px and py
orbitals on each lattice site. Figure 70 shows the hopping amplitudes corresponding to a
ribbon with zigzag edges.
We search again for exponentially decreasing solutions of the form |AMx| = |A0x||Ω|M

with |Ω| < 1 (equivalently for |AMy|, |BMx|, |BMy|). Now we have six unknown variables
A0x,A0y,B0x,B0y, Ω,E or five after we normalize them to B0y. By taking the first five
linear equations of the the Schrödinger problem, we get the set of coupled equations:

εB0y = tL(γA0x + αA0y)

εB0x = tL(3αA0x + γA0y)

εA0x = tL(3αB0x + γ∗B0y)

εA0y = tL(αB0y + γ∗B0x + ΩB0y)

εB0yΩ = tL(A0y + αA0yΩ + γA0xΩ) (144)

The energy of the dispersive edge state in the zigzag edge is obtained by solving
Eqs. (144) and is given by:

Ezigdisp.edge(k‖) = ±tL
√

3
2

√
2 + cos (

√
3k‖a). (145)
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Figure 70: Amplitudes of the wave function for zigzag nanoribbon in the p-band: the problem is
reduced to two coupled dimer chains.The hopping amplitudes are given on the links
between the chain sites.

The penetration length ξ can be easily obtained:

Ω = cos(
√

3
2 k‖a) (146)

ξ = − 3a
2 ln

[
cos(

√3
2 k‖a)

] .

The amplitudes of the dispersive edge states eigenfunctions on the unit cell located at
the edge are:

A0x = ∓
i

sin(
√3
2 k‖a)

√
cos(
√

3
2 k‖a) + 2 , A0y = 0

B0x = −i
√

3 cot(
√

3
2 k‖a) , B0y = 1 (147)

where ∓ for the A0x coefficient applies, respectively, to the positive/negative energy dis-
persive states.
Similar expressions describing the energy of the dispersive edge state in bearded edges (109

in the chapter 5, can be found in the same way.



Part II

A P P E N D I X B





.1 topological description of merging of zero energy dirac cones in orbital graphene 145

.1 topological description of merging of zero energy dirac cones
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In this appendix, we are going to demonstrate a theoretical method for determining
topological properties of band degeneracies in p−bands graphene. The method is applicable
to both undeformed and deformed lattice. It has been developed by G. Montambaux form
LPS Orsay, and it consists of deducing an effective Hamiltonian around a certain point
in momentum space. The procedure is similar to the one developed in [82] for bilayer
graphene.
We are going to use this method here here in the appendix to show that the Lifshitz

transition at zero energy in p−bands graphene, for β < 1, can be understood as merging of
Dirac points with opposite topological charge. In the main text we will use it to understand
the emergence of Dirac point from the dispersive-flat touching.
The procedure starts by taking the original Hamiltonian of the problem exactly in a

certain point (Γ,M or D for example). This Hamiltonian can be easily diagonalized and
written in a block diagonal form:

H(0) =

 H
(0)
+ 0
0 H

(0)
−

 (148)

where H (0) and H (0)
− are also diagonal. Using the obtained basis we can rewrite the original

Hamiltonian, which will now have the form:

H =

 H+ C
C† H−

 (149)

where C,H+ −H
(0)
+ ,H− −H (0)

− are small. By introducing the 4× 4 Green function:

G(H) =

 G11(H) G12(H)
G21(H) G22(H)

 (150)

Defined through its inverse:

G−1(H) = E −H (151)

we can obtain for the 2× 2 Green function:

G11(H) = (E −H+ −C · (E −H−)−1 · C†)−1

≡ (E −Heff )−1 (152)

defining the effective 2× 2 Hamiltonian Heff . At lowest order, we then have:

Heff = H+ + C · (E −H0
−) · C† (153)

.0.1 Vicinity of Dirac points in p− bands graphene

To apply the procedure on the zero energy Dirac cones we start from the Hamiltonian of
p−bands graphene given in the main text by the expressions 126-128. First, we concentrate
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on the vicinity of the Dirac points when β = 1. The coordinates of one of the Kpoint are
(Ky = 0,Kx = −2π/3) Hamiltonian at this point can be written as:

HK =
3
4


0 0 −1 i

0 0 i 1
−1 −i 0 0
−i 1 0 0

 (154)

Its eigen functions, associated respectively with the energies 0,0,3/2,-3/2 are found to
be:

1√
2


0
0
i

i

 , 1√
2


−i
1
0
0

 , 1
2


i

1
−i
1

 , 1
2


−i
−1
−i
1

 (155)

It this new basis Hamiltonian can be rewritten in the diagonal form. In the vicinity of the
K point, where q = k−K it takes the form:

K(q) = Hs = ts

H0 C
C† He

 , (156)

T blocks H0 and He correspond respectively to the low energy (around E=0) and high
energy (around E = ±3

2 ) regions. Explicitly they take the form:

H0 =
1
2

 0 f2 − f1 + 2ig
f∗2 − f∗1 − 2ig∗ 0

 (157)

and

He =
1
2

 R(f2 − f1) + 2I(g) iI(f1 − f2) + iR(g)
−iI(f1 − f2)− iR(g) R(f1 − f2)− 2I(g)

 (158)

They are coupled by the off-diagonal block C:

C = 1
2
√

2

 f∗1 + f∗2 f1 + f2

−(f∗1 + f∗2 ) f1 + f2

 (159)

Finally, at low energy, near the K points and to the lowest order of vector q the vicinity
od the Dirac points is well described y the low energy 2x2 Hamiltonian:

Heff =
3
4

 0 qx − iqy
qx − iqy 0

 (160)

From the above expression we can conclude that the linear spectrum at low energy cor-
responds to two usual Dirac points. We already know that they are characterized with
opposite charge, as guaranteed by the property of Hamiltonian: HK′ = HK∗ .
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.0.2 Merging of zero energy Dirac points in p−bands

Now we are interested to describe the merging of Dirac points we have evidenced experi-
mentally. It happens when

Ky = 0 , cos(Kx) = −1 (161)

, that is for kx = 2π/
√

3,(M point). We can diagonalize HM , taken exactly in this point,
then find the eigen values and the eigen functions, and write the Hamiltonian in its vicinity
in the form:

HM (k) ≡

H0 C
C He

 (162)

After taking into account the necessary terms at lowest order in perturbation, we obtain
Hamiltonian which is linear in qy and quadratic in qx:

Heff =

β − 1
2 −

3
16q

2
x −3

4 iqy
3
4 iqy

1
2 − β + 3

16q
2
x

 (163)

As announced the obtained Hamiltonian has exactly the form 124 of the Universal Hamil-
tonian H± with ∆ = 1/2− β, m∗ = 8/3 and c = 3/4.



1. Marijana Milićević,  O. Bleu, D. D. Solnyshkov, I. Sagnes,A. Lemaitre, L. Le Gratiet, J. 
Bloch, G. Malpuech and A. Amo, Lasing in optically induced gap states in photonic 
graphene, to be submitted

2. Marijana Milićević, T. Ozawa, G. Montambaux, I. Carusotto,  E. Galopin, A. Lemaître, L. Le 
Gratiet, I. Sagnes, J. Bloch, and A. Amo, Orbital Edge States in a Photonic Honeycomb 
Lattice,  Physical Review letters, 118, 107403 (2017)

3. M. Milićević, T. Ozawa, P. Andreakou, I. Carusotto, T.Jacqmin, E. Galopin, A. Lemaître, L. 
Le Gratiet, I. Sagnes, J. Bloch, and A. Amo, Edge states in polariton honeycomb lattices, 2D 
Materials 2, 034012 (2015).

1. Invited - Creation of Semi-Dirac Photons Through Topological Phase Transitions in
Photonic Honeycomb Lattices, GDR PHYSIQUE QUANTIQUE MESOSCOPIQUE-SESSION
PLANIERE, Aussois, France, December 4-7, 2017

2. Invited – Polartion graphene emulator, CONDENSED MATTER DIVISION
OF EUROPEAN PHYSICAL SOCIETY- CMD26, Groningen, The Netherlands, September
49, 2016

3. Orbital edge states in polariton honeycomb lattices, COST JOINT SCHOOL OF QUANTUM
SIMULATION AND MANY-BODY PHYSICS WITH LIGHT, Chania, Greece, 4-9 June 2016

4. Edge states in polariton honeycomb lattices, INTERNATIONAL CONFERENCE ON OPTICS
OF EXCITONS IN CONFINED SYTEMS, OECS15, Jerusalem, Israel, October 11-16, 2015

5. Edge states in polariton honeycomb lattices, CONGRES GENERAL DE LA SOCITE
FRANCAISE DE PHYSIQUE, Strasbourg, France, August 24-28, 2015

PUBLICATIONS AND CONFERENCES

List of publications

Conferences



This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 165.123.34.86

This content was downloaded on 17/08/2015 at 11:06

Please note that terms and conditions apply.

Edge states in polariton honeycomb lattices

View the table of contents for this issue, or go to the journal homepage for more

2015 2D Mater. 2 034012

(http://iopscience.iop.org/2053-1583/2/3/034012)

Home Search Collections Journals About Contact us My IOPscience



2DMater. 2 (2015) 034012 doi:10.1088/2053-1583/2/3/034012

PAPER

Edge states in polariton honeycomb lattices

MMilićević1, TOzawa2, PAndreakou1, I Carusotto2, T Jacqmin1,3, EGalopin1, A Lemaître1, L LeGratiet1,
I Sagnes1, J Bloch1 andAAmo1

1 Laboratoire de Photonique etNanostructures, LPN/CNRS, Route deNozay, 91460Marcoussis, France
2 INO-CNRBECCenter andDipartimento di Fisica, Università di Trento, I-38123, Povo, Italy
3 Present address: Laboratoire Kastler Brossel, UPMC-SorbonneUniversités, CNRS, ENS-PSLResearchUniversity, Collège de France, 4

place Jussieu, Case 74, F75252 Paris Cedex 05, France.

E-mail: alberto.amo@lpn.cnrs.fr

Keywords: polariton, photonic graphene, edge states, optics

Abstract
The experimental study of edge states in atomically thin layeredmaterials remains a challenge due to
the difficult control of the geometry of the sample terminations, the stability of dangling bonds, and
the need tomeasure local properties. In the case of graphene, localized edgemodes have been
predicted in zigzag and bearded edges, characterized by flat dispersions connecting theDirac points.
Polaritons in semiconductormicrocavities have recently emerged as an extraordinary photonic
platform to emulate 1D and 2DHamiltonians, allowing the direct visualization of thewavefunctions
in both real- andmomentum-space as well as of the energy dispersion of eigenstates via
photoluminescence experiments. Here we report on the observation of edge states in a honeycomb
lattice of coupledmicropillars. The lowest two bands of this structure arise from the coupling of the
lowest energymodes of themicropillars, and emulate the π and π* bands of graphene.We show the
momentum-space dispersion of the edge states associatedwith the zigzag and bearded edges, holding
unidimensional quasi-flat bands. Additionally, we evaluate polarization effects characteristic of
polaritons on the properties of these states.

Introduction

Graphene is a 2D material with extraordinary trans-
port properties. Many of them arise from its non-
trivial geometry with two identical atoms per unit cell,
resulting in linear bands crossing at two non-equiva-
lent Dirac points. The spinor character of the wave-
functions gives rise to a Berry phase of ±π when
circumventing each of these points in momentum
space. This feature is at the origin of its non-conven-
tional transport properties like ballistic Klein propaga-
tion [1, 2], antilocalization in the presence of disorder
[3], or Veselago lensing effects when traversing a
potential step [4]. The non-zero Berry phase around
the Dirac points has an interesting consequence: the
existence of edge states in finite-size samples. Indeed,
it has been recently shown that the existence of such
states can be related to the non-zero Berry phase along
a straight trajectory in momentum space defined by
the geometry of the considered edge [5–7]. Because

the Berry phase depends on the trajectory, not all
possible edge geometries present localized states [8].

The most commonly considered graphene termi-
nations are the so-called armchair, zigzag, and bear-
ded. Among them, only the last two present localized
states, characterized by a flat dispersion linking the K
and K’Dirac points [8–11]. Although these edge states
may play an important role in the localization and
transport in small-size graphene nanoribbons, experi-
mental studies on the spatial distributions of the wave-
functions and their dispersion are not straightforward.
While different kinds of terminations can be prepared
in graphene and visualized using scanning tunneling
microscopy [12, 13], the existence of electronic edge
states has only been evidenced via the measurement of
the local density of states, which provides information
on their energy and on the curvature of their disper-
sion, but misses any information on their microscopic
spatial structure and on their momentum distribu-
tion [12].
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Photonic graphene analogues are an ideal plat-
form to experimentally address the single particle phy-
sics of 2D lattices [14]. Optically induced honeycomb
lattices in photorefractive crystals have been employed
to study conical diffraction effects [15, 16] and the spi-
nor character of the wavefunctions on the honeycomb
lattice [17]. Arrays of photonic coupled waveguides
can be engineered with single site precision, and they
have been recently used to engineer artificial gauge
fields in strained honeycomb lattices [18] and to fabri-
cate a photonic analogue of a Floquet–Chern insulator
[19]. Lattices of microwave resonators have also been
shown to mimic several properties of electronic gra-
phene [20, 21]. The possibility to control both the
local geometry and the coupling has been used in both
systems [7, 22], as well as in experiments with ultra-
cold atoms [23], to study exciting phenomena like the
topological transition associated to the merging of
Dirac cones, as first suggested by Montambaux et al
[24, 25], and edge states. Moreover, photonic systems
allow realizing any type of lattice termination, even
those that are not stable in graphene such as the bear-
ded edge. The spatial and momentum distributions of
certain edge wavefunctions have been studied using
microwave resonators [26] and coupled waveguides
[7, 27]. However, neither of these two systems pro-
vides the combined information on real, momentum,
and energy spaces needed to reconstruct the band dis-
persion of the eigenfunctions, and in particular of the
edge states.

In this sense, arrays of coupled micropillars in
semiconductor microcavities provide a versatile plat-
form to study 1D and 2D photonic lattices. In a single
micropillar, photons are confined in the three spatial
dimensions, and they are strongly coupled to quantum
well excitons placed at the maxima of the electro-
magnetic field. The new eigenstates of the micropillars
are polaritons, with a mixed exciton–photon nature
that provides them with significant interactions [28].
By partially overlapping twomicropillars, we can engi-
neer the hopping of photons, and thus polaritons,
between different pillars [29, 30]. By extending this
coupling to 2D arrays, a polariton honeycomb lattice
has been recently realized [31]. Other techniques to
engineer polariton lattices have been recently reported
[32–37].

The coupled micropillar system is well described
by a tight-bindingHamiltonian giving rise to polariton
dispersions analogue to the electronic π and π* bands
of graphene. One of its main assets is that the escape of
photons out of the microcavity provides all the infor-
mation regarding the amplitude, phase, momentum,
and energy of the polariton eigenstates: angularly
resolved spectroscopy reveals the energy bands of the
system, evidencing the characteristic linear dispersion
around the Dirac cones, as shown in [31]. In the pre-
sent work, we report on the observation of localized
edge states along zigzag and bearded edges in such a
honeycomb lattice of coupled micropillars. We

observe a flat band dispersion for these edge states,
connecting K and K’ points at complementary regions
in momentum space, as expected from tight-binding
calculations [8]. Despite the non-zero next-to-nearest
neighbor coupling in our lattices, the observed edge
states remain flat up to the resolution given by the
polariton linewidth. Our results are promising in view
of observing topologically protected edge states when
combining polariton polarization effects and external
magnetic fields to realize a photonic topological insu-
lator [38–40].

The polariton honeycomb lattice

In our experiments we use a Ga0.05Al0.95As λ/2 cavity
embedded in two Ga0.05Al0.95As/Ga0.8Al0.2As Bragg
mirrors with 28 (40) top (bottom) pairs, the same as in
the original realization of the polariton honeycomb
lattice [31]. The cavity contains three sets of four 70 Å
GaAs quantum wells located at the three central
maxima of the confined electromagnetic field, result-
ing in a Rabi splitting of 15 meV. The planar micro-
cavity, grown by molecular beam epitaxy, is etched
down to the substrate in the form of a series of
honeycomb lattices of coupled micropillars, as shown
in figure 1 of [31]. The zero dimensionality of the
micropillars imposes quantized energy levels for
polaritons. Therefore, they behave like artificial photo-
nic atoms. The lowest energy polariton eigenstate of an
individual micropillar presents cylindrical symmetry,
like the pz orbitals of graphene. To introduce the
coupling between the micropillars, we etch them so
that they partially overlap (the interpillar distance is
set to be smaller than their diameter). The narrow
region between the pillars represents a potential
barrier for photons and thus, for polaritons, through
which they can evanescently tunnel. The coupling
strength can be tuned by choosing the size of the pillars
and the distance between them [29]. To enhance the
tunneling we consider lattices with predominantly
photonic polaritons, at −17 meV exciton–photon
detuning.

By properly designing the lithographic mask used
to etch the planar cavity into a honeycomb lattice, we
engineer different types of edges in our samples.
Figure 1(a) shows a lattice containing the most com-
monly considered edge types: zigzag, armchair, and
bearded. The lattice consists of nearly 30 unit cells
along the crystallographic axes. This size is large
enough for the properties of the bulk to be dominant
when probing lattice sites located near the center,
while simultaneously showing edge physics when
probing the properties in the edges.

Before reporting on the experimental results, we
first consider the graphene dispersion relation for the
bulk and edge bands using a tight-binding model
including next-nearest-neighbor hopping t’= –0.08 t,
where t is the nearest neighbor coupling. This is the
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value used in [31] to describe our lattices. Figure 1(b)
shows the calculated momentum-energy relation for
an infinite honeycomb lattice without edges. It fea-
tures positive and negative energy bands intersecting
at two inequivalent Dirac points in the first Brillouin
zone. To calculate the dispersion of the edge states we
consider a nanoribbon geometry: an infinite lattice in
the y-direction and of finite width in the x-direction,
ending with the same type of boundary on both sides.
Therefore, the calculated dispersions are continuous
along ky, with several transverse modes corresponding
to the confinement in the x-direction. The result is
shown in figure 1(c) for ribbons with either zigzag or
bearded edges. Each of the different transverse modes
corresponds to each individual line in the figures. Edge
bands appear for the zigzag and bearded edges in com-
plementary regions of ky connecting the Dirac cones
[8, 9] as indicated in red and green, respectively, in
figure 1(d). The zigzag edge band appears for ky(zigzag) є
[−2, −1]ky0 U [1, 2]ky0, and the bearded edge band for
ky(bearded) є [−1, 1]ky0, with ky0 = 2π/(3√3a) and a
being the interpillar distance. The dispersion of the
edge states deviates from a perfect flatband as a con-
sequence of the next-nearest-neighbor hopping para-
meter included in the calculation. However this
deviation is rather small: 50 μeV in total for a value of
t= 250 μeV.

Spatially, the edge states are localized on the outer-
most sites, with an exponentially decaying amplitude

into the bulk ( )x e( ) .edge
x l/ eψ ∼ − In the absence of

next-nearest-neighbor coupling the penetration
length follows [8]:

( )( )
l

a

ln cos k a

3

2 2 3 /2
(1)e

y

 =

The finite penetration results in a finite width in
momentum space for the edge states. Figure 1(e)
shows the kx−kymomentum distribution of the zigzag
and bearded edge states calculated by Fourier trans-
forming with respect to x the spatial distributions of
the edge state for each ky as obtained from the solution
of the tight-binding Hamiltonian. The edge modes are
spread around straight lines connecting the Dirac
points at the border of the Brillouin zone, as schemati-
cally represented in figure 1(d). The edge states with ky
corresponding to the center of the zigzag band
(ky=±1.5 ky0) are fully delocalized in the ky-direction
(see dashed line in figure 1(e)). Correspondingly,
these states are spatially fully localized, down to a sin-
gle site (see figure 1(f)). In the case of the bearded edge
state, maximum spatial localization is attained at
ky= 0, with a penetration length of 2.2a, larger than
the maximally localized zigzag edge state. At the Dirac

Figure 1.Honeycomb lattice edges. (a)Opticalmicroscope image of the sample containing the three considered types of edges. (b)
Calculated band-structure of an infinite honeycomb lattice in the tight-binding approximationwith nearest- and next-nearest-
neighbor coupling. (c) Calculated band-structure for graphene nanoribbons with bearded (green) and zigzag (red) edges. The
different blue lines correspond to the projection on the ky-E plane of the dispersion of the different transversemodes due to the
confinement in the x-direction. The red and green lines show the edge bands corresponding to zigzag and bearded terminations,
respectively. (d) First and adjacent Brillouin zones showing the regions in k spacewhere the edge states are expected. (e) Simulation of
themomentumdistribution for zigzag and bearded edge states obtained by Fourier transforming along x the calculated spatial
wavefunction of the edge states corresponding to different ky values. Dashed lines show fully delocalized edge states along kx. (f)
Penetration length of the amplitude of the edge states wavefunction according to equation (1).
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points, the penetration length becomes infinite, and
the edge states merge into bulk modes. Note that no
edge state is formed for armchair edges.

To experimentally access the polariton wavefunc-
tions and dispersions we perform low temperature
(10 K) photoluminescence experiments, analogous to
the procedure carried out in [31]. We excite the sam-
ple non-resonantly using a Ti:Sapph monomode laser
at 740 nm, about 100 meV above the lowest band of
the honeycomb lattice. The excitation creates elec-
tron–hole pairs in the quantum wells, which relax
incoherently and, under low power excitation, popu-
late all polaritonic energy bands. We analyze the far-
field emission arising from photons escaping out of
the cavity. Owing to momentum-conservation laws,
each photon is emitted with in-plane momentum
equal to the in-plane momentum of the polariton in
which it originated. Thus, there is a direct correspon-
dence between the angle of emission and the in-plane
momentumof polaritons up to a reciprocal lattice vec-
tor. Each angle of emission corresponds to a point in
the Fourier plane of the collecting lens, a high numer-
ical aperture microscope objective (NA= 0.65), which
is also used for the excitation. By imaging the Fourier
plane on the entrance slit of a spectrometer, we resolve
in energy and in-plane momentum the far-field emis-
sion along the line given by the slit (parallel to ky), for a
given value of kx, which we record on a CCD camera.
By varying the position of the image of the Fourier
plane on the slit, we collect the dispersion for different
values of kx. We are thus able to reconstruct a 3D
matrix whose axis are kx, ky and the emission energy
[41]. The described tomography process is also carried

out for the real-space emission to reconstruct the spa-
tial distribution of the emitted light at a given energy,
and study the localization of the edge state. We select
the linear polarization of the emission using a set of
half-waveplates and linear polarizers.

We study a graphene simulator similar to the one
shown in figure 1(a), containing zigzag edges. The dia-
meter of the pillars (d= 3 μm) and the interpillar dis-
tance (a= 2.4 μm) result in a significant tunneling
strength, t= 250 μeV, in combination with a relatively
narrow linewidth ∼150 μeV. For the excitation, we
focus the laser in a Gaussian spot with a diameter of
3 μm, covering around one pillar. We select the emis-
sion linearly polarized along the y axis, parallel to the
edge. Since the emission arisesmainly from the excited
area, we are able to selectively image the dispersion
from the bulk or the edge. Figure 2(a) shows the
momentum-space emission at the energy of the Dirac
point (zero energy) when exciting the lattice in the
bulk. We observe six isolated bright spots at the Dirac
points, which identify the first Brillouin zone hexagon.
These are the points in which upper and lower bands
meet (figure 1(b)). The triangular shape of the points
is due to the trigonal warping known to be present in
the honeycomb lattice spectrum for non-zero energies
[42], visible here because of the finite linewidth.
Figure 2(b) shows the energy-resolved far-field emis-
sion along line 1, parallel to ky at kx= 1.7·(2π/3a). We
select a line passing through the second Brillouin zone
in order to evidence the upper band, whose emission is
strongly reduced in the first Brillouin zone due to
destructive interference effects [31]. In figure 2(b), we
can identify the upper and lower energy bands

Figure 2. Zigzag edge,momentum-space emission. (a), (d)Measured photoluminescence intensity inmomentum space at the
energy of theDirac points (E0 = 1569.2 meV) under bulk (a) and zigzag edge (d) excitation. (b), (e) Spectrally resolved far-field
emission along line 1 in (a) and (d), passing through the secondBrillouin zone for excitation in the bulk (b) and in the zigzag edge (d).
(c), (f)Measured dispersion along line 2 in (b) and (d), respectively. The black lines show fits to the tight-binding honeycomb
dispersion.
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separated by a gap as expected for the graphene disper-
sion for this value of kx (figure 1(b)). The black curve
in figure 2(b) depicts the dispersion expected from the
tight-binding approximation with t= 250 μeV and
t’= –0.08 t (i.e., –20 μeV). Note that the next-nearest
neighbor coupling is evidenced via the asymmetry of
the bands above and belowE0.

Zigzag edge

Wenow address the situation when the excitation spot
is moved to one of the external pillars forming the
zigzag edge. Figure 2(d) shows the luminescence at the
energy of the Dirac points for this excitation config-
uration. The Dirac cones are now continuously
connected by a bright line in the ky(zigzag) region while
there is a dark region in the middle at the ky(bearded)
region, as expected from figures 1(d), (e). Addition-
ally, along line 3 we observe a spread emission in kx,
indicating a fully localized edge mode. This feature
matches the state marked by a dashed line in the
simulation shown in figure 1(e). The overall emitted
intensity in momentum space is asymmetric since
light is collected at the edge and translational symme-
try is broken. When analyzing the energy-resolved
emission along line 1 (figure 2(e)), two additional
lobes are clearly observed in the gap between the upper
and lower bands. Their location in momentum space
corresponds to that expected for the edge states shown
in figure 1(d) (red lines). The measured full-width-at-

half-maximum of the lobes along the ky-direction in
figure 2(e) is 0.75 ky0, in agreement with the theoretical
prediction for the edge states along the same line in
momentum space extracted from the simulation
shown infigure 1(e), within a 20% error.

The quasi-dispersionless character of the band
associated to the edge states can be evidenced by select-
ing a spectral cut along line 2 in figure 2(d), which
contains the ky(zigzag) region. Figure 2(f) shows a flat
band linking the twoDirac cones. No such state is pre-
sent in the bulk (figure 2(c)), where only the corre-
sponding bulk dispersion is detected. Only the states
with group velocities propagating towards the bulk
(positive slope) emit light, explaining the asymmetry
of figure 2(f). For a clearer comparison with the edge
states band, a fit of the bulk bands is presented in
figures 2(e) and (f) by a black curve. Although our sys-
tem exhibits effects of next-nearest-neighbor tunnel-
ing for the bulk bands, the edge states band stays flat
within the linewidth. Indeed themagnitude of the cur-
vature obtained in the tight-binding calculations
(50 μeV) is small compared to the emission linewidth
(150 μeV). Note that emission from bulk states is also
present infigures 2(e) and (f).

In addition tomomentum-space imaging, our sys-
tem allows evidencing the localization of the edge
states by looking at the real-space emission. For this
purpose, we use a large Gaussian laser spot, 20 μm in
diameter, covering around 30 pillars. In this way, we
are able to excite edge modes on several pillars, and to

Figure 3. Zigzag edge, real-space emission. (a), (c)Measured real-space emission at the energy of the bulk band (a) (energymarked
with a black arrow in figure 2(e)), and at the energy of the edge state (c) (red arrow infigure 2(e)). Dashed lines show the half-
maximum intensity of the excitation laser spot. The lower part of the panels shows an opticalmicroscope image of the edge. (b), (d)
Simulations of emission of a driven-dissipative polaritonic honeycomb lattice coherently pumped at an energy corresponding to bulk
states (b), and at the energy andmomentumof a zigzag edge state (d).
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compare the emission of the edge and bulk states from
a single set of measurements. Figure 3(a) shows the
emitted intensity at the energy of the middle of the
upper bulk band, 0.5 meV above the Dirac points
(black arrow in figure 2(e)). The bulk modes present
the expected honeycomb pattern, with an intensity
distribution following the pump spot. Figure 3(c)
shows the real-space emission at the energy of the edge
state (E0, red arrow in figure 2(e)). In this case, the out-
ermost line of pillars shows a stronger emission, corre-
sponding to the localized edge state.

This interpretation is supported by simulations of
a driven-dissipative model of the honeycomb lattice.
In the simulations, we added to the tight-binding
Hamiltonian a monochromatic resonant pump and
cavity losses of γ= 0.1 t for all lattice sites.We calculate
the steady state with a pumping beam at E0 that covers
the whole sample with an incident momentum

( )( )k k1/ 2 3 , 3/2 ,y0= corresponding to the center

of the segment connecting the Dirac points where the
zigzag edge state is expected. The result is shown in
figure 3(d), revealing the edge state fully localized on
the outermost pillars, as expected from equation (1).
The same simulation at the energy of the bulk bands
shows emission from the whole lattice, as depicted in
figure 3(b).

One of the specific characteristics of polaritons,
different from other photonic simulators like coupled
waveguides or microwave resonators, is their sig-
nificant polarization-dependent properties. The
polarization-dependent penetration of the electro-
magnetic field in the Bragg mirrors forming the cavity
results in a linearly polarized TE-TM splitting whose
magnitude increases quadratically with the in-plane
momentum [43], resulting in the so-called optical
spin-Hall effect [44–46]. Additionally, the polariza-
tion-dependent hopping between coupled micro-
pillars [47] has been shown to give rise to spin–orbit
coupling effects in hexagonal photonic molecules in

the polariton condensation regime [48].When analyz-
ing the spontaneous emission from the bulk of the
honeycomb lattice presented here we observe negli-
gible effects. The reason is that the period of the lattice
is big enough to restrict the first Brillouin zone to small
values of in-plane momenta where the TE-TM split-
ting is expected to be smaller than the measured
linewidth.

Nevertheless, we do observe significant polariza-
tion effects when analyzing the emission from the edge
states. Figure 4(a) reproduces figure 2(e) showing the
energy-resolved far-field emission upon small spot
excitation located at one of the outermost pillars of the
zigzag edge. Here, we select the emission linearly
polarized parallel to the direction of the edge (y), as in
all the results we have presented so far.When selecting
the opposite linear polarization direction, perpendi-
cular the edge, we observe that the edge state is located
at a lower energy ΔE= 160 μeV. Similar polarization
splittings have been reported in 1D polariton micro-
wires [49, 50]. The splitting may arise from the inter-
play between two effects. First, the asymmetric
photonic confinement along and perpendicular to the
edge could induce a linear polarization splitting of the
confined photonic modes. Second, the finite-size
etched structure may give rise to strain crystal fields
resulting in the splitting of the excitonic modes with
polarization directions along and perpendicular to the
strain field. In the considered structure, a strain mis-
match between the x- and y-directions could take
place close to the edge of the honeycomb lattice. Given
the significant value of ΔE, the excitonic origin of the
splitting seems the most likely. Indeed, photonic con-
finement effects are expected to result in polarization
splittings of 5–10 μeV in this kind of structures [48],
much smaller than the linewidth. Note that the strain
field might penetrate a few sites into the lattice, thus
affecting the energy of the bulk bands close to the edge.

Figure 4. Polarization effects.Measured dispersion along line 1 infigure 2(d) when excitation is performed on the zigzag edge. Linear
polarization of detection is parallel (a) and perpendicular (b) to the edge.ΔE indicates the energy splitting between the edgemodes
with opposite linear polarizations.
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This is the origin of the observed redshift of the bulk
bands infigure 4(b)with respect tofigure 4(a).

Bearded edge

Bearded terminations have also been predicted to
exhibit edge states [11]. Experimental investigation of
this type of edge band is not feasible in carbon graphene
where dangling bonds specific to this kind of termina-
tion are chemically unstable. Thus, it has been studied
mostly theoretically and using graphene analogues
[8, 26, 27]. To study the energy-momentum dispersion
of this kind of edge state, we have fabricated a lattice
containing bearded edges, with pillar diameter of
d=2.5 μm, and interpillar distance a=1.76 μm, giving
the same tight-binding tunneling amplitudes as in the
lattice with the zigzag edges. However, the smaller pillar
diameter results in non-radiative losses that give rise to
a larger linewidth (∼350 μeV). Experiments are per-
formed under the same conditions as described pre-
viously, in both real and reciprocal space
configurations. Figure 5(a) shows the momentum
space at the energy of theDirac pointswhen exciting the
bulk of the lattice. Again, we are able to identify the six
Dirac points of the first Brillouin zone with gaps
betweenthem.Theyare lesspronouncedthan infigure2
due to the broader linewidth. The bulk dispersion along
line 1 defined in figure 5(a), containing the ky(bearded)
region, is shown in figure 5(b). The expected shape of
the bands is observed, with crossings at two Dirac
points. When the probe is placed on the edge of the
sample, different patterns are observed. The

momentum-spacemap at theDirac point energy shows
an enhanced emission in the ky(bearded) and equivalent
regions (figure 5(e)), revealing the edge states band. Its
full-width-at-half-maximum along the kx-direction at
ky=0 is 0.50 kx0, with kx0 = 2π/(3a), in excellent
agreement with the prediction in figure 1(e), where this
value is 0.45 kx0. The dispersion along line 1
(figure 5(f)) shows now a flatband connecting the two
Dirac points in the momentum-space region corre-
sponding to ky(bearded). As previously described for the
zigzag edges, the linewidth detain us from observing
non-flatness of the edge band.

To study the spatial location of the state we per-
form measurements and simulations of the real-space
emission under excitation with a large pump spot.
Figure 5(h) shows a simulation of the emitted intensity
when exciting the edge state at ky= 0. The observed
bearded edge state resides on the sublattice corre-
sponding to the bearded ending, and it penetrates sev-
eral lattice sites into the bulk, as expected from
equation (1). In the experiment (figure 5(g)), we
observe bright spots on the outermost pillars of the lat-
tice. This emission is absent at the energy of the bulk
modes (figure 5(c)), and thus it corresponds to the
edge state. The penetration depth is, however, difficult
to estimate experimentally due to the emission from
the bulkmodes at the same energy.

Conclusion

We have used a photonic graphene simulator to
directly visualize the localized states associated with

Figure 5. Bearded edge. (a), (e)Measured photoluminescence intensity inmomentum space at the energy of theDirac points, in the
bulk (a) and on the bearded edge (e). (b), (f) Spectrally resolved far-field emission along line 1 in (a), passing through the regionwhere
edge states are expected, in the bulk (b) and on the bearded edge (f). (c), (g)Measured real-space emission at the energy of the bulk
band (black arrow in (f)), and at the energy of the edge state (red arrow in (f)).E0 = 1578.1 meV.Dashed lines show the half-maximum
intensity of the excitation laser spot. The polarization of detection is parallel to the edge (vertical). (d), (h) Simulations corresponding
to resonant excitation of bulk and edgemodes, respectively.
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the bearded and zigzag types of graphene edges.
Clear identification of the different kinds of edge
states is possible thanks to real-space and far-field
imaging. Although we mainly used the photonic
nature of polaritons in the present experiments in a
honeycomb lattice, their excitonic content offers the
exciting possibility of exploring nonlinear effects
[28]. Virtually unfeasible in natural graphene,
phenomena such as soliton solutions to the non-
linear Dirac equation expected for instance in the
armchair edge [51] can be experimentally
addressed.
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We experimentally reveal the emergence of edge states in a photonic lattice with orbital bands. We use a
two-dimensional honeycomb lattice of coupled micropillars whose bulk spectrum shows four gapless bands
arising from the coupling of p-like photonic orbitals. We observe zero-energy edge states whose topological
origin is similar to that of conventional edge states in graphene. Additionally, we report novel dispersive edge
states in zigzag and armchair edges. The observations are reproduced by tight-binding and analytical
calculations, which we extend to bearded edges. Our work shows the potentiality of coupled micropillars in
elucidating some of the electronic properties of emergent two-dimensional materials with orbital bands.
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Boundary modes are a fundamental property of finite-
size crystals. They play an important role in the electronic
transport and in the magnetic properties of low-dimensional
materials [1–4]. Their existence has long been related to the
microscopic details of the edge of the crystal [5–7]. Recent
advances in the study of topological physics have revealed
that, for topologically nontrivial materials, the existence of
surface states is directly related to the properties of the bulk
[8–10]. This is the case of conduction electrons in graphene
[11–13], in which the nearest neighbor coupling of the
cylindrically symmetric pz orbitals of the carbon atoms
gives rise to two bands (here labeled s bands) crossing in
an ungapped spectrum (Dirac cones). The localized edge
modes in this system exist for any type of termination
except for armchair [14,15]. They are topologically pro-
tected by the chiral symmetry of the honeycomb lattice, and
their existence can be predicted by calculating the winding
number of the bulk wave functions [11–13].
In 2007, Wu and coworkers proposed an orbital version of

graphene by considering a honeycomb lattice with px;y

orbitals in each lattice site [16,17]. The strong spatial
anisotropy of the orbitals results in four ungapped bands
with distinct features: two bands showing Dirac crossings
and two flat bands, which were first reported experimentally
in a polariton-based photonic simulator [18]. The interest in
this kind of orbital Hamiltonian has taken a new thrust due to
the rapid emergence of two-dimensional materials [19], such
as black phosphorus [20–22] and two-dimensional transition
metal dichalcogenides [23], whose bands originate from
spatially anisotropic atomic orbitals. Edge states in MoS2
flakes have been observed [24], and recent works aim at
quantifying their impact in the transport properties [25].
Edge states in orbital modes have also been studied
theoretically in connection to d-wave superconductivity

[11,26] and spin-orbit coupling in superlattices of nano-
crystals [27], systems very hard to realize experimentally
with tuneable parameters. A photonic simulator of orbital
bands would open the door to the study of the microscopic
properties of orbital edge states [28] and the connection to
the topological properties of orbital bulk bands. In a more
general framework, it would provide a platform to simulate
some aspects of orbital bands which are essential in various
topological insulators with band inversion [29].
In this Letter we report the experimental observation

of edge states in the px;y orbital bands of a honeycomb
lattice made out of coupled micropillars etched in a planar
microcavity. The advantage of this system over other
photonic simulators, such as coupled waveguides [30,31]
or microwave resonators [32], is that the radiative emission
of light from the micropillars provides direct optical access
to both the spatial distribution of the wave functions and to
the energy-momentum dispersions [33]. We find two kinds
of edge states: (i) zero-energy states in the zigzag and
bearded edges, with a topological origin similar to that of
edge states in conventional graphene; and (ii) a novel kind
of dispersive edge state that emerges not only in zigzag
and bearded terminations, but also in armchair edges. We
support experimental data with numerical tight-binding
calculations and provide analytical expressions for the
energy of the dispersive edge states.
To experimentally study orbital edge states in px;y

bands we employ the polaritonic honeycomb lattice
reported in [18,34] and shown in Fig. 1(c). The sample
is a two-dimensional heterostructure made out of a
Ga0.05Al0.95As λ=2 cavity embedded in two
Ga0.05Al0.95As=Ga0.8Al0.2As Bragg mirrors with 28 (40)
top (bottom) pairs with twelve GaAs quantum wells grown
at the three central maxima of the electromagnetic field
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confined in the heterostructure. The exciton resonance is
17 meV above the cavity mode at k ¼ 0, and the exciton
photon coupling results in a 15 meV Rabi splitting. After the
molecular beam epitaxy growth, the cavity is processed by
electron beam lithography and dry etching into a honeycomb
lattice of overlapping micropillars (diameter 3 μm, center-to-
center distance a ¼ 2.4 μm). As shown in Fig. 1(c), both
zigzag and armchair terminations were fabricated. The
lowest energy level of each micropillar [Figs. 1(a) and
1(b)] is cylindrically symmetric, similarly to the pz orbitals
in graphene. The hopping of photons in these modes [35]
gives rise to the π and π� bands of graphene, whose edge
states have been experimentally reported in the same
structure [34]. The first excited state is made of two
antisymmetric modes, px;y, oriented in orthogonal directions
in the horizontal plane, as sketched in Fig. 1(d).
The characterization of the bulk band structure is

performed at 10 K in the linear regime by exciting the
center of the lattice with a low power (5 mW) nonresonant
laser (740 nm), focused on a 4 μm diameter excitation spot.
This provides incoherent excitation of all modes with a
nonvanishing spatial overlap with the pump. The same
microscope objective is used both to excite and to collect
the emission [36]. Figure 1(e) displays the photolumines-
cence spectrum as a function of momentum parallel to the
vertical edge, ky, for kx ¼ 4π=ð3aÞ; we select the emission
linearly polarized along the same direction. The dispersion
shows four bulk bands corresponding to the coupling of the
px;y orbitals (the s bands, lying at lower energy, are not
shown) [18]. The lowest band is almost flat, while the two
middle ones are strongly dispersive with two band cross-
ings similar to those at the K and K’ Dirac points in
graphene s bands. The highest energy band corresponds
to a deformed flat band [18]. The inhomogeneity in the
emitted intensity is the consequence of (i) the energy
relaxation efficiency and lifetime of photons in different

modes, and (ii) destructive interference in the far-field
emission along certain high-symmetry directions
[18,38,39]. Such a destructive interference effect is the
reason why we select the value of kx ¼ 4π=ð3aÞ instead of
the equivalent kx ¼ 0, where the emission intensity is
strongly reduced. Tight-binding simulations, including
coupling of the photons out of the cavity, nicely reproduce
the observed emission pattern [36].
To access the edge states we place the spot on the

outermost pillar of the zigzag edge. The measured dispersion
is shown in Fig. 1(f). In addition to the bulk modes, new
bands are evidenced, marked with yellow and black dashed
lines in the figure. Those marked in yellow are flat and show
up at the center of both the first and adjacent Brillouin zones,
at the energy of the Dirac crossings. Those in black dashed
lines lie between the bulk dispersive and flat bands and have
a marked dispersive character. These states are delocalized in
momentum space in the direction perpendicular to the edge,
appearing at the very same energy for any value of kx (not
shown here) and, as we see below, they are localized in real
space at the edges. This is different from the bulk bands in
Fig. 1(e), which change energy when probing different
values of kx and are delocalized in real space. Note that
the polarization dependent confinement of the outermost
micropillars [34] and the transverse electric-transverse mag-
netic (TE-TM) splitting characteristic of semiconductor
microcavities [40] may account for the observed splitting
in the lowest flat band and in the edge states at around
ky ¼ �1.5½2π=ð3 ffiffiffi

3
p

aÞ�, black dashed lines in Fig. 1(f).
The px;y orbital bands can be described by a tight-

binding Hamiltonian [17,18]. If we assume that only the
hopping via orbitals projected along the links connecting
the micropillars is significant jtLj ≫ jtT j, see Fig. 1(d), the
Hamiltonian in the ax, ay, bx, by basis, corresponding to the
px;y orbitals of the A and B sublattices, can be written in
momentum space in the following 4 × 4 form:

bulk zigzag edge: experiment
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FIG. 1. (a) Scanning electron microscope image of a single micropillar. The red lines sketch the position of the quantum wells
embedded in the cavity (depicted in green). (b) Corresponding momentum space spectra showing confined s and p-modes. (c) Optical
microscope photograph of the honeycomb lattice under study showing two types of edges. The inset shows a scanning electron
microscope image. (d) Sketch of the px;y orbital (blue and yellow, respectively) and their couplings along the link (tL) and perpendicular
to it (tT ). [(e) and (f)] Momentum space luminescence from the bulk (e) and the zigzag edge (f) for kx ¼ 4π=ð3aÞ. K and K’ mark the
positions of the Dirac cones. Yellow and black dashed lines surround photoluminescence from edge states. E0 ¼ 1573 meV and
tL ¼ −1.2 meV. (g) Tight-binding calculation of the band structure. Blue lines, bulk energy bands at kx ¼ 4π=ð3aÞ; red lines, edge
states obtained for a nanoribbon with zigzag edges. All calculations are for tT ¼ 0.
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Ĥp ¼ −tL
�
02×2 Q†

Q 02×2

�
; with

Q ¼
�
f1 g

g f2

�
; ð1Þ

where f1 ¼ 3
4
ðeik·u1 þ eik·u2Þ, f2 ¼ 1þ 1

4
ðeik·u1 þ eik·u2Þ,

and g ¼ ð ffiffiffi
3

p
=4Þðeik·u1 − eik·u2Þ; u1;2 are primitive vectors

and tL < 0, to account for the antisymmetric phase distri-
bution of the p orbitals. To later describe finite-size samples,
we make a choice of unit cell dimer and primitive vectors
such that it allows the full reconstruction of the lattice
including its specific edges. We take the primitive vectors
as follows: u1 ¼ a1, u2 ¼ a1 − a2 for zigzag edges, and
u1 ¼ a1, u2 ¼ a2 for bearded and armchair, given in terms
of the reference vectors a1;2 defined in Fig. 1(d); the
corresponding unit cell dimers are detailed in Ref. [36].
The diagonalization of Hamiltonian (1) gives rise to two

flat bands with energies � 3
2
tL, and two dispersive bands

with energies � 2
3
tLj detQj, that is [16]

� tL
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2 cosð

ffiffiffi
3

p
kyaÞ þ 4 cosð3kxa=2Þ cosð

ffiffiffi
3

p
kya=2Þ

q
:

ð2Þ

Figures 1(e) and 1(f) are well described by a value of
tL ¼ −1.2 meV, significantly larger than the measured
linewidth (≈150 μeV) and on-site energy disorder
(≈30 μeV, as measured in a similar one-dimensional struc-
ture [41]). To account for the edge bands experimentally
reported in Fig. 1(f) we compute the eigenmodes of
Hamiltonian (1) in a finite-size sample. We consider a
nanoribbon with zigzag terminations on both edges and
periodic boundary conditions along the direction parallel to
the edge. The bulk modes, blue lines in Fig. 1(g), are the
analytic result [Eq. (2)] and are delocalized all over the
ribbon, while the red lines in Fig. 1(g) are edge states,
calculated on a finite-size system, whose wave function
exponentially decays. The spread in momentum and the
position in energy match quantitatively the experimental
observations, particularly for the modes at and below the
Dirac cones. In the experiment, the high energy part of the
spectrum is deformed due to the coupling to higher modes,
and to the nonzero value of tT , whose strength increases with
energy [18].
Tight-binding calculations for nanoribbons with zigzag,

bearded, and armchair edges are shown in Fig. 2. Two kinds
of edge modes are visible: (i) bands of zero-energy modes
in the central gap, present in zigzag and bearded edges,
and (ii) dispersive modes in the upper and lower gaps in all
three types of edges, and in the middle gap of the armchair
termination.
We first analyze the zero-energy edge modes. They recall

strongly the edge modes in the π and π� bands of regular
graphene, whose existence can be related to the winding

number of the wave functions in momentum space [11–13].
The Hamiltonian describing graphene (s bands) is a chiral
2 × 2 Hamiltonian,

Ĥs ¼ −ts
�

0 f�s
fs 0

�
; ð3Þ

with ts > 0 being the hopping amplitude for the s orbitals
and the factor fs ¼ 1þ eik·u1 þ eik·u2. The unit cell vectors
u1;2 contain the information about the considered edge, as
discussed above. The number of zero-energy edge states is
determined by the winding of the phase of the off-diagonal
component [fs ¼ jfsjeiϕðkÞ] [11–13],

Wðk∥Þ ¼
1

2π

Z
BZ

∂ϕðkÞ
∂k⊥ dk⊥; ð4Þ

where the one-dimensional integration over k⊥ is per-
formed along a loop around the Brillouin zone in a
direction perpendicular to the considered edge.
This analysis can be extended to more general

situations: the existence of zero-energy modes can be
related to the winding properties of the Hamiltonian in
the following way. By fixing a value of k∥, the dependence
of Hamiltonian (1) on k⊥ can be regarded as a one-
dimensional model in the BDI (chiral orthogonal) class
of the classification of topological insulators introduced by
Schnyder et al. [10]. For this class, the number of pairs of
zero-energy edge modes is given by the winding of the
phase ϕ obtained from fp ≡ detQ ¼ j detQjeiϕðkÞ [42].
Figure 2 shows the value of Wðk∥Þ for the p bands as a
function of momenta parallel to the edge k∥ for the three
types of edge considered here [36]. The winding number
Wðk∥Þ matches with the number of the zero-energy modes
calculated by diagonalization of the Hamiltonian.
An interesting feature of Fig. 2 is that the regions in

momentum space where the zero-energy modes are present
in the zigzag edge (k∥ ∈ ½−2π=ð3 ffiffiffi

3
p

aÞ, 2π=ð3 ffiffiffi
3

p
aÞ�)

are complementary to the regions in which they are

2

1

0

-1

-2
-2 -1 0 1 2 -2 -1 0 1 2 -1 -0.5 0 0.5 1

FIG. 2. Calculated eigenmodes in the first Brillouin zone for a
nanoribbon as a function of the wave vector k∥ parallel to the
edges, with (a) zigzag (k∥ ¼ ky), (b) bearded (k∥ ¼ ky), and
(c) armchair (k∥ ¼ kx) terminations. Blue curves: bulk spectra for
different values of the transverse momentum k⊥. Red and green
curves: edge states. For bearded edges, the inset shows the
uncoupled py orbitals that give rise to a pair of edge states
spreading over all k∥.
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present in s-band graphene for the same kind of edge
(k∥∉½−2π=ð3

ffiffiffi
3

p
aÞ; 2π=ð3 ffiffiffi

3
p

aÞ�). A similar situation takes
place for the bearded edges: in the p bands, pairs of edge
modes appear in the region in k space complementary to the
regions where they appear in the s bands. Additionally, for
bearded terminations, the p bands show an extra pair of
zero-energy edge modes spread all over k∥. It arises from
dangling py orbitals fully localized in the outermost
pillars, uncoupled to the bulk, as sketched in the inset of
Fig. 2(b), and adds to the pair of edge states discussed
above. The armchair edge does not have any zero-energy
edge mode.
The complementarity in the position in momentum space

of zero-energy edge modes between s and p bands can be
understood by analyzing the symmetry of Hamiltonians (1)
and (3), for the p and the s bands, respectively. The
expressions fp and fs, whose winding determines the
existence of zero-energy edge modes, can be related
analytically,

fpðzigzagÞ ¼
3

4
eik·ða1−a2ÞfsðbeardedÞ ð5Þ

fpðbeardedÞ ¼
3

4
eik·a2fsðzigzagÞ; ð6Þ

where fsðzigzagÞ½fpðbeardedÞ� is written using the
choice of unit cell that corresponds to the zigzag (bearded)
edge [13]. A consequence of Eq. (5) is that the winding of
the phase of fpðzigzagÞ is the same as of fsðbeardedÞ [the
vector a1 − a2 is parallel to the edge, so the prefactor
of the right-hand part of Eq. (5) gives no winding in the
orthogonal direction]. A similar situation takes place for
Eq. (6): in addition to the exchange of the position between
zigzag and bearded edge states, of respectively, s and p
bands, the phase factor eika2 provides an extra winding over
the whole Brillouin zone, and gives rise to an extra pair of
edge state for all values of kx, in the bearded edges of the
p bands.
One of the most distinctive features of Figs. 1 and 2 is

the observation of additional dispersive edge modes
between the dispersive and the flat bands of the bulk.
These modes are present for all values of k∥ and for all
the investigated types of edges. We can obtain analytical
expression of the dispersive edge modes by searching
for solutions of the Hamiltonian with an exponential
decay into the bulk [ψðxÞ ∼ e−x=ξ, ξ being the penetration
length], using the treatment described in Refs. [2,32].
Applying this method to zigzag and bearded edges,
we find the following eigenenergies for the edge modes
[36]:

Ezigzag
disp edgeðk∥Þ ¼ �tL

ffiffiffi
3

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ cos ð

ffiffiffi
3

p
k∥aÞ

q
ð7Þ

Ebearded
disp edgeðk∥Þ ¼ �tL

ffiffiffi
3

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 − 2 cos ð ffiffiffi

3
p

k∥aÞ
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − cos ð ffiffiffi

3
p

k∥aÞ
q : ð8Þ

As evidenced in Fig. 2(c), dispersive edge states exist
also for armchair terminations, which do not contain any
edge modes in the case of regular electronic graphene.
The analytic calculation for the armchair edges is more
elaborate [43]: the decay of the wave function is not a simple
exponential but it involves two different penetration lengths.
We take advantage of our photonic simulator to explore

the spatial distribution of these novel edge modes. Figure 3
shows the real space emission from the photonic simulator
excited close to the armchair edge for three emission
energies, corresponding to three different dispersive edge
states indicated in Fig. 2(c) (see Ref. [36] for the exper-
imental dispersion of the armchair edge modes). We
employ a pump spot of 20 μm in diameter, allowing the
measurement of the wave functions of the edge modes,
which penetrate several microns into the bulk.
For the lowest-energy dispersive edge state [Fig. 3(a)],

the emission is localized in the second to the last row of
micropillars, with a gradual decrease towards the bulk.
These features along with the lobe structure are well
reproduced by the plot of the tight-binding solution for
the edge state at the corresponding energy [kx ¼ π=ð3aÞ;
Fig. 3(d)]. Figure 3(b) shows the emission pattern for the
lowest-energy edge mode in the central gap. In this case,
the outermost pillars show the highest intensity, in a pattern
significantly different from the modes shown in Figs. 3(a)
and 3(d). It is worth noting that in the experiment, the
energy of the emission is filtered with the use of a
spectrometer, but no particular in-plane momentum is
selected. Therefore, bulk modes contribute to the emission
at the energies studied in Figs. 3(a)–3(c), explaining the

(a) (b) (c)
armchair edge

(e) (f)

0

1

(d)

FIG. 3. Real space emission from dispersive edge states in an
armchair termination. [(a)–(c)] Measured photoluminescence
when selecting the energies indicated with circles in Fig. 2(c).
[(d)–(f)] Corresponding tight-binding eigenfunctions. A hexago-
nal lattice is sketched on top of the data to mark the position of the
center of the micropillars.
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differences with the calculated individual eigenfunctions
depicted in Figs. 3(d)–3(f).
Interestingly, the tight-binding calculations in Fig. 2(c)

reveal an additional edge mode within the bulk energy band
(green dot). Despite being immersed in the bulk band, when
selecting the emission at the highest energy of this mode,
the experiment and tight-binding calculations shown in
Figs. 3(c) and 3(f) attest to the significant localization of
these modes in the edge region.
In summary, our results provide a detailed characteri-

zation of the zero-energy and dispersive orbital edge states
in excited bands of a photonic honeycomb lattice. The
zero-energy modes are well described using topological
arguments based on the symmetries of the bulk
Hamiltonian. Whether any topological argument can be
applied to the dispersive edge modes is an intriguing
question. Our experiments and theoretical analysis pro-
vide insights into multimode lattice systems such as
transition metal dichalcogenides [23] or mechanical lat-
tices of springs and masses, which have been predicted to
show similar dispersive edge modes [42,44]. Taking
advantage of the intrinsic nonlinearities of polaritons,
honeycomb lattices of coupled micropillars appear as
excellent candidates to explore nonlinear bulk and edge
states with orbital structure [45].
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