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S1. SCATTERING NETWORK MODEL

We consider the 2D oriented scattering network defined in the main text, and reproduced in Fig. 1 for the time
period of two time-steps. We detail in this section the derivation of the evolution operator, its quasienergies and the
center of mass trajectories showing Bloch oscillations.

φ1
S1

φ2
S2

φ1
S1

φ2
S2

φ1
S1

φ2
S2

φ1
S1

φ2
S2

φ1
S1

φ2
S2

φ1
S1

φ2
S2

φ1
S1

φ2
S2

φ1
S1

φ2
S2

φ1
S1

φ2
S2

φ1
S1

φ2
S2

φ1
S1

φ2
S2

φ1
S1

φ2
S2

φ1
S1

φ2
S2

φ1
S1

φ2
S2

φ1
S1

φ2
S2

φ1
S1

φ2
S2

φ1
S1

φ2
S2

φ1
S1

φ2
S2

φ1
S1

φ2
S2

φ1
S1

φ2
S2

φ1
S1

φ2
S2

φ1
S1

φ2
S2

φ1
S1

φ2
S2

φ1
S1

φ2
S2

φ1
S1

j−2

j−1

j

j+1

j+2

l−2 l−1 l l+1 l+2

a
(j−

1,l)

1

b
(j
−1,

l)

1

a
(j,l+

1)
2

b
(j
,l
−1)

2

...

j−1

j

j+1

...

· · · l−1 l l+1 · · ·

ey

ex

Figure 1. 2D oriented two-steps scattering network model with a preferential direction from top to bottom.

Derivation of the Floquet evolution operator

The oriented network shown in Fig. 1 is constituted of two distinct successive scattering nodes S1 and S2. The
incoming arrow from left (right) toward the S1 node is denoted by a1 (b1). It denotes a time evolution from the time
step j − 1 to time step j. Similarly, the outgoing arrows are denoted by a2, b2. These four oriented paths and the
two scattering nodes constitute the unit cell of the network, which is emphasized with a dashed square in Fig. 1. The
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dynamics is then given by the relations (
a2(j, l + 1)
b2(j, l − 1)

)
= S1

(
a1(j − 1, l)
b1(j − 1, l)

)
(1)

and (
a1(j − 1, l)
b1(j − 1, l)

)
= S2

(
a2(j − 2, l + 1)
b2(j − 2, l − 1)

)
, (2)

which can be grouped together as
a1(j − 1, l)
b1(j − 1, l)
a2(j, l + 1)
b2(j, l − 1)

 =
(

0 S2

S1 0

)
a1(j − 1, l)
b1(j − 1, l)

a2(j − 2, l + 1)
b2(j − 2, l − 1)

 . (3)

The current scattering matrix notations correspond to that of the main text (Eq.(2)), as follows a1(j − 1, l) = αj−1
l ,

b1(j − 1, l) = βj−1
l , similarly, a2(j, l + 1) = αjl+1, b2(j, l − 1) = βjl−1.

Using translation symmetry of the scattering network, we can Fourier decompose as(
am(j, l)
bm(j, l)

)
=
∑
kx,ky

ei
~k.(lêx+jêy)/2

(
am(kx, ky)
bm(kx, ky)

)
, m = 1, 2 . (4)

This gives,
a1(kx, ky)
b1(kx, ky)
a2(kx, ky)
b2(kx, ky)

 =


0 0 s11

2 eikx/2e−iky/2 s12
2 e−ikx/2e−iky/2

0 0 s21
2 eikx/2e−iky/2 s22

2 e−ikx/2e−iky/2

s11
1 eikx/2e−iky/2 s12

1 e−ikx/2e−iky/2 0 0
s21

1 eikx/2e−iky/2 s22
1 e−ikx/2e−iky/2 0 0



a1(kx, ky)
b1(kx, ky)
a2(kx, ky)
b2(kx, ky)

 (5)

(
~a1(~k)
~a2(~k)

)
=

(
0 S2(~k)
S1(~k) 0

)(
~a1(~k)
~a2(~k)

)
(6)

where ~a1(~k) = {a1(~k), b1(~k)} and sm1m2j (m1,m2 = 1, 2), are the scattering coefficients of the scattering matrix Sj .
In the main text, we choose

Sj =
(

cos θj i sin θj
i sin θj cos θj

)
. (7)

although the calculations are independent of this specific form. Squaring Eq.(6) allows one to define the Floquet
operators starting for different time origins as(

S2(~k)S1(~k) 0
0 S1(~k)S2(~k)

)
=

(
U21
F (~k) 0
0 U12

F (~k)

)
(8)

Substituting Eq.(7) gives more specifically

U21
F (~k) =

(
e−iky (eikx cos θ1 cos θ2 − sin θ1 sin θ2) ie−iky (cos θ2 sin θ1 + e−ikx cos θ1 sin θ2)
ie−iky (cos θ2 sin θ1 + eikx cos θ1 sin θ2) e−iky (e−ikx cos θ1 cos θ2 − sin θ1 sin θ2)

)
(9)

U12
F (~k) =

(
e−iky (eikx cos θ1 cos θ2 − sin θ1 sin θ2) ie−iky (e−ikx cos θ2 sin θ1 + cos θ1 sin θ2)
ie−iky (eikx cos θ2 sin θ1 + cos θ1 sin θ2) e−iky (e−ikx cos θ1 cos θ2 − sin θ1 sin θ2)

)
(10)

Then, we add a phase φ to the bj amplitudes, that is to the blue arrows in Fig. (1), such that b1 → b1eiφ2 and
b2 → b2eiφ1 . Then in Eq.(5), s12

2 and s22
2 will be multiplied by eiφ1 , likewise, s12

1 and s22
1 are multiplied by eiφ2 . That

gives

U21
F (~k, φ) = e−iky

(
eikx cos θ1 cos θ2 − eiφ1 sin θ1 sin θ2 i(eiφ2 cos θ2 sin θ1 + e−ikx cos θ1 sin θ2)
i(eiφ1 cos θ2 sin θ1 + eikx cos θ1 sin θ2) e−ikx cos θ1 cos θ2 − eiφ2 sin θ1 sin θ2

)
(11)

U12
F (~k, φ) = e−iky

(
eikx cos θ1 cos θ2 − eiφ2 sin θ1 sin θ2 i(e−ikx cos θ2 sin θ1 + eiφ1 cos θ1 sin θ2)
i(eikx cos θ2 sin θ1 + eiφ2 cos θ1 sin θ2) e−ikx cos θ1 cos θ2 − eiφ1 sin θ1 sin θ2

)
. (12)
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These two evolution operators describe the same physical system, and either of them can be used to compute the
quasienergy spectrum and the winding numbers. The common phase factor exp{−iky} in Eqs.(11)-(12) is reminiscent
of the preferential orientation of the network from top to bottom. This is the only ky dependence of the evolution
operator on the network. In the main text, the Floquet operator refers to U21

F where this phase factor is factorized
out, that is

UF (kx, φ) ≡ U21
F (k, φ)eiky (13)

and we set kx = k through out the paper. The eigenvalues of UF are defined as e−iεT ≡ eiε, where the dimensionless
quasienergy ε is the quantity considered in the main text. Then the Floquet operator can usefully be factorized as

UF = B0(k)S2D(φ2)B1(k)S1D(φ1), (14)

where

B1(k) =
(

1 0
0 e−ik

)
, B0 =

(
eik 0
0 1

)
, Dj = D(φj) =

(
1 0
0 eiφj

)
. (15)

Alternative Hamiltonian formalism

We propose here an equivalent Hamiltonian formalism to the scattering model discussed in the main text and the
previous section. An oriented network consisting of two scattering processes with two free propagations per period
can be mapped onto a four time-step periodically driven tight-binding Hamiltonian. The scattering parameters of the
network are related to the nearest-neighbors hopping terms Ji of a driven lattice, while the phase shifts accumulated
during the free propagations are related to on-site potential Ji. The corresponding periodically driven 1D lattice over
a time period T is depicted in Fig. 2 in the case of two-steps, as detailed in the main text. It is composed of two atoms
per unitcell, denoted by A and B (similar to the two arrows, red and blue, entering each scattering node in Fig. 1 of
main text), and is driven over 4 steps so that the stepwise Bloch Hamiltonian reads

−J1

x + 1 x + 2 x + 3

−J2

T/4 < t ≤ T/2

T/2 < t ≤ 3T/4
−V2B

3T/4 < t ≤ T

A B0 < t ≤ T/4
−V1B −V1B −V1B −V1B

−V2B −V2B −V2B

x

x

t

⋯

⋯

⋯

⋯

A A AB B B

A B A A AB B B

A B A A AB B B

A B A A AB B B

Figure 2. Periodically driven lattice model whose Floquet operator corresponds to that of the scattering network of the main
text. The driving period is made of four steps during which either an onsite potential is switched on onto one sublattice (steps
1 and 3), or a hopping term is switched to dimerized the lattice (steps 2 and 4). The lattice spacing a is set to 1.
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H(t, kx) =



H1(kx) =
(

0 0
0 −V1

)
, 0 < t ¬ t1

H2(kx) =
(

0 −J1e−ikx/2

−J1eikx/2 0

)
t1 < t ¬ t2

H3(kx) =
(

0 0
0 −V2

)
t2 < t ¬ t3

H4(kx) =
(

0 −J2eikx/2

−J2e−ikx/2 0

)
t3 < t ¬ T

(16)

Accordingly, a stepwise evolution operator Uj during the duration τj = tj − tj−1 can be defined as

Uj(kx) ≡ e−iHj(kx)τj/h̄, (17)

so that the evolution (Floquet) operator after one period is defined as UF (kx) = U4U3U2U1. By setting

φ1 ≡ V1τ1/h̄ θ1 ≡ J1τ2/h̄ φ2 ≡ V2τ3/h̄ θ2 ≡ J2τ4/h̄ (18)

the stepwise evolution operators read

U1 =
(

1 0
0 eiφ1

)
U2 =

(
cos θ1 ie−ikx/2 sin θ1

ieikx/2 sin θ1 cos θ1

)
(19)

U3 =
(

1 0
0 eiφ2

)
U4 =

(
cos θ2 ie−ikx/2 sin θ2

ieikx/2 sin θ2 cos θ2

)
(20)

leading to the expression of the Floquet operator, as given in the main text (Eq.(3)).

Generalized inversion symmetry breaking

Considering the two parameters φ and k on the same footing allows us to define the generalized inversion symmetry
UF (k, φ) = σxUF (−k,−φ)σx, where σx is the standard Pauli matrix. The existence of a net phase in the unit cell,
(i.e. φ1 + φ2 6= 0, with φ1 and φ2 proportional to φ) breaks this symmetry. This can be shown by symmetrizing the
Bj matrices in Eq. (14) as

UF (k, φ) = B0(k)S2D(φ2)B1(k)S1D(φ1) = B(k)S2D(φ2)B(k)S1D(φ1) (21)

where,

B(k) =
(

eik/2 0
0 e−ik/2

)
(22)

and doing so as well for the Dj matrices, thus factorizing the net phase

UF (k, φ) = ei(φ1+φ2)/2B(k)S2 D̃(φ2)B(k)S1 D̃(φ1) (23)

where (as already defined as U1,3 in Eq.(19) from Hamiltonian picture),

D̃(φj) =
(

e−iφj/2 0
0 eiφj/2

)
(24)

Next we notice that σxB(k)σx = B(−k) and σxD̃(φj)σx = D̃(−φj) where we recall that φj is proportional to φ.
Therefore, the net phase, in the phase factor in Eq. (23) prevents UF to be inversion symmetric that is

σxUF (k, φ)σx 6= UF (−k,−φ) . (25)

However, in the absence of a net phase, that is when φ1 = −φ2, this phase factor simplifies to 1 and one gets
D̃(−φ2) = e−iφ2/2D(−φ2) and D̃(−φ1) = eiφ2/2D(−φ1), thus

σxU
φnet=0
F (k, φ)σx = B(−k)S2 D̃(−φ2)B(−k)S1 D̃(−φ1) (26)

= B(−k)S2D(−φ2)B(−k)S1D(−φ1) (27)

= Uφnet=0
F (−k,−φ) (28)

so that the inversion symmetry is restored.
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Derivation of the quasienergy bands

Let us derive here the quasienergy bands of the scattering network model with two time-steps as sketched in Fig. 1.
This can be carried out analytically either by a direct diagonalization of UF or equivalently by decomposing the
evolution as in Ref [1]. Let us detail the second strategy. Using the same terminology as in the main text, where right
going arrows are denoted with α and left going with β, then the time evolution is described by

αj+1
l = (cos θ1α

j
l+1 + i sin θ1β

j
l+1)eiφ1 ,

βj+1
l = cos θ1β

j
l−1 + i sin θ1α

j
l−1 (29)

for the first step and

αj+2
l−1 =

(
cos θ2α

j+1
l + i sin θ2β

j
l

)
eiφ2 ,

βj+2
l−1 = cos θ2β

j
l−2 + i sin θ2α

j
l−2 (30)

for the second (final) step. Using Floquet-Bloch ansatz,(
αjl
βjl

)
=
(
A
B

)
eiεj/2eikl/2 (31)

and substituting Eq.(29) in (30) using Eq.(31) gives the determinant problem

e2iε −
[
cos θ1 cos θ2

(
eikei(φ1+φ2) + e−ik

)
− sin θ1 sin θ2

(
eiφ1 + eiφ2

)]
eiε + ei(φ1+φ2) = 0 . (32)

By rewriting the Eq.(32), we get the relation

cos
(
ε− φ1 + φ2

2

)
= cos θ1 cos θ2 cos

(
k +

φ1 + φ2

2

)
− sin θ1 sin θ2 cos

(
φ1 − φ2

2

)
,

that leads to

ε±(k, φ) = ± cos−1
[
cos θ1 cos θ2 cos

(
−k +

φ1 + φ2

2

)
− sin θ1 sin θ2 cos

(
φ1 − φ2

2

)]
+
(
φ1 + φ2

2

)
. (33)

We can finally substitute the general form for the φ’s to φj = (mj/nj)φ, to get the expression

ε±(k, φ) = ± cos−1
[
cos θ1 cos θ2 cos

(
−k +

[
m1

n1
+
m2

n2

]
φ

2

)
− sin θ1 sin θ2 cos

([
m1

n1
− m2

n2

]
φ

2

)]
+
[
m1

n1
+
m2

n2

]
φ

2
(34)

for the quasienergy bands.

Derivation of the group velocities

Let us introduce the “synthetic group velocity” of the quasienergy band ε± as

v±φ (k, φ) ≡ ∂ε±(k, φ)
∂φ

(35)

Substituting the expression (34) of the quasienergy bands leads to

v±φ (k, φ) =
1
2

∆+ ∓ 1
2

∆− sin θ1 sin θ2 sin
(

1
2φ∆−

)
−∆+ cos θ1 cos θ2 sin

(
k + 1

2φ∆+
)√

1−
(
cos θ1 cos θ2 cos

(
k + 1

2φ∆+
)
− sin θ1 sin θ2 cos

(
1
2φ∆−

))2 (36)

where ∆− ≡ m1
n1
− m2

n2
and ∆+ ≡ m1

n1
+ m2

n2
. Similarly, the transverse group velocity is

v±k (k, φ) ≡ ∂ε±(k, φ)
∂k

(37)

v±k (k, φ) = ±
cos θ1 cos θ2 sin

(
k + 1

2φ∆+
)√

1−
(
cos θ1 cos θ2 cos

(
k + 1

2φ∆+
)
− sin θ1 sin θ2 cos

(
1
2φ∆−

))
2
. (38)
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In the case m1 = n1 = n2 = 1,m2 = −2 considered in the main text, the quasienergy bands simplify to

ε±(k, φ) = ± cos−1
[
cos θ1 cos θ2 cos

(
k − φ

2

)
− sin θ1 sin θ2 cos

(
3φ
2

)]
+
φ

2
(39)

which leads to the group velocities

v±k (k, φ) = ±
cos θ1 cos θ2 sin

(
k − φ

2

)
√

1−
(

cos θ1 cos θ2 cos
(
k − φ

2

)
− sin θ1 sin θ2 cos

(
3φ
2

))
2

, (40)

v±φ (k, φ) =
1
2
∓

3
2 sin θ1 sin θ2 sin

(
3φ
2

)
+ 1

2 cos θ1 cos θ2 sin
(
k − φ

2

)
√

1−
(

cos θ1 cos θ2 cos
(
k − φ

2

)
− sin θ1 sin θ2 cos

(
3φ
2

))2
. (41)

Note that when the quasienergy bands wind along the φ coordinate, then the quantity ∆+ is non zero. Therefore,
in that case, the numerator in the expression (38) of the transverse group velocity can change sign when varying φ,
for any fixed value of k, thus giving rise to the wavepackets oscillations.

Along the same lines, we can calculate the motion of centre of mass from Eq.(40), for arbitrary k as,

Xc(t, k) =
∫ φ(t)

0
dφ vk(φ(τ), k)

(
∂φ(τ)
∂τ

)−1

,

= γ0

∫ t

0
dτ vk(φ(τ), k) (42)

where, in the last equation, we considered that φ varies linearly with time with a coefficient γ0, (see Fig. 3(a) of the
main text).

S2. WINDING NUMBER νφ FOR TWO TIME-STEPS EVOLUTIONS

Derivation of νφ.

Let us compute the winding number νφ defined in the main text, for two time-steps, where the Floquet operator
UF (k, φ) given in Eq. (14) with φ1 = (m1/n1)φ and φ2 = (m2/n2)φ. When |m1/n1|6= |m2/n2|, then

νφ =
1

2πi

∫ Φ

0
dφTr

[
U−1
F ∂φUF

]
(43)

=
1

2πi

∫ Φ

0
dφTr

[
D†1S

†
1B
†
1(k)D†2S

†
2B
†
0(k)∂φ{D1S1B1(k)D2S2B0(k)}

]
(44)

=
1

2πi

∫ Φ

0
dφTr

[
D†2∂φD2 +D†1∂φD1

]
(45)

where the period of Φ of the quasienergy in φ is inferred from the analytical expression (34). More precisely, it reads

Φ = 2π LCM

[
2

m1
n1
− m2

n2

,
2

m1
n1

+ m2
n2

]
(46)

where LCM stands for least common multiple. Replacing the Dj ’s matrices by their expression, one gets

νφ =
1

2πi

∫ 2π LCM

[
2

m1
n1
−m2
n2

, 2
m1
n1
+
m2
n2

]
0

dφTr
[
i
m1

n1
+ i

m2

n2

]
,

= 2 LCM

[
1

m1
n1
− m2

n2

,
1

m1
n1

+ m2
n2

](
m1

n1
+
m2

n2

)
,

= 2 LCM
[

2n1n2

m1n2 −m2n1
,

2n1n2

m1n2 +m2n1

](
m1

n1
+
m2

n2

)
,

νφ =
Φ
2π

(
m1

n1
+
m2

n2

)
. (47)
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Relation between νφ and the stationary points of the Bloch oscillations

Consider a situation where the quasienergy bands wind along φ, and let us count the number of stationary points
dXc
dt in Eq.(42) over one Bloch period of oscillation. These points are determined by the vanishing of the group velocity
vk. Therefore, it suffices to find the number of roots in φ of Eq.(38), which are given by

cos θ1 cos θ2 sin
(

1
2
φ∆+

)
= 0 (48)

This leads to

1
2
φ∆+ = pπ, p ∈ Z

φ = 2pπ
1

∆+ . (49)

which can be expressed in terms of the winding number given by Eq.(47) as

φ = p
Φ
νφ
. (50)

Hence, over one oscillation period, p takes values from the set {1, ..., |νφ|}, and thus the group velocity vanishes νφ
times. Then, following the same lines, one can easily check that the second derivative also vanishes at these same
points. There are therefore νφ turning points per period of Bloch oscillation.
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Figure 3. Intensity (|αjl |
2+|βjl |

2) of a wavepacket, injected with a Gaussian shape when the values of θ1 and θ2 have a random
disorder that is periodic with the Floquet period (θi + δi with i = 1, 2 and δi a uniform distribution between [−A,+A]). Top:
A = 0.02, bottom: A = 0.04. Left column: νφ = −2. Right column: νφ = 6. Other parameters have the same value than in the
Fig. 3 of the main text. For visibility, horizontal red dashed lines are placed at each turning point.
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Robustness of νφ under disorder

The Bloch oscillations emerged due to the underlying discrete translational symmetry of the lattice. However, these
Bloch oscillations have topological origin where different values of νφ constitute the family. To check the robustness
of these νφ, we introduce a disorder in the coupling parameters (θi with i = 1, 2); thus we break the discrete
translational symmetry of the lattice. This is achieved by putting a disorder as θi + δi, where δi is a random number
with a uniform distribution between the interval [−A,+A]. The dynamics of the wavepacket in these conditions is
shown in figure 3, for the case of νφ = −2 and νφ = 6, and for a noise amplitude A of 0.02 and 0.04 (the other
parameters are same as in Fig. 3 of the main text).
Besides the main oscillation, it appears, some “sub-branches” that seem to leave the main wavepacket. This effect is
related to the presence of two bands in the system. The initial condition has been chosen to excite only one band of
the system, however, with the variation of θi (induced by the noise term), the solution is not anymore restricted to
two bands but becomes a multi-band problem, as a result, the other bands are also excited.

It induces the creation and evolution of “secondary” wavepackets. However, even with these wavepackets, the
topological invariant νφ is preserved, since we can see that in all these wavepackets, the turning points appear at the
same time (y-axis), and thus after one Bloch oscillation period, they have the same number of turning points, i.e. the
same νφ.

S3. FICTITIOUS ELECTRIC FIELD IN THE NETWORK MODEL

Gauge transformation from a uniform electric field to winding bands with an adiabatic increase of φ

As pointed out by M. Wimmer et al. in Ref. [2] in the case of a single step model with an adiabatic increase of the
phase factor φ(j) = γ0 j, the gauge transformation:

αj+1
l = α̃j+1

l e−
iljγ0
2 + ij2γ0

4 − ijγ04

βj+1
l = β̃j+1

l e−
iljγ0
2 + ij2γ0

4 − ijγ04
(51)

results in a set of equations in which the phase factor does not depend anymore on the time step, but presents a
uniform gradient of phase :

α̃j+1
l = (cos θjα̃

j
l+1 + i sin θj β̃

j
l+1)e

iγ0l
2

β̃j+1
l = (i sin θjα̃

j
l−1 + cos θj β̃

j
l−1)e

iγ0l
2 .

(52)

This set of equations corresponds to a scattering network subject to a homogeneous spatial phase gradient V = E · l,
where E = γ0/2 can be interpreted as a homogeneous electric field along the l direction. When considering an initial
wavepacket, the time evolution results in standard Bloch oscillations with period T = 2π/E = 4π/γ0.

The same gauge transformation can be applied to each of the two-steps of the model with n = 2 discussed in the
main text subject to an adiabatic increase of φ(j) = +γ0j (Fig. 3 of the main text).

Recall that in the first step φ1(j) = (m1/n1)γ0j and in the second step φ2(j) = (m2/n2)γ0j. The transformation (51)
results in a set of the Bloch-like Eqs.(52) for each of the two Floquet steps, each set characterized by a constant electric
field in space. In the first step, the electric field is E1 = (m1/n1)γ0/2, and in the second step is E2 = (m2/n2)γ0/2.
Therefore, we get back the Bloch oscillation picture in this case with an electric field that alternates between E1

and E2 at each subsequent step. The period TB of the oscillations can be computed from the average electric field
(E1 + E2)/2 over a full Floquet cycle.

The above discussion can also be simply understood from basic classical electrodynamics arguments[3, 4]. Indeed, in
its most general form, an electric field can be expressed as E = −∇V +∂A/∂t. The Eq.(51) is the gauge transformation
that transforms a gradient of spatial potential V , to a time-varying vector potential A.

Fictitious uniform electric field from a fictitious vector potential

The above discussion can also seen from the Floquet operator Eq.(14) using the simplification as in Eq.(23),

UF (k, φ) = ei(φ1+φ2)/2B(k)S2 D̃(φ2)B(k)S1 D̃(φ1) , (53)
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where B and D̃ are defined in Eq.(22) and Eq.(24). Then UF can be further simplified by combining two diagonal
matrices D̃ and B together, (also used in eq.(3) in the main text)

UF (k, φ) = ei(φ1+φ2)/2 T2 S2 T1 S1 (54)

Tj =

(
eik̃j 0
0 e−ik̃j

)
where k̃j = k − φj . This form of the Floquet operator can be thought as describing a 1D lattice that is periodically

driven in the presence of a time-varying vector potential A(t) = Et. The period T of this driving consists of two-steps
where the vector potential redefines the Bloch momentum via Peierls’ substitution. In the first step, for some fictitious
charge q, φ1 = qA1 = qE1t that generates a fictitious electric field of magnitude E1. Similarly, during the second step,
φ2 = qA2 = qE2t. This electric field translates in our case as φ1 = −2φ = −2qE and φ2 = +φ = +qE. Thus, it gives
rise to a net electric field E1 + E2 6= 0, which is responsible for the Bloch oscillations.

S4. EXTENDED NETWORK MODEL FOR QUASIENERGY WINDING IN k

Time-step evolution equations for the scattering model with quasienergy winding in k

In the final part of the main text we introduce a model with long range hoppings that results in the winding of the
quasienergy bands in the k direction. The model is sketched in Fig. 4(a) of the main text. The corresponding time
step evolution equations are given by :

αj+1
l = (cos θjα

j
l+l2 + i sin θjβ

j
l+l2)e

iφj

βj+1
l = (i sin θjα

j
l+l0 + cos θjβ

j
l+l0) , (55)

αj+2
l+l3 = (cos θj+1α

j+1
l + i sin θj+1β

j+1
l )eiφj+1

βj+2
l+l3 = (i sin θj+1α

j+1
l+l4 + cos θj+1β

j+1
l+l4) . (56)

Here lj is the link connecting the scattering nodes at time step j + p− 1 to j + p, for some integer p. These lj ’s can
be defined in terms of rj/sj as

r1

s1
=
l2 − l3

2
,

r2

s2
=
l2 − l3 + l0

2
, (57)

If φ1 = −φ2, then there is no winding in φ, and the bands only wind in k. By combining both windings in k and
φ, the drift and pseudo-oscillations of a wavepacket can be engineered together. Trajectories for the center of mass
are shown in Fig. 4 for a fixed value of νφ = −6, and different values of νk, where thick curves are evaluated for a
wavepacket centered at k = 0, and dashed curves for k = 1. The value of νφ can still be inferred from the number of
turning points, as shown for νk = 8.

Derivation of the winding number νk

For an arbitrary winding number in k and φ, the Floquet operator reads

UF (k, φ) = B0(k2)S2D(φ2)B1(k1)S1D(φ1) (58)

where, kj ≡
(
rj
sj

)
k and φj ≡

(
mj

nj

)
φ. This gives the quasienergies ε±(k, φ)

ε±(k, φ) = ± cos−1
[
cos θ1 cos θ2 cos

(
δ−
k

2
+ ∆+φ

2

)
− sin θ1 sin θ2 cos

(
δ+ k

2
−∆−

φ

2

)]
+ δ+ k

2
+ ∆+φ

2
, (59)

where δ± ≡ r1
s1
± r2
s2

. In the absence of a quasienergy winding along φ (or k), the corresponding ∆+ (δ+) terms vanish.
The group velocity can then be derived exactly as

vg±(φ, k) =
1
2
δ+ ± 1

2

δ+ sin θ1 sin θ2 sin
(
δ+ k

2 −∆− φ2

)
− δ− cos θ1 cos θ2 sin

(
δ− k2 + ∆+ φ

2

)
√

1−
(

cos θ1 cos θ2 cos
(
δ− k2 + ∆+ φ

2

)
− sin θ1 sin θ2 cos

(
δ+ k

2 −∆− φ2

))2
. (60)
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Figure 4. Trajectories in a two-steps model for bands with νφ = −6 for θ1 = π/4, θ2 = π, and different values of νk, ranging
from νk = +8 to νk = −8, where the thick curves are for k = 0, and the dashed curves are for k = 1. Thus, changing k merely
shifts the curve in vertical direction. Moreover, |νφ|= 6 can still be read even in this case of winding in both k and φ from
the number of turning points, irrespective of the initial value of k, as shown with little circles for νk = −8 (in green). Here, φ
increases as φ(j) = γ0j, with γ0 = 2π/2000

Likewise, the winding number in k can be computed similar to νφ as

νk ≡
1

2πi

∫ κ

0
dkTr

[
U−1
F ∂kUF

]
(61)

=
1

2πi

∫ κ

0
dkTr

[
i
r1

s1
+ i

r2

s2

]
,

= 2 LCM

[
1

r1
s1
− r2

s2

,
1

r1
s1

+ r2
s2

](
r1

s1
+
r2

s2

)
,

= 2 LCM
[

2s1s2

r1s2 − r2s1
,

2s1s2

r1s2 + r2s1

](
r1

s1
+
r2

s2

)
,

νk =
κ

2π

(
r1

s1
+
r2

s2

)
(62)

where κ = 2π LCM
[

2
r1
s1
− r2s2

, 2
r1
s1

+ r2
s2

]
.

S5. RELATION BETWEEN THE WINDING NUMBER νk AND THE QUANTIZED DRIFT ∆x

Let us introduce the mean current over a Floquet period T as

J ≡
∫ T

0

dt
T
j(t) (63)
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that we express in terms of the instantaneous current j(t)

j(t) =
∫ κ

0

dk
κ
〈ψ(k, t)|dx(t)

dt
|ψ(k, t)〉, (64)

where |ψ(k, t)〉 is an arbitrary evolving Bloch state, i.e. |ψ(k, t)〉 = U(k; t, 0)|ψ(k, 0)〉 with U(k; t, 0) the Block evolution
operator from time t = 0 to arbitrary time t < T . Rewriting U(k; t, 0) = U(k; t, T )U(k;T, t), and using the relation
i∂UF∂k =

∫ T
0 dt U(k;T, t) ∂H(k,t)

∂k U(k; t, 0), where H(k, t + T ) = H(k, t) is the periodically driven Bloch Hamiltonian,
the mean current can be written in terms of the Floquet operator only

J = −2π/κ
T

∫ κ

0

dk
2πi
〈ψ(k, 0)|U−1

F

∂UF
∂k
|ψ(k, 0)〉 (65)

Equivalently, one assigns a mean displacement ∆x = TJ to this current.

Adiabatic regime

Consider an instantaneous eigenstate ϕ(n)(k, t) of H(k, t), such that ψ(k, 0) = ϕ(n)(k, t = 0). In the adiabatic limit,
ϕ(n)(k, t) remains an eigenstate of H(k, t) at each time. After a cycle t : 0 → T , ϕ(n)(k, 0) can only acquire a phase,
which is by definition the quasienergy εnT . It is thus an eigenstate of the Floquet operator, which therefore allows the
spectral decomposition UF =

∑N
n exp(−iεnT )|ϕ(n)(k, 0)〉〈ϕ(n)(k, 0)|, so that the mean current (65) simply becomes

J
(n)
ad = −2π/κ

T

∫ κ

0

dk
2π

∂εn
∂k

(66)

where the dimensionless quasienergy εn = −εn T corresponds to that of the main text. The adiabatic pumped current
is quantized in terms of the quasienergy winding numbers along the k direction, as found in Ref [5]. As pioneered by
Thouless [6], this quantization can be consistently rephrased in terms of the Chern numbers Cn of the adiabatically
driven eigenstates ϕ(n)(k, t) that defined a U(1)−fiber bundle over the two-dimensional torus span by (k, t), assuming
the instantaneous energy band En(k, t) (the eigenvalue of H(k, t)) remains well separated from the other bands. One
way to see the connection between the two topological points of view consists in identifying the quasienergy in terms
of the dynamical phase and the geometrical Berry phase

εnT = EnT + i

∫ T

0
dt〈ϕ(n)(k, t)|∂t|ϕ(n)(k, t)〉 . (67)

Taking, the “winding” of this expression, that is applying
∫

dk∂k yields

−
∫

dk
2π
∂kεn = i

∫
dk
2π

∫ T

0
∂kdt〈ϕ(n)(k, t)|∂t|ϕ(n)(k, t)〉 (68)

since the instantaneous energy band En(k, t) cannot wind along k. Inserting the relation ∂k〈ϕ|∂tϕ〉 = 〈∂kϕ|∂tϕ〉 −
〈∂tϕ|∂kϕ〉+ ∂t〈ϕ|∂kϕ〉, into the right-hand side of (68), the quasienergy winding reads

−
∫

dk
2π
∂kεn =

1
2π

∫ T

0

∫
dkF (n)

k,t +
∫ T

0
∂tZ

(n)(t) (69)

where F
(n)
k,t is the Berry curvature and Z(n)(t) is the time-dependent Zak phase of the instantaneous state ϕ(n),

i.e. Z(n)(t) ≡ i
∫

dk〈ϕ(n)(k, t)|∂kϕ(n)(k, t)〉. After an adiabatic cycle, one has Z(n)(T ) = Z(n)(0), which leads to the
relation between the winding number ν(n)

k of the quasienergy band n in the k direction and the Chern number Cn of
the adiabatically periodically driven Bloch eigenstate ϕ(n)(k, t)

−
∫

dk
2π
∂kεn = Cn . (70)

When the α lowest bands are filled, the adiabatic pumped current reads

J̄α =
α∑
n=1

J
(n)
ad =

2π/κ
T

α∑
n=1

Cn (71)

in agreement with the famous Thouless result on adiabatic pumping. Clearly, if all the bands are filled, then J̄N =
νk = 0 owing to the vanishing sum of the Chern numbers over all the bands.
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Non-adiabatic regime

We now consider the case where the instantaneous eigenstates ϕ(n)(k, t) do not remain eigenstates during the
evolution, so that the total mean current J̄N reads

J̄N =
N∑
n=1

∫ T

0

dt
T

∫ κ

0

dk
κ
〈ϕ(n)(k, t)|dx(t)

dt
|ϕ(n)(k, t)〉 (72)

= −2π/κ
T

∫ κ

0

dk
2πi

tr[U−1
F

∂UF
∂k

] (73)

= −2π/κ
T

νk (74)

with νk ∈ Z is the winding number of the map k ∈ S1 → UF ∈ U(N), and whose another expression is given by
Eq.(9) of the main text. Moreover, since trU−1

F
∂UF
∂k = ∂

∂k ln detUF , this winding number reads

νk =
N∑
n=1

∫ κ

0

dk
2π

∂(−εnT )
∂k

=
N∑
n=1

∫ κ

0

dk
2π

∂εn
∂k

(75)

so that the mean displacement ∆x = T J̄N , after P periods T , can be expressed in terms of the sum of the winding
of the quasienergies of all the bands

∆x = −P 2π
κ

N∑
n=1

∫ κ

0

dk
2π

∂εn
∂k

(76)
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