
 

Topological Swing of Bloch Oscillations in Quantum Walks

Lavi K. Upreti ,1 C. Evain,2 S. Randoux ,2 P. Suret ,2 A. Amo,2 and P. Delplace1
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We report new oscillations of wave packets in quantum walks subjected to electric fields, that decorate
the usual Bloch-Zener oscillations of insulators. The number of turning points (or suboscillations) within
one Bloch period of these oscillations is found to be governed by the winding of the quasienergy spectrum.
Thus, this provides a new physical manifestation of a topological property of periodically driven systems
that can be probed experimentally. Our model, based on an oriented scattering network, is readily
implementable in photonic and cold atomic setups.
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Periodically driven systems are routinely used to
engineer artificial gauge fields and induce exotic topologi-
cal properties. A remarkable case is the so-called anoma-
lous topological boundary modes, which have no
counterpart at equilibrium and were predicted [1] and
observed in experimental platforms as different as photon-
ics, cold atoms, and acoustics [2–10]. The existence of
these states actually follows from the periodicity of the
quasienergy spectrum that is itself inherited from the
periodic drive.
Beyond these anomalous edge states, the frequency

periodicity also allows the quasienergy spectrum to wind,
which constitutes a distinct, so far largely overlooked
topological property of the bands specific to periodically
driven systems [11–13]. One of the main consequences
of this winding is the modification of the wave packet
dynamics in the bulk of the system. The celebrated
Thouless pumping, which consists of a quantized mean
displacement of a particle in a 1D lattice subject to an
adiabatic periodic drive [14], was originally understood
in terms of Berry curvature and was later rephrased as a
winding property of the quasienergy spectrum with respect
to the quasimomentum [13,15]. Indeed, the measurement
of wave packet dynamics constitute one of the very few
tools to probe geometrical and topological band properties
of insulators. The associated anomalous velocity induces a
measurable drift of the wave packet that gives experimental
access to the Berry curvature of the bulk bands [16].
This geometrical information was measured in periodically
driven systems such as shaken trapped cold atoms gases
[17], photonic quantum walks [18], and in nonperiodic
structures [19].
Here we report a new topological property of the motion

of wave packets that appears in periodically driven systems
containing bands with a nontrivial winding. While previous
studies take advantage of usual Bloch oscillations to probe
the lateral drifts associated to nontrivial Berry curvature

[20–24] or Berry-Zak phases of the bands [25–28], we find
that periodically driven systems may exhibit a whole family
of new Bloch-like oscillations with nontrivial properties.
Differently from kicked rotors in which Bloch-like
oscillations have been observed [29,30], the oscillatory
phenomenon we unveil is directly related to the topology of
the bands. To explore this physics we propose a model of a
1D quantum walk with a time-varying synthetic electric
field that is realizable in current photonic setups, and we
find that the winding number characterizing the bands
governs the number of suboscillations of a wave packet
within a Bloch-Zener period. This topological feature
guarantees the robustness of the number of these additional
suboscillations irrespective of the coupling parameters of
the model that, instead, determine their amplitude and
shape. Finally, we discuss a parallel between these
oscillations and Thouless pumping as they both reflect
two complementary topological aspects of wave packet
dynamics that can be expressed in terms of distinct winding
numbers of the quasienergy spectrum.
The model we consider is sketched in Fig. 1. It consists

of an oriented scattering network that represents a discrete-
time evolution of a quantum state or a wave packet through
a periodic succession of scattering nodes (from top to
bottom). The discrete-time periodic dynamics are abun-
dantly used in topological physics, both theoretically,
where they were first introduced to illustrate the anomalous
edge states [1,13,31–36], and experimentally in classical
photonics [4–6,37], in a quantum optics context [38–40],
and in cold atomic setups [41,42], where they are often
referred to as discrete-time quantum walks [41,43,44]. The
scattering network in Fig. 1 is a representation of such 1D
quantum walks. It has the advantage to be particularly
suitable for a photonic interpretation, as the nodes simply
describe beam splitters and the oriented links represent the
free propagation of a light pulse with time. It describes
previous experiments, e.g., in 1D split-step quantum

PHYSICAL REVIEW LETTERS 125, 186804 (2020)

0031-9007=20=125(18)=186804(6) 186804-1 © 2020 American Physical Society

https://orcid.org/0000-0002-1722-484X
https://orcid.org/0000-0001-9309-6539
https://orcid.org/0000-0003-3527-4434
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.125.186804&domain=pdf&date_stamp=2020-10-30
https://doi.org/10.1103/PhysRevLett.125.186804
https://doi.org/10.1103/PhysRevLett.125.186804
https://doi.org/10.1103/PhysRevLett.125.186804
https://doi.org/10.1103/PhysRevLett.125.186804


walks [38], planar periodically coupled waveguides [6] and
coupled fiber rings [18,45]. In the following, we shall
thus stick to this scattering network picture to model our
periodic discrete-time evolution, but an equivalent
Hamiltonian formalism is provided in Ref. [46].
The network depicts a succession of two scattering

events occurring at time steps j and positions l, between
incoming leftward and rightward wave amplitudes αj−1l and
βj−1l , toward leftward and rightward outgoing states αjl−1
and βjlþ1. These scattering amplitudes are encoded in a
dimensionless parameter θj entering the unitary matrix

Sj ¼
�

cos θj i sin θj
i sin θj cos θj

�
: ð1Þ

For simplicity, we consider only two distinct beam
splitters, S1 and S2, per time period, but the model can
be generalized to further scattering events. Besides, we
introduce a phase shift carried by the waves along their free
propagation between these beam splitters, as in Ref. [18].
Without any loss of generality, we consider a nonzero phase
shift for the leftward states only (in blue in Fig. 1). It was
shown previously that such a phase induces a synthetic
electric field when slowly varied in time over many periods
[47]. A crucial point of the model is that this phase shift
takes two different values ϕ1 ≠ ϕ2 after each of the two
scattering events (S1 and S2) within a period of the quantum
walk. The ratio of these phases is chosen to be a rational
number, and we set ϕ1 ¼ ðm1=n1Þϕ and ϕ2 ¼ ðm2=n2Þϕ
with mj; nj ∈ Z. As a result, the phase shift follows two
time scales: a short one, that is the two-step period of the
photonic quantum walk (called Floquet period in the
following), and which is fixed by the values of mj
and nj; and a much longer one over which ϕ may be
adiabatically varied, in order to generate a fictitious electric

field. The rapid variations of the phase within a Floquet
period allow the generation of electric fields specific to
periodically driven systems when ϕ is adiabatically varied.
As we shall see, this gives rise to an original topological
property of the evolution operator that manifests through
unusual topological Bloch oscillations.
The time evolution of a state in the scattering network is

given by relating the outgoing scattering amplitudes at time
step j to that at time step j − 1, according to the scattering
parameters Eq. (1)

αjl−1 ¼ ðcos θj̃αj−1l þ i sin θj̃β
j−1
l Þeiϕj̃

βjlþ1 ¼ i sin θj̃α
j−1
l þ cos θj̃β

j−1
l : ð2Þ

where j̃ ¼ mod ½j; 2�. Assuming discrete translation invari-
ance along the x direction, the system can be treated in the
Bloch-Floquet formalism. The corresponding Floquet uni-
tary evolution operator UFðk;ϕÞ after a periodic sequence
of two steps readily describes a succession of local
scattering events Sj followed by rightward and leftward
translations Tj:

UFðk;ϕ1;ϕ2Þ ¼ eiðϕ1þϕ2Þ=2T2S2T1S1 ð3Þ

Tj ¼
�
eiðk−ϕj=2Þ 0

0 e−iðk−ϕj=2Þ

�
ð4Þ

where k is the dimensionless quasimomentum in the x
direction, and we have removed the tilde from the j for the
sake of clarity. Importantly, this quasimomentum is shifted
by a phase ϕj that can thus be interpreted as a time-step
dependent vector potential. Since the Floquet operator
UFðk;ϕÞ depends periodically on the two variables k
and ϕ, one can introduce a synthetic 2D Brillouin zone
(BZ) to describe its eigenvalues spectrum. They decompose
as λ ¼ eiε, where ε are hereafter referred to as the
dimensionless quasienergy.
The global phase factor in Eq. (3) suggests that a peculiar

spectral property arises when imposing a net phase
ϕ1 þ ϕ2 ≠ 0 per period. In that case, the generalized
inversion symmetry UFð−k;−ϕÞ ¼ σxUFðk;ϕÞσx (with
σx the standard Pauli matrix) is broken [46], leading to a
winding of the quasienergy bands when ϕ is varied, as
illustrated in Fig. 2(a). A similar quasienergy winding was
reported when considering periodically driven trapped cold
atoms with a different protocol [15].
The period Φ of the BZ along ϕ [i.e.,

εðk;ϕþΦÞ ¼ εðk;ϕÞ] depends on mj and nj as
Φ ¼ 4π LCM½ðm1=n1 − m2=n2Þ−1; ðm1=n1 þ m2=n2Þ−1�,
where LCM indicates the least common multiple [46].
This allows us to define the winding of the quasienergies
along ϕ as

FIG. 1. Two-steps oriented scattering network, where an input
signal flows from top to bottom. Black and orange nodes
represent two distinct scattering processes that repeat periodi-
cally. Two staggered phase shifts, ϕ1 and ϕ2, are also considered
along the leftward paths. A dashed square emphasizes the unit
cell of this lattice.
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νϕ ≡
XN
p¼1

1

2π

Z
Φ

0

dϕ
∂εpðk;ϕÞ

∂ϕ ¼ 1

2πi

Z
Φ

0

dϕ tr½U−1
F ∂ϕUF�:

ð5Þ

This winding number is a topological property of the
Floquet evolution operator, as it reads as an element of the
homotopy group π1½UðNÞ� ¼ Z. Note that νϕ is an even
integer in our specific case due to the even number of bands
(N ¼ 2) in our model. A direct calculation leads to the
simple result

νϕ ¼ Φ
2π

�
m1

n1
þm2

n2

�
; ð6Þ

which remarkably does not depend either on k (since the
winding of a quasienergy band εpðk;ϕÞ along ϕ must be
the same for any k) or on the scattering amplitudes θj.

Instead, it is proportional to the net phase ðϕ1 þ ϕ2Þ=ϕ that
breaks inversion symmetry. A phase diagram representing
the different possible values of νϕ as a function of mj=nj is
shown in Fig. 2(b).
A striking consequence of the winding of the quasi-

energy bands is the unconventional dynamics of the wave
packets in position space when adiabatically increasing the
coordinate ϕ. In the following, we show how these
dynamics reveal a new kind of Bloch oscillations described
by the winding number νϕ. Figure 3(b) shows the j-time
evolution of a Gaussian wave packet injected at j ¼ 0 in the
blue band of Fig. 2(a) at k ¼ 0, when ϕ is adiabatically
increased from 0 toΦ ¼ 4π, with ϕðjÞ ¼ γ0jwhere the rate
γ0 ¼ 2π=2000 [see Fig. 3(a)]. To compute the spatio-
temporal dynamics, we apply Eq. (2) to the initial wave
packet. The wave packet periodically oscillates in the space
coordinate while keeping k constant. This can be readily
seen in Figs. 3(c)–3(f), where we show the 2D Fourier
transform of the spatiotemporal dynamics of the wave
packet after having evolved to the time step indicated by
the horizontal lines in Fig. 3(b). These panels provide a
phenomenological understanding of the mechanism behind
the oscillations: as ϕ is adiabatically increased, the band
dispersions are displaced in a diagonal direction in ðk; εÞ
space [green arrows in Figs. 3(c)–3(f)], a direct conse-
quence of the winding of the bands [see also Fig. 2(a)].
Therefore, the group velocity vg ¼ ∂ε=∂k of a wave packet
with a given k changes sign when ϕðjÞ increases, resulting
in oscillations in the spatial coordinate.
It is worth stressing that two distinct drivings are present

in our model: (i) a fast cyclic driving of the phases ϕ1, ϕ2

within a Floquet period, which confers a nontrivial winding
to the bands; (ii) a slow adiabatic increase of the phase ϕ

FIG. 2. (a) Quasienergy spectrum with a winding νϕ ¼ −2
obtained for a scattering model with two steps per period for
θ1 ¼ π=4, θ2 ¼ π=4 − 0.6, ϕ1 ¼ ϕ and ϕ2 ¼ −2ϕ. (b) Values of
νϕ for integer values of mj=nj.

FIG. 3. (a) Adiabatic increase of ϕ leads to (b) a standard Bloch oscillation (νϕ ¼ −2), and (g),(h) Bloch oscillation with
suboscillations (νϕ ¼ 6 and νϕ ¼ 8, respectively) of a wave packet injected at time j ¼ 0 and position l ¼ 0 with a Gaussian shape with
rms width of 10 sites in one band [the blue band in Fig. 2(a) for the case of (b)]. Color scale: intensity of the wave packet (jαjl j2 þ jβjl j2).
Dashed black line: analytical calculation of the centre of mass motion of a wave packet from Eq. (32) in [46]. (b),(g),(h) show one period
TB of oscillation for the values of (m1,m2, n1, n2), θ1, θ2 as (1;−2, 1, 1), π=4; π=4 − 0.5 for (b); (4;−1, 1, 1), π=4; π=4 − 0.2 for (g); and
(9;−1, 2, 2), π=4; π=4 − 0.2 for (h). In (c)–(f), the norm of the 2D Fourier transform of the wave packet (α part) after having evolved to
the time step indicated by the horizontal lines in (b), and both the solid and the dashed red lines represent numerically calculated bands
[Eq. (33) in Ref. [46] ]. The vertical scales differ in each panel. The green arrows show the direction in which the bands wind when ϕ
increases.
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which results in the oscillations. An analytical calculation
of the center of mass trajectory Xcðt; kÞ of the wave packet
initially injected at a given k can be inferred from the
group velocity of the quasienergy bands in parameter
space [46]:

Xcðt; kÞ ¼ γ0

Z
t

0

dτ vgðϕðτÞ; kÞ; ð7Þ

where the continuous-time variable t extrapolates the
discrete one j. This semiclassical trajectory is shown in
black dashed lines in Fig. 3(b), which fits the simulation
plot perfectly.
More importantly, the observed oscillatory phenomenon

establishes a direct connection between the winding of the
bands in our Floquet-Bloch model and the usual Bloch
oscillations in a periodic crystal subject to a constant
electric field. Indeed, the adiabatic increase of the phase
shift ϕ at a rate γ0 when the time steps j increase is
analogous to a time-dependent vector potential that induces
a (fictitious) electric field [48] E and, therefore, should
result in Bloch oscillations. This was already noticed in the
case of a single-step time evolution by Wimmer and co-
workers [49], who reported a gauge transformation relating
the dynamics of a wave packet in a lattice subject to a static
potential gradient (i.e., a constant electric field), and the
dynamics in a lattice subject to an adiabatic increase of the
parameter ϕ (see also Ref. [46]).
To establish the connection between the winding of the

quasienergy bands and Bloch oscillations, we note that
the time periodicity TB of the center of mass motion Xc is
inherited from the periodicity of the quasienergy with
respect to ϕ in the following way:

TB ¼ 2π

γ0

νϕ
m1

n1
þ m2

n2

; ð8Þ

where negative values of νϕ correspond to mirror
symmetric trajectories to those with jνϕj.
In Eq. (8), we recognize the usual period TB for Bloch

oscillations induced by an average constant electric field
E ¼ ðE1 þ E2Þ=2 where Ej ¼ ðmj=njÞγ0 is the fictitious
electric field applied during the time step j (see Ref. [46]
for more details), except that in Eq. (8) this standard
relation is modified by the winding number νϕ. In particu-
lar, the period TB ¼ 2π=E of the usual Bloch oscillations is
recovered for jνϕj ¼ 2, a situation in which each band
winds once, as reported in Figs. 2(a) and 3(b).
Beyond this standard case, our model predicts a novel

kind of topological oscillations: higher winding numbers
may not only change the period TB, but also yield more
complex oscillations with additional turning points within
TB. Two examples are shown in Figs. 3(g) and 3(h) for
values of mi, ni resulting in bands of windings νϕ ¼ 6 and
8, respectively, and the same oscillating period TB as in

Fig. 3(b). Remarkably, in a period TB, the number of
turning points is found to be precisely N t ¼ jνϕj (see
Ref. [46]). This result confers a topological nature to the
observed oscillations. Note that standard Bloch oscillations
simply have two turning points per period [see Fig. 3(b)], in
agreement with N t ¼ 2 ¼ jνϕj. Moreover, the topological
nature of the oscillations makes them robust to the presence
of weak disorder in the lattice [46].
So far, we have considered windings of the bands

induced by periodic pumping in the synthetic dimension.
We now show that a winding of the quasienergy bands
along the k direction can similarly be induced when
inversion symmetry is broken in the spatial dimension,
and it results in a different topological phenomenon:
quantized displacement of the mean particle position.
This effect can be straightforwardly implemented in scat-
tering network models by connecting next-nearest neighbor
nodes, as sketched in Fig. 4(a) for a two-step time evolution
(see Ref. [46] for the step evolution equations). For the sake
of generality, we have kept in the model the phase ϕj,
which we take as ϕ1 ¼ ϕ ¼ −ϕ2, such that νϕ ¼ 0,
i.e., there are no Bloch oscillations. The corresponding
quasienergy bands, displayed in Fig. 4(b), show a winding
along k for each ϕ. This feature is captured by a winding
number of the Floquet operator along k, analogous to that
defined in Eqs. (5) and (6) for ϕ. More generally, when
considering even further long range couplings, this winding
number is found to read [46]

νk ¼
κ

2π

�
r1
s1

þ r2
s2

�
ð9Þ

where κ is the periodicity of the bands in k and rj=sj is
related to the range of the couplings between nodes to the
left or to the right at each time step j. For the case illustrated
in Fig. 4(a), r1=s1 ¼ 1, r2=s2 ¼ −2.

(a) (b)

(c)

FIG. 4. (a) Two-steps scattering network with the next nearest
coupling in the second step. A dashed black rectangle emphasizes
the unit cell of this lattice. (b) Quasienergy bulk spectrum for the
model depicted in (a) with θ1 ¼ π=4, θ2 ¼ π=4 − 0.6 and
ϕ1 ¼ −ϕ2. (c) Quantized displacement of the mean particle
position with associated winding numbers νk.
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In the spirit of the seminal work of Thouless [14], and as
revisited by Kitagawa et al. [13] within the Floquet
formalism, this winding number νk can be related to
the mean displacement of particles after P Floquet periods
T, in a state where all the bands are uniformly excited,
that is Ref. [46], which also includes Ref. [50], Δx ¼
−Pð2π=κÞνk.
Despite this apparent similarity, this quantized transport

property differs from the usual Thouless pumping that
results from an adiabatic driving of the system. In that case,
the quantization can be expressed as a Chern number of the
slowly driven instantaneous filled states parametrized over
the effective 2D BZ ðk; tÞ. This Chern number was later
reinterpreted as a sum of the winding numbers in k over the
filled bands [13]. In the adiabatic regime, if this sum runs
over all the bands, as in our case, then the Chern numbers of
each band sum up to zero, and there is no drift. Quantized
drifts obtained for our nonadiabatic scattering model are
shown in Fig. 4(c). More generally, quasienergy windings
along both ϕ and k coordinates can coexist, leading to quite
complex drifted Bloch oscillations for wave packets, which
are shown in Ref. [46].
Our study unveils the topological aspects of Bloch

oscillations and extends them to a family of oscillatory
phenomena accessible in artificial systems such as arrays of
photonic waveguides and coupled fibers. It generalizes
straightforwardly to periodically driven lattices of ultracold
atoms where a protocol to generate quasienergy windings
and oscillations was proposed [15], although neither the
winding number νϕ nor its relation to the number of Bloch
suboscillations was identified. The direct relation we have
identified between the number of turning points within an
oscillation period and the winding number of the bands
provides a new protocol to measure topological invariants
in systems described by a quantum walk. The study of
the manifestation of the topological nature of the oscil-
lations in their associated Wannier-Stark ladders [51]
remains an exciting perspective.
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