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Compression dramatically changes the transport and localization properties of graphene. This is
intimately related to the change of symmetry of the Dirac cone when the particle hopping is different along
different directions of the lattice. In particular, for a critical compression, a semi-Dirac cone is formed with
massless and massive dispersions along perpendicular directions. Here we show direct evidence of the
highly anisotropic transport of polaritons in a honeycomb lattice of coupled micropillars implementing a
semi-Dirac cone. If we optically induce a vacancylike defect in the lattice, we observe an anisotropically
localized polariton distribution in a single sublattice, a consequence of the semi-Dirac dispersion. Our work
opens up new horizons for the study of transport and localization in lattices with chiral symmetry and exotic
Dirac dispersions.
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Graphene presents extraordinary transport properties
arising from the particular conical structure of its Dirac
cones. At the Dirac energy, electrons behave as chiral
relativistic particles with no mass [1]. Remarkable effects
arise from this unusual electronic band structure, such as,
conical diffraction [2], integer quantum Hall effect at room
temperature [3], antilocalization [4] and Klein tunneling
[5–8]. While the Dirac cones in graphene are cylindrically
symmetric, anisotropic Dirac cones in strained two-dimen-
sional materials have driven much attention due to the
possibility of modifying the Fermi surface and implement-
ing directional transport properties. For instance, by tuning
the nearest-neighbor and next-nearest-neighbor hoppings
between atoms along a given direction in tight-binding
models, it has been shown that tilted Dirac cones with
asymmetric Dirac velocities in the x and y directions can be
engineered [9–18]. They have been predicted to show
exotic tunneling properties [19,20] and high temperature
superconducting gaps [21].
A peculiar case of Dirac cone manipulation takes place

in a honeycomb lattice when two topologically nonequiva-
lent Dirac cones merge in the presence of uniaxial strain
[11,14,22,23]. In this case, quasiparticles at the Dirac point
behave as massless particles in one spatial direction and as
massive ones in the perpendicular direction, in a so-called
semi-Dirac cone. The asymmetry of such exotic Dirac
cones anticipates highly anisotropic transport and locali-
zation properties as studied in a number of theoretical
works [11,14,22–26]. However, these properties have been
hardly explored experimentally due to the difficulty in

synthesizing two-dimensional materials with the required
asymmetric hoppings and low disorder. For instance, semi-
Dirac cones have been observed in black phosphorous [27],
but no transport studies are available. Artificial systems,
such as ultracold atoms [28], lattices of photonic resonators
[29,30], and waveguide arrays [31] have shown the
possibility of engineering semi-Dirac cones with an exqui-
site control, and demonstrated the effect of the merging of
the Dirac cones on the presence of edge states [30,31].
However, transport and localization properties have not
been studied in these artificial systems because of the need
to access simultaneously spectral information and particle
dynamics.
In this Letter, we experimentally report the highly

anisotropic transport and localization properties of polar-
itons in lattices of semiconductor micropillars [32–34]
showing a semi-Dirac dispersion. We reveal the anisotropic
transport of polaritons along perpendicular spatial direc-
tions with massive and massless dispersions, characteristic
of the semi-Dirac cone. Taking advantage of the driven-
dissipative nature of polaritons, we induce effective lattice
vacancies, which result in localized polariton distributions
with an anisotropic decay and confined in a single
honeycomb sublattice. Our observations reveal clear evi-
dence of the long-sought anisotropic transport in unconven-
tional Dirac cones, and provide a new route to implement a
localized response in lattices with chiral symmetry.
To engineer the semi-Dirac cone Hamiltonian, we

employ lattices of semiconductor micropillars. The lattices
are fabricated from a planar semiconductor microcavity
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made of 28 (top) and 40 (bottom) pairs of λ=4 alternating
layers of Ga0.05Al0.95As and Ga0.80Al0.20As (λ ¼ 783 nm),
a λ=2 cavity spacer of Ga0.05Al0.95As, and twelve GaAs
quantum wells embedded at the three central maxima of the
electromagnetic field. At 10 K, the temperature of our
experiments, the microcavity is in the strong coupling
regime between quantum well excitons and confined
photons, giving rise to polaritons characterized by a
Rabi splitting of 15 meV. The microcavity is then etched
down to the substrate into honeycomb lattices of coupled
micropillars of 2.6 μm diameter. By varying the center-to-
center distance between micropillars, the amplitude of the
polariton hopping between neighboring micropillars can be
engineered [34] to simulate the homogeneous strain that
has been predicted to result in semi-Dirac dispersions
[11,14,22,23]. All experiments are done at a photon-
exciton detuning of −15.2 meV, thus leading to polaritons
states with a dominant photonic fraction, which present the
longest polariton lifetimes in our samples.
Figure 1(a1) shows a scanning electron microscope

image of a lattice with isotropic hoppings, corresponding
to a center-to-center distance of a ¼ a0 ¼ 2.4 μm for the
three nearest-neighbor links of each micropillar. To mea-
sure the polariton dispersion and study the transport
properties, photoluminescence experiments are done under
excitation at the center of the lattice in a spot of 8 μmwith a
continuous wave laser at 745 nm. A detailed description of

the experimental setup can be found in the Supplemental
Material [35]. Figures 1(b2)–1(b3) show the emission from
the lowest energy bands (s bands) in momentum space.
Along the ky direction [line 1 in Fig. 1(a2)] two Dirac
crossings are observed in Fig. 1(b2), corresponding to the
K and K0 points characteristic of the unperturbed honey-
comb lattice. The Dirac velocities (slopes of the Dirac
dispersion) are in this case isotropic around each Dirac
cone, as evidenced when comparing the dispersions close
to E0 in Fig. 1(b2) for K along ky [line 1 in Fig. 1(a2)] and
in Fig. 1(b3) along kx [line 2 in Fig. 1(a2)].
The polariton dispersion is well reproduced by a tight-

binding model whose eigenvalues are [32,36]

E�ðkÞ ¼ E0 � t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðβ2 þ 2Þ þ fðkÞ

q
− t̄fðkÞ; ð1Þ

with, fðkÞ ¼ 2 cosð ffiffiffi
3

p
kyaÞ þ 4β cosð½3=2�kxaÞ×

cosð½ ffiffiffi
3

p
=2�kyaÞ, and E0 the Dirac-point energy. t and t̄

refer to nearest- (NN) and next-nearest-neighbor (NNN)
hoppings, respectively, while β≡ t0=t represents the ratio
of the horizontal polariton hopping to the diagonal one
[Fig. 1(a1)].Hence, β quantifies the engineered compression
strength, which is equal to 1 in the present case (isotropic
hopping).A fit of Eq. (1) to the collected photoluminescence
[white lines in Figs. 1(b2)–1(b3)] results in the hopping
parameters t ¼ 0.18 and t̄ ¼ −0.014 meV. Note that in the
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FIG. 1. Dirac cone merging and semi-Dirac dispersion. (a1) Electron microscopy image of a polariton honeycomb lattice. Red and
blue circles demarcate A and B sublattices. Yellow and white lines denote hopping among horizontal and diagonal nearest neighbors (t0
and t, respectively). (a2)–(a3) Sketch of the Brillouin zones in momentum space for β ¼ 1 and β ≥ 2. Middle and bottom rows of
columns (b)–(d) are measured polariton photoluminescence intensity in momentum space for different values of β. Each image is
normalized to its maximum intensity. (b2),(c2),(d2) The emission along ky for kx ¼ 2π=3a [line 1 in (a2) and (a3)], while (b3),(c3),(d3)

exhibit the measurements along kx for ky ¼ −4π=3
ffiffiffi
3

p
a (line 2), and for ky ¼ −6π=3

ffiffiffi
3

p
a (line 3). The white continuous and dashed

lines are fits to the lower and upper tight-binding bands [Eq. (1)]. E0 ¼ 1589.2 meV; a ¼ 2.4 μm.
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micropillar system, the NNN hopping in Eq. (1) is a
phenomenological term that reproduces the observed asym-
metry of s bands. Its origin is the coupling of s andpmodes,
as described in Ref. [37].
When the horizontal hopping t0 is increased, the tight-

binding bands show that the Dirac cones K and K0 move
towards each other, and for a value of β ¼ 2 they merge at a
single point [Fig. 1(c1)]. We experimentally probe this
situation in Figs. 1(c2)–1(c3) for a lattice with a0 ¼
2.2 μm and a ¼ 2.4 μm.Using the tight-bindingmodel with
the previously obtained values of t and t̄, a value of β ¼ 2
reproduces the experimental features. The recorded spectrum
along ky [line 1 in Fig. 1(a3)] shows not only that the two
Dirac cones have merged but, more importantly, the dis-
persions of both the upper and lower bands are now parabolic
in this direction, while they remain linear along the kx
direction. This situation is known as a semi-Dirac cone,
which combines massless and massive dispersions along
perpendicular directions. Theyhavebeenobserved inARPES
measurements of strained black phosphorus [27] and indi-
rectly in various artificial lattices [28–31]. If β is further
increased, the Dirac cone merging evolves into a band gap
[see Fig. 1(d1)]. We implement experimentally this situation
by reducing further the center-to-center distance a0 to 1.7 μm
as shown in Figs. 1(d2)–1(d3), corresponding to β ¼ 3.
The anisotropic dispersion of the semi-Dirac cone for

β ¼ 2 is expected to have strong consequences in the
transport properties of polaritons. To study this effect, we
probe the polariton distribution in real space at different
emission energies. Figures 2(a1) and 2(b1) show the real-
space intensity at the energy E0 of the Dirac point for β ¼ 1
and β ¼ 2, respectively. For β ¼ 1 [panel (a1)], we observe
that polaritons travel away from the excitation spot isotropi-
cally; on the contrary for β ¼ 2 [panel (b1)], the propaga-
tion is significantly anisotropic, being more pronounced in
the x direction than in the y direction. To quantify this
anisotropy, we measure the propagation length on both x
and y directions at E0 in both lattices. The propagation
length is extracted by fitting an exponential decay to the
tails of the emitted intensity, i.e., jψðrÞj2 ∝ e−r=Lr along the
x and y directions [enclosed region in Figs. 2(a1) and 2(b1)].
Experimental points and fits are shown in Figs. 2(a2)
and 2(b2). For β ¼ 1, the propagation lengths are
Lx ¼ 10.21� 2.69 andLy ¼ 9.38� 0.23 μm.Thesevalues
confirm the isotropic transport of polaritons near the
Dirac-point energy, which was previously measured in
the form of conical diffraction [2]. For β ¼ 2, at the
same energy, we obtain Lx ¼ 13.31� 1.40 and Ly ¼
4.89� 0.84 μm, evidencing the high group velocity in the
direction of the massless dispersion, and the reduced group
velocity along the y direction associated to the touching
parabolic bands.
Figures 2(a3)–2(b4) show in solid dots the measured

propagation lengths Lx and Ly as a function of the energy
across the Dirac point. This measurement can be directly

compared to the propagation length expected from the
group velocities, vg;xðyÞ ¼ ∂E=∂kxðyÞ, in the following way:

LxðyÞ ≈ vg;xðyÞτ: ð2Þ
vg;xðyÞ is calculated from the dispersion curves in Fig. 1 along

the vertical (kx ¼ 2π=3a) and horizontal (ky ¼ −4π=3
ffiffiffi
3

p
a

for β ¼ 1; ky ¼ −6π=3
ffiffiffi
3

p
a for β ¼ 2) directions, and τ is

Line 1

FIG. 2. Transport at the Semi-Dirac point. (a1) and (b1) show
the photoluminescence intensity in real space at the energy of the
Dirac point (E0 ¼ 1589.2 meV) for β ¼ 1 and β ¼ 2, respec-
tively. Each image is normalized to its maximum intensity. (a2)–
(b2) The measured intensity along x (circles) and y (triangles)
directions for β ¼ 1 (a2) and β ¼ 2 (b2), extracted from the
dashed boxes in (a1) and (b1). Lines are exponential decay fits.
(a3) and (a4) The measured propagation lengths (dots), at several
energies, along the y and x directions for β ¼ 1. (b3) and (b4)
Same for β ¼ 2. Solid and dashed lines display the theoretical
propagation lengths [Eq. (2)] corresponding to the solid and
dashed bands in Figs. 1(b2), 1(b3), 1(c2), 1(c3). The vertical line
depicts the Dirac-point energy E0.
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the polariton lifetime. The lines in Figs. 2(a3)–2(b4) show the
propagation lengths calculated from the group velocities
predicted by the tight-bindingmodel in each spatial direction
below (continuous line) and above (dashed line)E0. Herewe
assume a polariton lifetime of τ ¼ 14 and τ ¼ 12 ps, for
β ¼ 1 and β ¼ 2 lattices, respectively, which is used as a
fitting parameter to the experimental points.
The calculated propagation distances match well the

experimental data and reproduce the increase of the
propagation length along the x direction when going from
β ¼ 1 to β ¼ 2, due to the higher hopping in that direction
[see Figs. 2(a4)–2(b4)]. Along the y direction, the expected
propagation length for β ¼ 2 goes down to zero at the
Dirac-point energy E0, a consequence of the massive
dispersion along that direction [see Fig. 2(a3)].
Similarly, the calculated propagation length is also zero
at the top and bottom of the bands. Experimentally, the
measured propagation length at those points is about 4 μm.
This value is, in part, determined by the linewidth of
0.060 meV associated to the finite polariton lifetime: when
selecting a given energy, we are in fact detecting the
emission from a small range of energies around the desired
one, corresponding to states with a nonzero group velocity.
Moreover, diffusion of photoexcited excitons away from
the excitation spot might also contribute to the residual
measured propagation distance.
Further insights on the transport properties at the semi-

Dirac cone energy E0 can be accessed when implementing
a resonant-laser excitation scheme. Figure 3(a) shows the
measured intensity when a resonant laser at E0 is focused
on a single micropillar of the A sublattice (marked with a
circle) in a lattice with β ¼ 2. To measure the propagation
away from the excitation spot, a mask was placed at the
center of the image (white area) with the aim of blocking
the excitation beam reflecting onto the CCD (the inset
shows an image of the reflected pump beam in the absence
of the mask). The image shows some stray laser light close
to the excitation spot and a decay of the luminescence on
the B sublattice towards the right of the excitation spot. If
the excitation is centered on a pillar of the B sublattice, the
decay direction and the sublattice asymmetry are reversed,
as shown in Fig. 3(c). Further data analysis can be found
in Ref. [35].
This behavior is well reproduced using a driven-dis-

sipative model of the polariton dynamics in resonant
excitation [38]:

iℏ
∂ψn

∂t ¼
X

m≠n
tn;mψm − i

ℏ
τ
ψn þ Fδn;npe

iωpt: ð3Þ

ψn represents the polariton amplitude at site n, tn;m is the
nearest-neighbor hopping, and F is the strength of the
pump at frequency ωp. Figure 3(b) depicts the steady-state
solution in the conditions of Fig. 3(a): τ ¼ 12 ps,
t ¼ 0.18 meV, β ¼ 2. It shows that the population in the

pumped micropillar, marked by a circle, is almost zero, and
the distribution extends mainly to the right of the excited
micropillar, on the B sublattice. When moving the excita-
tion spot to a B site [Fig. 3(d)], the distribution reverses its
decay direction, as observed in the experiment [panel (c)].
Note that along the y direction, corresponding to the
massive dispersion of the semi-Dirac point, the polariton
distribution is localized within a single hexagon.
The observed polariton distributions resemble the pre-

dicted wave function of electrons bound to a single bulk
vacancy in compressed graphene [24]. It has been shown
that a single bulk vacancy in graphene creates a defect state
at the Dirac-point energy E0, with a decay in amplitude
following a 1=r law [24,39,40]. The chiral symmetry of
the lattice imposes that its wave function resides in one
sublattice only: the sublattice opposite to that of the
vacancy. Experiments shown in Ref. [35] for lattices with
β ¼ 1 reproduce this situation. In the case of a semi-Dirac
cone, the wave function of the vacancy state acquires an

FIG. 3. All-optical analog of a vacancy localization in semi-
Dirac graphene. (a) and (b) The measured photoluminescence
intensity in real space at the energy of the Dirac point when a
single pillar is pumped (demarcated by a circle) in an A pillar (a)
and in a B pillar (c). Insets show the reflected pump spot when the
beam block is removed from the central region. (b) and (d) The
polariton distribution calculated from Eq. (3) when a single A and
B pillar, respectively, is pumped at E0 energy. Hexagons depict
the underlying lattice.

PHYSICAL REVIEW LETTERS 125, 186601 (2020)

186601-4



anisotropic distribution: if the vacancy is in the A sublattice,
the state is localized to the right of the vacancy; if the
vacancy is in the B sublattice, it is localized to the left [24].
In both cases the decay of the amplitude follows 1=

ffiffiffiffiffijxjp
.

These vacancy states are expected to play an important role
in the transport properties of graphenelike materials in
which localization by weak disorder is strongly decreased
due to the Klein tunneling effect.
The similarity between the measured polaritonic distri-

bution and bound electron wave functions can be inter-
preted phenomenologically as follows. Under resonant
excitation (ℏωp ¼ E0), the population of the driven micro-
pillar interferes destructively with the laser, resulting in an
almost zero population in the pumped micropillar, analo-
gous to the effect of a vacancy. This phenomenon was
recently reported in the case of two coupled micropillars
[41], and it is expected to happen in any lattice of micro-
pillars with chiral symmetry.
In summary, we have probed the simultaneous massive

and massless behavior of polaritons in a semi-Dirac
honeycomb lattice. Additionally, we have generated an
all-optical analog of a vacancy and reported the associated
anisotropic distribution in the bulk of the lattice. The use of
polariton nonlinearities, absent in the experiments pre-
sented here, are a promising perspective for the study of
nonlinear modes at Dirac and semi-Dirac points [42],
hardly studied so far due to the rarity of systems with
engineered Dirac cones and nonlinearities.
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