REVIEWS OF MODERN PHYSICS, VOLUME 91, JANUARY-MARCH 2019
Topological photonics

Tomoki Ozawa

Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS),

RIKEN, Wako, Saitama 351-0198, Japan,

Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles,
CP 231, Campus Plaine, B-1050 Brussels, Belgium,

and INO-CNR BEC Center and Dipartimento di Fisica, Universita di Trento, I-38123 Povo, Italy

Hannah M. Price

School of Physics and Astronomy, University of Birmingham,
Edgbaston, Birmingham B15 2TT, United Kingdom

and INO-CNR BEC Center and Dipartimento di Fisica,
Universita di Trento, 1-38123 Povo, ltaly

Alberto Amo

Université de Lille, CNRS, UMR 8523—PhLAM—Laboratoire de Physique des Lasers
Atomes et Molécules, F-59000 Lille, France

Nathan Goldman

Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles,
CP 231, Campus Plaine, B-1050 Brussels, Belgium

Mohammad Hafezi

Joint Quantum Institute, Institute for Research in Electronics and Applied Physics,
Department of Electrical and Computer Engineering, Department of Physics,
University of Maryland, College Park, Maryland 20742, USA

Ling Lu

Institute of Physics, Chinese Academy of Sciences/Beijing National Laboratory
for Condensed Matter Physics, Beijing 100190, China
and Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

Mikael C. Rechtsman

Department of Physics, The Pennsylvania State University,
University Park, Pennsylvania 16802, USA

David Schuster

The James Franck Institute and Department of Physics,
University of Chicago, Chicago, Illinois 60637, USA

Jonathan Simon

The James Franck Institute and Department of Physics,
University of Chicago, Chicago, Illinois 60637, USA

Oded Zilberberg
Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland

lacopo Carusotto
INO-CNR BEC Center and Dipartimento di Fisica, Universita di Trento, 1-38123 Povo, Italy

® (published 25 March 2019)

0034-6861/2019/91(1)/015006(76) 015006-1 © 2019 American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/RevModPhys.91.015006&domain=pdf&date_stamp=2019-03-25

Tomoki Ozawa et al.: Topological photonics

Topological photonics is a rapidly emerging field of research in which geometrical and topological
ideas are exploited to design and control the behavior of light. Drawing inspiration from the discovery
of the quantum Hall effects and topological insulators in condensed matter, recent advances have
shown how to engineer analogous effects also for photons, leading to remarkable phenomena such as
the robust unidirectional propagation of light, which hold great promise for applications. Thanks to
the flexibility and diversity of photonics systems, this field is also opening up new opportunities to
realize exotic topological models and to probe and exploit topological effects in new ways. This
article reviews experimental and theoretical developments in topological photonics across a wide
range of experimental platforms, including photonic crystals, waveguides, metamaterials, cavities,
optomechanics, silicon photonics, and circuit QED. A discussion of how changing the dimensionality
and symmetries of photonics systems has allowed for the realization of different topological phases is
offered, and progress in understanding the interplay of topology with non-Hermitian effects, such as
dissipation, is reviewed. As an exciting perspective, topological photonics can be combined with
optical nonlinearities, leading toward new collective phenomena and novel strongly correlated states

of light, such as an analog of the fractional quantum Hall effect.
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plateaus in the Hall conductance as a function of the magnetic
field at values equal to integer multiples of the fundamental
constant e?/h. The far-reaching conceptual consequences of
this integer quantum Hall effect were soon highlighted by
Thouless et al. (1982) and Kohmoto (1985). These works
related the integer appearing in the Hall conductance to a
topological invariant of the system, the Chern number,
that is an integer-valued quantity which describes the global
structure of the wave function in momentum space over the
Brillouin zone.

An important insight into the physical meaning of the
topological invariant is given by the bulk-edge correspon-
dence (Jackiw and Rebbi, 1976; Hatsugai, 1993a, 1993b; Qi,
Wu, and Zhang, 2006): when two materials with different
topological invariants are put in contact, there must exist edge
states that are spatially localized at the interface at energies
that lie within the energy gap of the surrounding bulk
materials.

The bulk-edge correspondence can be heuristically under-
stood in the following way: an integer topological invariant of
a gapped system cannot change its value under perturbations
or deformations of the system, unless the energy gap to
excited states is somewhere closed. This implies that when
two materials with different topological invariants are put in
contact, the energy gap must close somewhere in the interface
region, which leads to the appearance in this region of
localized states. In a finite-size sample of a topologically
nontrivial material, the physical edge of the sample can be
considered as an interface between a region with a nonzero
topological invariant and the topologically trivial vacuum,
guaranteeing the existence of localized states at the system
boundary.

In the quantum Hall effect, these edge modes display chiral
properties, in the sense that they can propagate only in one
direction along the sample boundary but not in the opposite
direction. The number of such chiral edge modes that are
available at the Fermi energy for electric conduction is
proportional to the Hall conductance. Because of the unidi-
rectional nature of the edge states, the edge currents are
immune to backscattering, resulting in the precise and robust
quantization of the measured Hall conductance (Halperin,
1982; MacDonald and Stieda, 1984; Biittiker, 1988).

Interest in the topological physics of electronic systems
surged further when a different class of topological phases of
matter, now known as the quantum spin Hall systems or Z,
topological insulators, was discovered in 2005 (Kane and
Mele, 2005a, 2005b; Bernevig, Hughes, and Zhang, 2006;
Bernevig and Zhang, 2006; Konig et al., 2007). In these
systems, the Chern number is zero but the wave function is
characterized by a binary (Z,) topological invariant that can
be nonzero and robust in the presence of time-reversal
symmetry. Since then, there has been intense investigation
in condensed-matter physics into what different topological
phases of matter are possible under various symmetries, and
what are the physical consequences of this physics (Hasan and
Kane, 2010; Qi and Zhang, 2011; Bernevig and Hughes,
2013; Chiu et al., 2016). Besides electronic systems in solid-
state materials, topological phases of matter are also being
actively studied in other quantum many-body systems, in
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particular, liquid helium (Volovik, 2009) and ultracold atomic
gases (Cooper, 2008; Dalibard et al., 2011; Goldman et al.,
2014; Goldman, Budich, and Zoller, 2016).

Parallel to the growth in the study of topological phases of
matter in condensed-matter systems, Haldane and Raghu
made the crucial observation that topological band structures
are, in fact, a ubiquitous property of waves inside a periodic
medium, regardless of the classical or quantum nature of the
waves. In their seminal works (Haldane and Raghu, 2008;
Raghu and Haldane, 2008), they considered electromagnetic
waves in two-dimensional spatially periodic devices embed-
ding time-reversal-breaking magneto-optical elements and
showed that the resulting photonic bands would have non-
trivial topological invariants. Consequently, they predicted
that such photonic systems would support robust chiral states
propagating along the edge of the system at frequencies inside
the photonic band gap.

Shortly afterward, following a realistic proposal from Wang
et al. (2008), the idea of Haldane and Raghu was exper-
imentally implemented using the two-dimensional magneto-
optical photonic crystal structure in the microwave domain
sketched in Figs. 1(al) and 1(a2) (Wang et al., 2009): a clear
signature of the nontrivial band topology was indeed found in
the unidirectionally propagating edge states and in the
corresponding nonreciprocal behavior, as illustrated in the
simulations of Figs. 1(b) and in the experimental data of
Figs. 1(c) and 1(d). More details on this and related following
experiments are given in Sec. IIL.A.

Further progress toward the implementation of such a
model in the optical domain and the exploration of other
topological models remained however elusive. One major
challenge was the absence of a large magneto-optical response
in the optical domain. One way to overcome this difficulty is
to consider internal degrees of freedom of photons as
pseudospins and look for an analogy of quantum spin Hall
systems, namely, where the overall time-reversal symmetry is
not broken but each pseudospin feels an artificial magnetic
field (Hafezi et al., 2011; Umucalilar and Carusotto, 2011;
Khanikaev ef al., 2013). A second way is to use ideas from the
Floquet topological insulators (Oka and Aoki, 2009;
Kitagawa, Berg et al., 2010; Lindner, Refael, and Galitski,
2011) known in condensed-matter physics, where temporal
modulation is applied to the system to generate an effective
time-independent Hamiltonian which breaks time-reversal
symmetry (Fang, Yu, and Fan, 2012b). A third way is to
employ time-dependent modulation to implement a “topo-
logical pump” (Thouless, 1983); this last approach was
realized experimentally in photonics in 2012 (Kraus et al.,
2012), while the previous two ideas were realized in 2013 by
two concurrent experiments (Hafezi er al., 2013; Rechtsman,
Zeuner, Plotnik et al., 2013).

Since then there has been great activity in the study of a
variety of photonic systems realizing band structures with
nontrivial topological invariants, leading to the emerging
research field of topological photonics (Lu, Joannopoulos,
and Soljaci¢, 2014, 2016; Khanikaev and Shvets, 2017; X.-C.
Sun et al., 2017). Along similar lines, intense theoretical and
experimental work has also been devoted to related topologi-
cal effects in other areas of classical physics, such as in
mechanical and acoustic systems. Reviews of the advances of
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FIG. 1. (al) Sketch of the gyromagnetic photonic crystal slab
used in the experiments of Wang et al. (2009). The blue dots
indicate the ferrite rods which are organized in a two-dimensional
square lattice along the x-y plane and are subject to a magnetic
field of 0.2 T. The structure is sandwiched between two parallel
copper plates providing confinement along z. The chiral edge
state is located at the boundary of the photonic crystal next to the
metal wall. Two dipole antennas A and B serve as feeds and/or
probes. Backscattering is investigated by inserting a variable-
length metal obstacle between the antennas. (a2) A top view
photograph of the actual waveguide with the top plate removed.
(b) Theoretical calculations of light propagation on edge states:
(b1), (b3) unidirectional, nonreciprocal propagation from anten-
nas A and B, respectively. (b2) The immunity to backscattering
against a defect. (c) Reciprocal transmission when the two
antennas are located in the bulk. (d) Nonreciprocal transmission
via the chiral edge state. Blue and red curves refer to transmission
from antenna A to antenna B and vice versa. (e) Projected
dispersion of the allowed photonic bands in the bulk (blue and
gray) and the chiral edge state (red). The white numbers indicate
the Chern number of each band. Adapted from Wang et al., 2009.

these other fields have been given by Fleury et al. (2015) and
Huber (2016).

This review is focused on the recent developments in the
study of topological phases of matter in the photonics context.
As we shall see in the following, in the last decade, topological
ideas have successfully permeated the field of photonics,
having been applied to a wide range of different material
platforms, arranged in lattices of various dimensionalities, and
operating in different regions of the electromagnetic spectrum,
from radio waves and microwaves up to visible light. One long
term goal of topological photonics is to achieve and control
strongly correlated states of photons with topological features
such as fractional quantum Hall states. In addition to opening
up perspectives for exploring the fundamental physics of
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topological phases of matter beyond solid-state systems,
topological photonics also offers rich potential applications
of these concepts to a novel generation of optoelectronic
devices, such as optical isolators and topological lasers.

The structure of this review article is the following. In
Sec. IILA, we offer a general review of the main geometrical
and topological concepts that have been developed in the study
of solid-state electronic systems and that are commonly used in
topological photonics. The following Sec. II.B gives a general
overview of the specific features that characterize photonic
systems in contrast to electronic topological insulators.

In Sec. III, we discuss two-dimensional photonic systems
which show topological features. This section is divided into
four subsections. In Sec. III.A, we discuss two-dimensional
photonic structures which break time-reversal symmetry and
hence display physics analogous to integer quantum Hall
systems. Relevant photonic systems include gyromagnetic
photonic crystals, waveguide arrays, optomechanics, cavity
QED, and circuit QED. The following Sec. III.B deals with
two-dimensional photonic systems which do not break time-
reversal symmetry and hence can be considered as analogs of
the quantum spin Hall systems. Systems discussed in this
section include silicon ring resonator arrays, radio-frequency
circuits, twisted optical resonators, and photonic metamate-
rials. In Sec. III.C, we review photonic realizations of
anomalous Floquet topological systems with waveguide
arrays, namely, temporally modulated systems displaying
topological features that do not have an analog in static
Hamiltonians. Section III.D discusses two-dimensional gap-
less systems such as honeycomb lattices, whose features can
also be understood from topological considerations. Systems
discussed in this section include microwave resonators, photo-
refractive crystals, coupled microlasers, exciton-polariton
lattices, and waveguide arrays.

Section IV is devoted to photonic realizations of one-
dimensional topological systems. In Sec. IV.A we concentrate
on systems with chiral symmetry, such as the Su-Schrieffer-
Heeger (SSH) model. In Sec. IV.B we review photonic
realizations of topological pumping. Systems of higher
dimensionality are then considered in Sec. V. Three-
dimensional gapless phases with features originating from
topological charges in momentum space, such as Weyl points,
are discussed in Sec. V.A. In Sec. V.B, we discuss gapped
three-dimensional phases and their topological interface
states. The following Sec. V.C presents the concept of
synthetic dimensions, which could be used to realize models
with an effective spatial dimensionality higher than three, e.g.,
four-dimensional quantum Hall systems.

In Sec. VI, we discuss photonic systems where gain and
loss play an essential role. Such systems are described by non-
Hermitian Hamiltonians and do not find a direct counterpart in
electronic topological insulators. Section VI.A focuses on the
interplay of gain and loss, while the following Sec. VI.B
reviews the emergent topology of Bogoliubov modes that
arises from parametric down conversion processes.

Section VII is devoted to an overview of the interplay
between topology and optical nonlinearities. Theoretical work
on nonlinear effects stemming from weak nonlinearities is
reviewed in Sec. VILA, while the following Sec. VILB
highlights the prospect of strong photon-photon interactions
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mediated by strong nonlinearities to realize topologically
nontrivial strongly correlated states of photons. Some of
the future perspectives of the field of topological photonics
are finally illustrated in Sec. VIIIL.

Compared to earlier reviews on topological photonics (Lu,
Joannopoulos, and Soljaci¢, 2014, 2016; Khanikaev and
Shvets, 2017; X.-C. Sun et al., 2017), this review aims to
be comprehensive, starting from the very basics of topological
phases of matter and trying to cover most of the works that
have appeared in the last years in relation to topological
phases of matter in optical systems in any dimensionality.
However, we need to warn the readers that space restrictions
force us to leave out many other fields of the optical sciences
that relate to topological concepts, e.g., the rich dynamics of
optical vortices in singular optics (Dennis, O’Holleran, and
Padgett, 2009; Gbur, 2016), the topology underlying knots in
complex electromagnetic fields (Arrayas, Bouwmeester, and
Trueba, 2017), and the topological ideas underlying bound
states in the continuum (Hsu et al., 2016). For all these
advances, we refer the readers to the rich specific literature
that is available on each of them.

II. BASIC CONCEPTS

In this section, we introduce general concepts of topological
phases of matter and optical and photonic systems that are
needed in the following sections. In Sec. ILA, we briefly
review the paradigm of topological phases of matter, as it was
originally developed in the context of electronic systems in
solid-state materials, and illustrate the basic technical and
mathematical tools to describe them. Then in Sec. IL.B, we
review the principal features of photonic systems used for
topological photonics, with a special emphasis on their
differences and peculiarities as compared to electronic
systems.

A. Topological phases of matter

According to Bloch’s theorem, the eigenstates of a quantum
particle in a periodic potential are organized into energy bands
separated by energy gaps. This band structure determines the
metallic or insulating nature of different solid-state materials
(Ashcroft and Mermin, 1976). Besides the energy dispersion
of the bands, the geometrical structure of the Bloch eigenstates
in momentum space can also have an impact on the electronic
properties of materials as first discovered by Karplus and
Luttinger (1954) and Adams and Blount (1959). This geo-
metrical structure is reflected also in integer-valued global
topological invariants associated with each band, as we see
later. In spite of their seemingly abstract nature (Simon, 1983),
nontrivial values of these topological invariants have observ-
able consequences such as the quantized bulk conductance in
the quantum Hall effect and in the emergence of topologically
protected edge states located on the physical boundary of the
system (Volovik, 2009; Hasan and Kane, 2010; Qi and Zhang,
2011; Bernevig and Hughes, 2013).

This section is devoted to an introduction to the basic
concepts of such topological phases of matter.

Rev. Mod. Phys., Vol. 91, No. 1, January—March 2019

1. Integer quantum Hall effect

The quantum Hall effect is historically the first pheno-
menon where momentum-space topology was recognized to
lead to observable physical phenomena. The integer quantum
Hall effect was discovered in a two-dimensional electron gas
subject to a strong perpendicular magnetic field by Klitzing,
Dorda, and Pepper (1980), who observed a robust quantiza-
tion of the Hall conductance in units of e?/h, where e is the
charge of an electron and / is Planck’s constant. Soon after,
the extremely robust quantization of the Hall conductance was
related to the topology of bands in momentum space by
Thouless, Kohmoto, Nightingale, and den Nijs (TKNN)
(Thouless et al., 1982).

In order to review this landmark result, we first need to
introduce the basic geometrical and topological properties of
eigenstates in momentum space, such as the local Berry
connection and Berry curvature and the global Chern number,
respectively. We consider a single-particle Hamiltonian
H (t,p) in generic dimension d, where t and P are, respec-
tively, the position and momentum operators. We assume that
the Hamiltonian obeys the spatial periodicity condition
H(t+a, p) = H(t.p), where {a;} are a set of d lattice
vectors. Thanks to the spatial periodicity, one can invoke
Bloch’s theorem to write the eigenstates as

Yk (l’) = eik‘run.k (I‘), (1)

where n is the band index and k is the crystal momentum
defined within the first Brillouin zone. The Bloch state u,, y (1)
obeys the same periodicity as the original Hamiltonian
U, (r+a;) =u,,(r) and is an eigenstate of the Bloch
Hamiltonian

Hk = e‘ik'flfl(f',f))eik‘f, (2)
namely,

I:Ikun.k(r) = En(k)un,k(r)’ (3)

where E,(k) is the energy dispersion of the nth band
(Ashcroft and Mermin, 1976).

The physics of an energy band is captured in part by its
dispersion relation E, (k), but also by the geometrical proper-
ties of how its eigenstates u,(r) vary as a function of k
(Karplus and Luttinger, 1954; Adams and Blount, 1959;
Resta, 1994, 2011; Nagaosa et al., 2010). This geometry of
the eigenstates is encoded by the Berry phase (Pancharatnam,
1956; Berry, 1984; Hannay, 1985), which is defined in the
following. Whereas the Berry phase can be defined for a very
general parameter space, in our discussion of topological
phases of matter we restrict ourselves to the case where the
parameters are the crystal momentum k = (k,, k. k) varying
over the first Brillouin zone. Then if one prepares a localized
wave packet from states in band n and makes it adiabatically
move along a closed path in momentum space, it will acquire a
dynamical phase, determined by the time integral of its
k-dependent energy, but also a Berry phase (Xiao, Chang,
and Niu, 2010)

015006-5



Tomoki Ozawa et al.: Topological photonics

yzfAAH-%, (4)

that is geometrically determined by an integral over the same
momentum-space path, of the Berry connection, defined as

A, (K) = it x| Vic [t i) - (5)

Note that the definition of the Bloch states via Eq. (3) does not
specify the overall phase of |u, ), so one can freely choose
the phase of the Bloch states. Under a gauge transformation
i) = €*®)|u, ), the Berry connection is not gauge
invariant and transforms as A,(k) - A,(k) =V y(k).
However, the single valuedness of e#(¥) at the beginning
and end of the path imposes that the Berry phase (4) for a
given closed path is gauge invariant modulo 2z. Additionally,
from the gauge-dependent Berry connection .4, (k) one can
construct a gauge invariant Berry curvature, which in three
dimensions takes the following form:

Q, (k) = Vi x A, (k), (6)

and which encodes the geometrical properties of the nth band.
In two dimensions, the Berry curvature has only one compo-
nent:

Qn(k) = l<<ak‘ un.k|ak", un,k> - <aky Mn,klakxun,k»' (7)

Importantly, although the Berry curvature is a gauge invariant
quantity that is continuously defined over the whole Brillouin
zone, the phase of the Bloch states themselves cannot always
be chosen to be continuous. Whether this is possible or not
depends on the value of a topological invariant of the band, the
Chern number, defined as the integral

1
C,=—
7T JBZ

d?kQ, (k. k). (8)
over the whole first Brillouin zone. If one can define the phase
of the Bloch state, and hence the Berry connection A, (k),
continuously over the whole Brillouin zone, a direct conse-
quence of the definition Q,(k) =V, x.A,(k) and of
Stokes’s theorem is that the Chern number must necessarily
be zero. Conversely, having a nonzero Chern number implies
that the Bloch state and hence the Berry connection A, (k)
cannot be continuously defined.

It is not difficult to see that the Chern number always takes
an integer value (Kohmoto, 1985). To this purpose, we divide
the integration domain of Eq. (8) into two regions S and S’ as
sketched in Fig. 2. Within S, we choose a continuous gauge
for the Bloch state, giving the Berry connection A, (k).
Similarly, within S’, we choose a continuous gauge, which
yields the Berry connection .4/, (k). Keeping in mind that the
first Brillouin zone can be thought of as a torus, thanks to the
periodicity of the quasimomentum, we can use Stokes’s
theorem within S and S’ and rewrite the Chern number in
terms of the line integral along the common boundary
oS = -0S,
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FIG. 2. A schematic illustration of how the Brillouin zone is
divided into two parts, S and §’. Thanks to the periodicity of the
quasimomentum, the two-dimensional Brillouin zone has a
toruslike structure, in which top-bottom and left-right edges
(purple and red) should be identified.
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where y and y’ are the Berry phases along the contour S
calculated using A, (k) and A, (k)’, respectively. As the
Berry phases are calculated along the same path, they must be
equal up to multiples of 2. This in turn implies that the Chern
number C,, must be an integer. Importantly, this integer-valued
quantity has a profound topological origin (Avron, Seiler, and
Simon, 1983; Simon, 1983; Niu, Thouless, and Wu, 1985),
which indicates that its value must remain strictly constant
under smooth perturbations that preserve the band gaps
separating the band n to neighboring bands (Avron, Seiler,
and Simon, 1983). Fermionic systems in which the fermions
completely fill Bloch bands with nonzero Chern numbers are
generically termed Chern insulators.

Within linear response theory and ignoring interparticle
interactions, one can show that the Hall conductance o, of a
two-dimensional insulator is (Thouless et al., 1982)

2
e
Ory = —WZC,,, (10)

where the Chern numbers are summed over the n occupied
bands. Since the Chern numbers can take only integers, it
follows that the Hall conductance is quantized in units of
e?/h. As we shall see shortly, in the simplest case of a uniform
two-dimensional electron gas under a strong magnetic field,
the energy levels form flat Landau levels, and all the Landau
levels have the same Chern number. Therefore the Hall
conductance of the integer quantum Hall effect is proportional
to the number of occupied Landau levels.

The quantization of the Hall conductance can also be
related to the number of modes that propagate unidirectionally
around the system, the so-called chiral edge modes. Indeed,
each of such edge modes contributes —e?/h to the measured
Hall conductance (Halperin, 1982; MacDonald and Stfeda,
1984; Biittiker, 1988). The existence of such current-carrying
edge modes is also constrained by topology, in the sense that
the sum of the Chern numbers associated with the occupied
bulk bands is equal to the number of edge modes contributing
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to the edge current (Hatsugai, 1993a, 1993b; Qi, Wu, and
Zhang, 2006). This relationship between a bulk topological
invariant, such as the Chern number, and the number of
localized edge modes is an example of the bulk-edge
correspondence, i.e., a matching between the topological
properties defined in the bulk of a material with its boundary
phenomena (Bernevig and Hughes, 2013).

While the previous discussions are based on single-particle
energy bands in a perfect crystal, the definition of the Chern
number can also be generalized to include the effects of
interactions and disorder (Niu, Thouless, and Wu, 1985).
When the interparticle interactions become very strong, the
Hall conductance can become quantized at fractional values
of ¢? /h (Tsui, Stormer, and Gossard, 1982). This is known as
the “fractional quantum Hall effect” in which the quantum
many-body ground state is strongly correlated and topologi-
cal. Remarkably, the excitations of such a fractional quantum
Hall state can have a fractional charge and possibly even
fractional statistics (Laughlin, 1983; Arovas, Schrieffer, and
Wilczek, 1984). Progress toward realizing analog fractional
quantum Hall states of light is reviewed in Sec. VIL.B.

In the rest of this section, we proceed with a detailed
discussion of a few important models for integer quantum Hall
systems and Chern insulators. We start by considering a two-
dimensional electron gas under a strong and uniform magnetic
field, which gives rise to Landau levels and to the integer
quantum Hall effect (Prange et al., 1989; Yoshioka, 2002).
The second example is the Harper-Hofstadter model that is a
tight-binding lattice model in a uniform magnetic field
(Harper, 1955b; Azbel, 1964; Hofstadter, 1976). The third
one is the Haldane model (Haldane, 1988), which is the first
example of a Chern insulator model with alternating magnetic
flux patterns. We then conclude by illustrating the bulk-edge
correspondence on a simple Jackiw-Rebbi model (Jackiw and
Rebbi, 1976).

Landau levels: The quantum Hall effect was originally
found in a semiconductor heterojunction where electrons are
confined to move in a two-dimensional plane (Klitzing,
Dorda, and Pepper, 1980). This system can be modeled, to
a first approximation, as a two-dimensional electron gas in
free space under a constant magnetic field. The single-particle
Hamiltonian is

[Px = eA®)]” + [Py — €A ()]

H:
2m

, (11)

where A(r) = (A,(r),A,(r),0) is the magnetic vector poten-
tial, associated with the magnetic field B = V, x A(r).

For a given magnetic field, different forms of the vector
potential A(r) can be chosen. For our case of a constant
magnetic field along the z direction, B = (0, 0, B), the two most
common choices are the Landau gauge, which keeps transla-
tional symmetry along one direction as A(r) = (—yB,0,0)
or (0,xB,0), and the symmetric gauge A(r) = (-yB/2,
xB/2.0), which keeps instead rotational symmetry. Physical
observables such as the energy spectrum and the Hall conduct-
ance do not depend on the choice of gauge.

The single-particle energy spectrum of this system consists
of equally spaced Landau levels of energy
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E, :ha)c(n+1/2)’ (12)
where w, = |e|B/m is the cyclotron frequency and the integer
n > 0. For a large system, each Landau level is highly
degenerate with a degeneracy equal to the number of unit
magnetic fluxes ¢y = h/|e| piercing the system.

Regarding each Landau level as an energy band, the system
can be considered as a Chern insulator when the Fermi energy
lies within an energy gap. The Chern number is one for any
Landau level. Then, from the TKNN formula (10), the Hall
conductance is thus proportional to the number of occupied
Landau levels, which explains the basic phenomenology of
the integer quantum Hall effect.

Harper-Hofstadter model: The next model we consider is
the discrete lattice version of the Landau level problem, the
Harper-Hofstadter model (Harper, 1955b; Azbel, 1964;
Hofstadter, 1976). In tight-binding models, the magnetic
vector potential A(r) enters as a nontrivial phase of the
hopping amplitude between neighboring sites, called the
Peierls phase. In the simplest cases, the phase accumulated
when hopping from a site at r; to a site at r, can be written in
terms of the vector potential as

e [z
W= [ A®) - ar (13)
1

where the integral is taken along a straight line connecting the
two points (Peierls, 1933; Luttinger, 1951).

Choosing for definiteness the Landau gauge along the
y direction, A(r) = (0, Bx, 0), the Hamiltonian of the Harper-
Hofstadter model on a square lattice is

H==0> (&l a0, + e | a,, +He), (14)
X,y

where a,, is the annihilation operator of a particle at site
(x,y), J is the magnitude of the (isotropic) hopping amplitude,
and a is the lattice spacing. The intensity of the magnetic field
in the system is quantified by the parameter a, obeying
agy = Ba?, which identifies the magnetic flux per plaquette
of the lattice in units of the magnetic flux quantum ¢,. The
main distinction from the Landau level case previously
discussed is that in the Hofstadter model there are two
competing length scales: the lattice spacing and the magnetic
length. As a result, the electron paths interfere to give the
fractal energy spectrum as a function of a, which is widely
known as the Hofstadter butterfly and which is plotted in the
left panel of Fig. 3. The first experimental demonstration of
the Hofstadter butterfly was performed in a microwave
waveguide, exploiting the analogy between the transfer matrix
governing the transmission of microwaves and the eigenvalue
equation of the Harper-Hofstadter model (Kuhl and
Stockmann, 1998).

To get more insight into this spectrum, it is useful to
concentrate on cases where « is a rational number, @ = p/q
with p and g being co-prime integers. Because of the spatially
varying hopping phase, the Hamiltonian breaks the basic
periodicity of the square lattice. Periodicity is, however,
recovered if we consider a larger unit cell of ¢ x 1 plaquettes:
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FIG. 3. (Left) Energy spectrum of the Harper-Hofstadter model,
which is called the Hofstadter butterfly. (Right) The colored
Hofstadter butterfly in which the color of each band gap indicates
the topological invariant of the gap, given by the sum of the Chern
numbers of all bands below. Warm colors indicate a positive
topological invariant, whereas the cool colors indicate a negative
topological invariant. The horizontal axes are the energies and the
vertical axes are the flux a.

this is called the magnetic unit cell (Zak, 1964; Dana, Avron,
and Zak, 1985). As the number of bands in lattice models is
equal to the number of lattice sites per magnetic unit cell, the
Harper-Hofstadter model with @« = p/q¢ has ¢ bands.

To find the geometrical and topological properties of the
model, one can diagonalize the momentum-space
Hamiltonian (Harper, 1955b; Azbel, 1964; Hofstadter, 1976)

q
H, = —JZ[cos(ky - 2za)a; (k) a;(k)
i=0

+ea, (k) a;(k) + Hel, (15)

where i, defined mod ¢, indicates the site within a magnetic
unit cell, and the momentum Kk is chosen within the magnetic
Brillouin zone: -7/q <k, <n/q and -z <k, <7z An
explicit calculation shows that the Chern numbers of all
isolated bands of the Harper-Hofstadter model are nonzero
and can be found as solutions of a simple Diophantine
equation (Thouless ez al., 1982). As shown in the right panel
of Fig. 3, this model exhibits a rich structure of positive and
negative Chern numbers depending on the magnetic flux.

Haldane model: The Haldane model (Haldane, 1988) is the
first model system that exhibits a nonzero quantized Hall
conductance in a nonuniform magnetic field with a vanishing
average flux per plaquette. This model demonstrated that, to
obtain the quantum Hall effect, the essential feature required
is, in fact, not a net magnetic field but the breaking of time-
reversal symmetry. As the Haldane model consists of a
honeycomb lattice with suitable hopping amplitudes, it is
useful to start by briefly reviewing the physics of a tight-
binding model on a honeycomb lattice, which is often used to
describe electrons in graphene (Castro Neto et al., 2009) and
which has recently been widely implemented in photonics, as
we will review in Sec. IIL.D.

The honeycomb lattice with nearest-neighbor hopping is
one of the simplest examples of a system which exhibits Dirac
cones in the band structure, namely, linear crossings of the
energy dispersion of two neighboring bands. A honeycomb
lattice has two lattice sites per unit cell, which gives two
bands. These are degenerate at two isolated and inequivalent
points in the Brillouin zone, called Dirac points. Around the
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Dirac points, the effective Hamiltonian of the two bands takes
the following form in the sublattice basis:

Hp ~ hop(q,0, + q,0,), (16)

where v, = 31, /2 is called the Dirac velocity, with ¢, being
the nearest-neighbor hopping amplitude, and (g,.q,) is the
momentum measured from a Dirac point. As a result, the
dispersion around the Dirac point is linear, E =

+hvp/q2 +q§, and is referred to as the Dirac cone.

A complete plot of the band dispersion is shown in Fig. 4(c).
In order to open an energy gap at Dirac points, one needs to
add a term proportional to o, in H . This can be achieved by
either breaking time-reversal symmetry or inversion sym-
metry, which implies that as long as both time-reversal
symmetry and inversion symmetry are preserved the gapless
Dirac points are protected (Bernevig and Hughes, 2013).
The key novelty of the Haldane model is to add two more
sets of terms to the nearest-neighbor honeycomb lattice model,
which open energy gaps at the Dirac cones in complementary

(a) (b)

ky

FIG. 4. (a) A plaquette of the Haldane model. In addition to the
usual nearest-neighbor hoppings, there are also complex next-
nearest-neighbor hoppings. For the latter, hopping along the
arrows carries a phase of ¢, whereas the hopping opposite to the
arrows carries the opposite phase of —¢. (b) The phase diagram of
the Haldane model as a function of the next-nearest-neighbor
hopping phase ¢ and the sublattice energy difference 2M. (c) Bulk
band structure of the honeycomb lattice with nearest-neighbor
hopping only. Conical touchings of the bands are Dirac points.
(d) Typical bulk band structure of the Haldane model in the
presence of a band gap. (e) Typical band structure for a gapless
honeycomb lattice with zigzag edges. Flat-band localized edge
states (indicated in color) connect between the Dirac cones, with
one per edge. (f) Typical band structure with edges on both sides
of the system when a topological gap opens. Red and blue lines
indicate edge states on left and right edges, respectively.
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ways, by breaking inversion symmetry or time-reversal
symmetry. The first set of terms is a constant energy difference
2M between two sublattices, which breaks inversion sym-
metry. The second set of terms are next-nearest-neighbor
hoppings with magnitude #, and complex hopping phases
breaking time-reversal symmetry, i.e., hopping along the
arrows in Fig. 4(a) carries a phase of ¢, whereas the hopping
along the opposite direction carries the opposite phase of —¢.
While adding the energy difference between sublattices opens
a trivial gap, in the sense that the resulting bands are
topologically trivial, adding complex next-nearest-neighbor
hoppings results in opening a gap with topologically non-
trivial bands. This different behavior is due to the breaking of
time-reversal symmetry by the complex hopping phases, a
necessary condition to obtain a nonzero Chern number
(Bernevig and Hughes, 2013). The full topological phase
diagram of the Haldane model as a function of the magnitude
of the two gap-opening terms is summarized in Fig. 4(b),
while an example of the energy band dispersion for a bulk
system is shown in Fig. 4(d).

The nontrivial topology of the Haldane model can also be
seen from the appearance of chiral-propagating edge states.
The gapless dispersion of a finite slab of honeycomb lattice is
displayed in Fig. 4(e), to be contrasted with the topologically
nontrivial gap of the Haldane model displayed in Fig. 4(f).
Along the y direction the system is taken to be periodic, so the
momentum k, is a good quantum number. In the other
x direction, we have a large but finite-size system with a sharp
edge. While the edge states of the unperturbed honeycomb
lattice are flat at the energy of the Dirac points [Fig. 4(e)], two
propagating edge states appear when a bulk topological gap
opens, which traverse the energy gap in opposite directions
along opposite edges of the system [Fig. 4(f)]. Propagation of
each of these states is therefore unidirectional and is protected
by the fact that these edge states are spatially separated,
suppressing scattering processes from one edge state into
the other.

The Haldane model, and its generalization, has been
realized in solid-state systems by Chang er al. (2013), as
well as in photonics (Rechtsman, Zeuner, Plotnik et al., 2013)
and ultracold atomic gases (Jotzu er al., 2014).

Bulk-edge correspondence: The relationship between a
topologically nontrivial band structure and the presence of
topologically protected edge states is a very general phe-
nomenon known as the bulk-edge correspondence (Hatsugai,
1993a, 1993b; Qi, Wu, and Zhang, 2006). We now illustrate
the bulk-edge correspondence through a simple model. Note
that a solid mathematical formulation of this bulk-edge
correspondence has been developed based on the index
theorem (Callias, 1978; Chiu et al., 2016).

As we have seen in the Haldane model, one can obtain
topological bands by adding proper gap-opening terms,
proportional to o,, to the gapless unperturbed Hamiltonian
(16). Looking at the phase diagram of the Haldane model,
Fig. 4(b), a topological phase transition can be induced by
changing M /t, or ¢. In the Dirac Hamiltonian description, this
topological phase transition corresponds to adding a ¢, term
and changing the sign of its coefficient (Haldane, 1988;
Bernevig and Hughes, 2013). We can therefore model the
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interface of two Haldane models with different Chern num-
bers by considering the following Jackiw-Rebbi Hamiltonian
(Jackiw and Rebbi, 1976):

I:I - hUD(qxdx + Qy‘;}') + m(x)az, (17)

where the mass term m(x) varies along the x direction,
obeying m(x) <0 at x <0, m(0) =0, and m(x) >0 at
x > 0. The gap closes at x = 0, and the system is divided
into two parts with m < 0 and m > 0 with different Chern
numbers, which are sketched in Fig. 5 for illustration. Writing
the momentum operators in terms of a spatial derivative
(qry = —iVy,), it is straightforward to see that the wave
function of the form

w(x) o e exp (-% /0 xm(x’)dx’) <1> (18)

is an eigenstate of the Hamiltonian with the energy Avpk,,.
This state w(x) is localized around x = 0, and has a positive
group velocity along the y direction. As there is no other
normalizable state around x =0 with a negative group
velocity, this state is chiral and robust against backscattering.
Analogously, edge states around a generic topologically
nontrivial system can be understood as interface states
between the system and the topologically trivial vacuum
(Hasan and Kane, 2010).

2. Quantum spin Hall system

In all the models that we have seen so far, time-reversal
symmetry was explicitly broken through either the applied
magnetic field or the complex hopping phase. When time-
reversal symmetry is present, the Berry curvature obeys
Q,(-k) = —Q, (k) for nondegenerate bands, implying that
the Chern number, which is an integral of the Berry curvature
over the Brillouin zone, is necessarily zero. A similar argu-
ment also holds for degenerate bands: no Chern bands can be

S
/N

X

mA 4]

5

T

>

FIG. 5. A schematic illustration of how the interface of two
regions with different topological numbers can host a localized
state. The spatial dependence of the mass term m(x) and the wave
function residing at the interface (x = 0) are schematically
plotted. Sketched on top is the schematic dispersion for values
of m at corresponding positions, showing that the bulk band gap
closes when m(0) = 0.
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found in two-dimensional systems preserving time-reversal
symmetry (Bernevig and Hughes, 2013).

In 2005, new classes of two-dimensional topological phases
were proposed (Kane and Mele, 2005a, 2005b; Bernevig,
Hughes, and Zhang, 2006; Bernevig and Zhang, 2006). These
models consist of two copies of a Chern insulator, one for each
spin, where the magnetic fields acting on two spins are opposite
and hence the Chern number for spin up C,,, is opposite to that
for spin down Cyqyn = —C\p. Since the magnetic fields for two
spins are opposite, time-reversal symmetry is preserved, and
the sum of the Chern numbers for the two spins is zero. In this
model, as long as there are no spin-flip processes, the two spin
components are uncoupled and independently behave as Chern
insulators with opposite Chern numbers C, gown- As a result,
there are the same number of edge states in the two spin states,
but with opposite propagation direction; instead of chiral, the
edge states are then called helical.

Even when the spin is not conserved, at least one pair of
edge states survives and is topologically protected, as long as
time-reversal symmetry holds. This feature is a consequence
of Kramers’s theorem, which holds in fermionic systems in the
presence of time-reversal symmetry. The theorem tells us that
if there is a state with energy £ and momentum Kk, there must
exist another distinct state with the same energy but with the
opposite momentum —K. In particular, at time-reversal-
symmetric momenta such as k = 0, states should be doubly
degenerate. As a consequence, when there is a pair of edge
states with spin-up and spin-down crossings at k = 0, the
edge states cannot open a gap, and hence there are topologi-
cally protected helical edge states. This is clearly different
from a trivial insulator where there are no robust edge states
traversing the gap. The topological invariant characterizing the
system is given by Cy, mod2 (= Cyoyn mod 2), which takes
values of either O (trivial) or 1 (nontrivial), and thus is called
the Z, topological invariant. This Z, topological invariant
keeps the same value even when spin-mixing terms are added,
provided time-reversal symmetry is maintained (Kane and
Mele, 2005b; Fu and Kane, 2006; Sheng et al., 2006; Roy,
2009). Such topological phases are called the quantum spin
Hall insulators or the Z, topological insulators. The Z,
topological insulator has been experimentally realized in
HgTe quantum wells (Konig et al., 2007) following the
theoretical proposal (Bernevig, Hughes, and Zhang, 2000).
Shortly afterward, Z, topological insulators were found to
exist also in three dimensions (Fu, Kane, and Mele, 2007,
Moore and Balents, 2007; Qi, Hughes, and Zhang, 2008;
Roy, 2009).

One may also envisage an analog of the quantum spin Hall
insulators for photons by using, for example, the polarization
degree of freedom as pseudospins. However, the bosonic
nature of photons forbids the existence of direct photonic
analogs of the quantum spin Hall insulators (De Nittis and
Lein, 2017). For Kramers’s theorem to hold, one needs for the
time-reversal operator 7 to be fermionic, which satisfies
T2 = —1, while the bosonic time-reversal operator obeys
T =+1.

However, if there is no coupling between pseudospins, i.e.,
if there is an extra symmetry in the system, then each
pseudospin component can independently behave as a model
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with nonzero Chern number and hence shows helical edge
states in the presence of the bosonic time-reversal symmetry
(Hafezi et al., 2011; Albert, Glazman, and Jiang, 2015). Note
however that topological edge states of such systems are not
robust against terms coupling different pseudospin states,
which would be the photonic analog of time-reversal-
symmetry breaking magnetic impurities for electronic Z,
topological insulators. Photonic models showing analogs of
quantum spin Hall systems with no (or little) couplings
between different pseudospin states are reviewed in Sec. I11.B.

3. Topological phases in other dimensions

We have so far reviewed the topological phases of matter in
two dimensions with and without time-reversal symmetries.
Generally speaking, in the presence of a given symmetry, one
can consider topological phases which are protected as long as
the symmetry is preserved, which lead to the concept of the
symmetry-protected topological phases. A complete classi-
fication of noninteracting fermionic topological phases in any
dimension based on the time-reversal, particle-hole, and chiral
symmetries is known in the literature (Kitaev, Lebedev, and
Feigelman, 2009; Schnyder et al., 2009; Ryu et al., 2010; Teo
and Kane, 2010; Chiu et al., 2016).

As the topological band structure is a single-particle
property and does not depend on the statistics of the particles,
this classification, originally derived for fermionic systems,
directly applies to bosonic systems as well, provided the
Hamiltonian conserves the number of particles. The situation
is in fact different when the number of particles is allowed to
change, e.g., in Bogoliubov—de Gennes Hamiltonians of
superconductors; in this case the bosonic and fermionic
band structures are different. The fermionic case is included
in the above-mentioned classification, while the bosonic case
is reviewed in Sec. VI.B. We now focus on three specific
examples of topological phases of matter in dimensions
other than two: one-dimensional Hamiltonians with chiral
symmetry, three-dimensional Weyl points, and higher-
dimensional quantum Hall systems.

One-dimensional chiral Hamiltonian: One-dimensional
Hamiltonians with chiral symmetry can have topologically
nontrivial phases characterized by an integer-valued winding
number. In noninteracting tight-binding models, chiral sym-
metry is equivalent to having a bipartite lattice, i.e., a lattice
that can be divided into two sublattices with hopping occur-
ring only between different sublattices. When a discrete
translational symmetry is present, the Hamiltonian in momen-
tum space can be written in the following generic form (Ryu
et al., 2010):

i
i, = ( 0 0k ) (19)
(k) 0

where Q(k) is an nxn matrix satisfying Q(k) =
O(k+ 2x/a), each unit cell consists of 2n sites, and a is
again the lattice spacing.

When there is a gap at zero energy, namely, det Q(k) # 0
for any k, the topology of this Hamiltonian is characterized by
the winding number defined through the phase of det Q(k) =
| det Q(k)|e™™®) as (Zak, 1989; Kane and Lubensky, 2014)
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1 [2/a  dO(k)
= — =2 2
)y (20)

The winding number tells us the number of times det Q(k)
wraps around the origin when plotted in a complex plane as
one varies k along the Brillouin zone. The bulk-boundary
correspondence states that the number of zero-energy edge
modes on one side of the one-dimensional chain is given by
the absolute value of the winding number |W| (Ryu and
Hatsugai, 2002; Delplace, Ullmo, and Montambaux, 2011).
Such zero-energy edge modes are topologically protected in
the sense that they remain locked at zero energy even in the
presence of chiral-symmetry-preserving perturbations pro-
vided the gap remains open.

The prototypical example of a one-dimensional chiral
Hamiltonian with nontrivial topology is the SSH model
(Su, Schrieffer, and Heeger, 1979), which is a chain with
two alternating hopping strengths as sketched in Fig. 6. The
system can be divided into two sublattices A and B, and the
tight-binding Hamiltonian can be written as

Ay = Z(l@lﬁ&x +1a},,b,+Hec.), (21)

X

where a, and b, are annihilation operators for A and B
sublattice sites at position x. The intracell and intercell
hoppings are described by the (real) hopping amplitudes ¢
and 7, respectively. After a Fourier transformation, one sees
that the momentum-space Hamiltonian has the form of
Eq. (19) with n =1 and Q(k) =1+ fe*. The system is
gapped as long as t# ¢, and the corresponding winding
numbers are W =0 for r>¢ and W=1 for r<7r.
Therefore, when the chain is terminated at one end with
the final hopping of ¢, there exists a zero-energy topological
edge state if r < ¢/ (Ryu and Hatsugai, 2002).

One-dimensional photonic structures with nontrivial top-
ology will be discussed in Sec. IV.

Three-dimensional Weyl points: As briefly introduced, two-
dimensional band structures can host Dirac cones, correspond-
ing to gapless points around which bands disperse linearly
with respect to the two quasimomenta (16). In three dimen-
sions, the analog of a Dirac point is a Weyl point (Wan et al.,
2011; L. Lu et al., 2013; Armitage, Mele, and Vishwanath,
2018): a point degeneracy between two bands which have a
linear dispersion in all three directions in momentum space at
low energy, as described by the Weyl Hamiltonian:

Hy = hv(qxo-x + 4,0y + QZGZ)v (22)
A B
T Ty vy Y oo
'O @—-O @—-O @ —-O—
..___I____.. L___;___J L___;___J ..___I.;x
1 2 3 4 .-

FIG. 6. Schematic illustration of the Su-Schrieffer-Heeger
(SSH) model. Dashed squares indicate the unit cell of the lattice;
each unit cell contains two lattice sites, one belonging to the A
sublattice and the other to the B sublattice. The lattice terminates
on the left-hand side with a complete unit cell.
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where q = (q,. gy. q.) is the momentum measured relative to
the degenerate point and v is the group velocity, taken here to
be locally isotropic.

Close to a Weyl point, the resulting Berry curvature (6) is
reminiscent of the magnetic field around a magnetic monop-
ole, where the field can either point outward or inward toward
the Weyl point. In analogy with magnetic monopoles, a
quantized “charge” can be associated with a Weyl point; this
is nothing other than a Chern number calculated by integrating
the Berry curvature over a two-dimensional surface enclosing
the Weyl point, generalizing Eq. (8). It can also be shown that
Weyl points generate only nonzero Berry curvature when
either P (parity) and/or 7 (time-reversal symmetry) is broken.
Consequently, to get Weyl points in a band structure, one can
break P, 7, or both symmetries. The photonic realization of
Weyl points and other three-dimensional gapless phases will
be discussed in Sec. V.A.

Higher-dimensional quantum Hall systems: The two-
dimensional integer quantum Hall effect, previously intro-
duced, is just the first in a family of related quantum Hall
phenomena that can exist in higher dimensions (Chiu et al.,
2016). Here we briefly review what happens in three or four
spatial dimensions, highlighting key differences that emerge
due to having odd or even numbers of spatial dimensions.

First, in an odd number of spatial dimensions, the possible
quantum Hall responses are closely related to those of a lower-
dimensional system, as they are only associated with lower-
dimensional topological invariants. In three dimensions, for
example, a gapped band can be labeled by a triad of Chern

numbers, e.g. [C() = (C§<I>,C§l>,C£1>)], where each Chern
number is calculated from Eq. (8) by integrating the Berry
curvature over a 2D momentum plane orthogonal to the
quasimomentum direction indicated (Avron, Seiler, and
Simon, 1983). This triad of two-dimensional topological
invariants leads to a linear three-dimensional quantum Hall
effect, calculated by extending Eq. (10) to three spatial
dimensions (Halperin, 1987; Montambaux and Kohmoto,
1990; Kohmoto, Halperin, and Wu, 1992). In the simplest
case, such a three-dimensional quantum Hall system could be
constructed by stacking 2D quantum Hall systems along a
third direction and weakly coupling the layers together
(Stormer et al., 1986; Chalker and Dohmen, 1995; Balents
and Fisher, 1996; Bernevig et al., 2007). In Sec. V.B, we
discuss three-dimensional quantum Hall systems and other
gapped 3D topological phases in the context of photonics.

Second, in even numbers of spatial dimensions, such as four
dimensions, new types of quantum Hall effect can emerge that
are intrinsically associated with that higher dimensionality
(Meng, 2003; Prodan and Schulz-Baldes, 2016). These
quantum Hall effects can be distinguished from their lower-
dimensional cousins as they appear as a higher-order response
to perturbing electromagnetic fields and because they are
related to topological invariants that vanish in fewer spatial
dimensions.

The four-dimensional quantum Hall effect, in particular,
was first discussed by Frohlich and Pedrini (2000) and Zhang
and Hu (2001), and later played an important role in under-
standing time-reversal invariant topological insulators in
two and three dimensions through a dimensional-reduction
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procedure from four dimensions (Qi, Hughes, and Zhang,
2008). This quantum Hall effect consists of a nonlinear
quantized current response in one direction, when perturbative
electric and magnetic fields are applied in the other three
directions. We assume for simplicity that only one non-
degenerate band is occupied and an electromagnetic gauge
potential A = (A, A, A,, Az, A,) is applied as a perturbation,
where A, is the electric potential and (A, A,, A3, A,) is the
magnetic vector potential in four dimensions. The current in
response to the applied electric field E, = 0yA, — 0,4, and
the applied magnetic field B,, = d,A, — 0,4, is then given
by (Price et al., 2015)

62
jﬂz——ED/ Q
h BZ

where y, v, p, and o run through spatial indices. The Berry
curvature along the p — v plane is defined as Q" = 3;(“.»4,, -

. d*k e’ oo
" Gy o BB, (23)

Oy A, in terms of the usual Berry connection A, =
i{ur|0y, |uy) and the integral is now over the four-dimensional
Brillouin zone. Here €7° is the 4D Levi-Civita symbol.
The second term in Eq. (23) vanishes in fewer than four
spatial dimensions, and so this is the new quantum Hall effect
that can emerge in a 4D system. It depends also on a four-
dimensional topological invariant (Nakahara, 2003)

1

c®=_—_
32722

[32 (:’aﬁ}/ﬁgaﬂgy(sd“k, (24)
which is known as the second Chern number. In contrast, the
Chern number (8) appearing in the two-dimensional quantum
Hall effect is sometimes called the first Chern number. Note
that both first and second Chern numbers can be extended to
the case of degenerate bands by taking a trace of the integrand
over the degenerate bands. The first term in Eq. (23) is a
contribution to the current that is reminiscent of the two-
dimensional quantum Hall response, where only two direc-
tions are involved, and is characterized by the first Chern
number in the u-v plane; physically, this is similar to the
quantum Hall physics of odd dimensions introduced above.
Note that when the system possesses time-reversal symmetry,
the first term of Eq. (23) vanishes and only the second term
remains (Zhang and Hu, 2001). Experimental observations of
the four-dimensional quantum Hall effect through topological
pumping are discussed in Sec. [V.B, and proposals for directly
observing the four-dimensional quantum Hall effect using
synthetic dimensions are discussed in Sec. V.C.

4. Topological pumping

Topological invariants, such as the first and second Chern
numbers defined above, can also lead to a quantization of
particle transport in systems which are “pumped” periodically
and adiabatically in time. In this section, we introduce the
concept of topological pumping by reviewing connections
between the Archimedes screw pump and a topological pump
in the semiclassical limit. We then discuss how a 1D
topological pump can be related to the 2D quantum Hall
effect, and how the topological framework developed so far
leads to a simple lattice model for a topological pump.
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Archimedes screw pump: A pump is a device that moves
fluids by mechanical action, i.e., it consumes energy to
perform mechanical work by moving the fluid. One of the
oldest pumps known to man is the so-called Archimedes
screw pump, which is still in use today. In this device, a fluid is
pumped by turning a screw-shaped surface inside a cylindrical
shaft; see Fig. 7(a). As the screw-shaped surface is made to
rotate around its axis, a volume of fluid is collected at one end
of the device. It is then pushed along the tube by the rotating
helicoid until it pours out at the other end of the device.
Ideally, at each full turn of the pump, the collected volume is
identical and the fluid is homogeneously transported a unit of
distance along the device. Consequently, the screw pump is
used as a variable rate feeder to deliver a measured rate or
quantity of material in industrial processes.

Let us now adopt a quantum mechanical description of the
screw pump. At any given time, the fluid is approximately
confined within a series of parabolic potentials; see Fig. 7(a).
Assuming that the fluid is noninteracting, it suffices to write
the Hamiltonian for a single particle of mass m in the resulting
chain of parabolic potentials

=2 vy R = (0Pl (1) + x,(0)/2)

(25)
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FIG. 7. (a) Schematic of an Archimedes screw pump, which
mechanically transports fluid in the direction of the blue arrow as
the helicoidal surface is rotated. In a quantum mechanical
treatment, the screw pump can be approximated by a series of
parabolic potentials, as indicated by the blue dashed lines.
(b) Mustration of the quantum Hall effect for Landau levels;
the spectrum is sketched in the Landau gauge on a cylinder, with
open boundary conditions along x and periodic boundary con-
ditions along y. Each state in a given Landau level is indexed by
the transverse momentum k, setting the center of the state along
x. As magnetic flux is threaded through the cylinder, an electric
field is generated along y and there is a spectral flow of states
along x, correspo