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We propose an experiment to detect and characterize the analog Hawking radiation in an analog model of gravity
consisting of a flowing exciton-polariton condensate. Under a suitably designed coherent pump configuration,
the condensate features an acoustic event horizon for sound waves that at the semiclassical level is equivalent to
an astrophysical black-hole horizon. We show that a continuous-wave pump-and-probe spectroscopy experiment
allows to measure the analog Hawking temperature from the dependence of the stimulated Hawking effect on
the pump-probe detuning. We anticipate the appearance of an emergent resonant cavity for sound waves between
the pump beam and the horizon, which results in marked oscillations on top of an overall exponential frequency
dependence. We finally analyze the spatial correlation function of density fluctuations and identify the hallmark
features of the correlated pairs of Bogoliubov excitations created by the spontaneous Hawking process, as well
as novel signatures characterizing the emergent cavity.
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I. INTRODUCTION

Since its first prediction in 1975 [1], Hawking radiation
from astrophysical black holes remains one of the most
intriguing phenomena in modern physics, as it questions
fundamental aspects of our understanding of the physical
world down to the unitarity of quantum mechanics [2,3].
Unfortunately, a direct experimental detection of Hawking
radiation is made difficult by its extremely low temperature,
which is expected to be of the order of a few nanokelvins for
solar mass black holes.

As it was first proposed by Unruh [4], it is nowadays
possible to study the Hawking effect in tabletop experiments
based on the so-called analog model idea, where the propaga-
tion of low-energy excitations on top of an inhomogeneous
and moving medium can be reformulated in terms of a
quantum field propagating on a curved space-time [5]. As a
direct consequence, one can anticipate that the same Hawking
mechanism that is expected to be active in gravitational black
holes will be responsible for a thermal emission of excitations
from analog black-hole horizons [6]. In condensed-matter
terms, this effect can be interpreted as the inhomogeneous
flow converting the zero-point vacuum fluctuations into an
observable two-mode squeezed vacuum state with a thermal
spectrum. In addition to their intrinsic interest, analog models
may shed light on the long-standing questions in cosmology,
such as the trans-planckian problem [6,7], the effects of
possible breakdown of the Lorentz-invariance at high energies
[8,9], and the backaction of the produced particles on the
background metric [10,11].

The original proposal [4] suggested to use water as the
background medium, and sound waves as the low-energy
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fluctuations. While intriguing experiments using surface waves
in water were reported [12] and debated in the literature
[13,14], the estimated temperature of the spontaneous Hawk-
ing radiation for any realistic flow remains, however, orders
of magnitude too low to make any quantum effects observable
before actual freezing. Other systems hold a stronger promise
as analog models to study quantum features, e.g., dilute
superfluids such as ultracold Bose-Einstein condensed (BEC)
atomic gases and nonlinear optical systems.

Ultracold atomic gases were first proposed as analog
models in Ref. [15] and theoretically explored in great detail in
the last decade [16–22]. From the experimental point of view,
the creation of an acoustic black-hole horizon was first reported
in 2010: the supersonic flow was generated by imposing an
engineered moving steplike potential to a harmonically trapped
condensate of 87Rb atoms [23]. A few years later, the same
group reported the observation of self-amplifying Hawking
emission via the analog black-hole laser instability [24].

In nonlinear optical systems, the first steps in the direction
of studying analog black hole were reported in Ref. [25]. A
solitonic pulse of light propagating in a Kerr nonlinear medium
creates regions of different index of refraction and hence
different speed of light. For suitably chosen pulse parameters,
this solitonic boundary may create a moving “event horizon”
that can be crossed by light in one direction only. The intriguing
experimental observations reported in Ref. [26] were followed
by a vivid discussion on the interpretation of the observed
phenomena [27–32].

In the past few years, novel nonlinear optical configura-
tions started attracting a great interest from the community,
the so-called quantum fluids of light [33]. After a series
of pioneering experiments demonstrating superfluidity and
superfluid hydrodynamic behaviors [34–36], it was soon
proposed that these novel quantum many-body systems are
also able to host analog black-hole horizons [37–41]. Recently,
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FIG. 1. (Top) Setup of the proposed experimental device to
observe the stimulated Hawking radiation. It consists of a laterally
patterned semiconductor microcavity device in the form of a long
one-dimensional photonic wire oriented along the x direction, and
with a micrometer-sized x-dependent lateral profile designed in a
way to facilitate observation of analog Hawking effects. The flowing
condensate is created by a focused coherent pump laser beam incident
at a finite angle on the device. The attractive defect potential created by
the wider region around x = 0 creates an analog black-hole horizon
in its vicinity, which separates an upstream region of subsonic flow
from a downstream region of supersonic flow. A weak probe laser is
shone in the downstream region so to generate the Bogoliubov waves
which then stimulate the Hawking radiation. The cavity emission is
collected in the far downstream region by applying a spatial mask
to filter out the strong pump and probe signal. (Bottom) Spatial
profile of the polariton flow velocity and of the local speed of sound
along the wire, obtained by solving Eq. (1) in the steady state with
typical experimental parameters. The acoustic event horizon is located
where the flow velocity starts exceeding the speed of sound. The
high-density region around x = −30 μm corresponds to the spatial
position of the pump beam.

the formation of an analog black hole in such systems was
first reported using a semiconductor microcavity device in the
strong light-matter coupling regime [42]. In that work, the
microcavity was laterally patterned to form a 1D channel for
polaritons containing a localised potential defect (see Fig. 1). A
suitable coherent pump was used to inject a fluid of interacting
exciton polaritons into the channel: for sufficiently strong
pump intensities, a black-hole horizon for density waves on
top of the fluid spontaneously appeared at the position of the
defect.

After having created a horizon and fully characterized its
properties, the next big challenge will be to detect the analog
Hawking radiation resulting from quantum fluctuations. To
this purpose, Ref. [41] proposed to measure the intensity
correlations on both sides of the horizon to detect the
spontaneous Hawking emission of phonons. However, the
weakness of the expected signal makes the experiment ex-

tremely challenging as the thermal Hawking phonons may be
overshadowed by noise of different physical origins, e.g., light
scattering on device imperfections, incoherent luminescence
from the semiconducting material, a nonzero temperature
of the fluid of light due to interaction with phonons, shot
noise in the optical measurement. In addition to this, the
intrinsically driven-dissipative nature of the photon/polariton
fluid is responsible for an additional source of quasithermal
noise in the nonequilibrium stationary state, with an effective
temperature typically of the order of the interaction energy
of the fluid [43,44]. Also from the theoretical point of view,
the intrinsically driven-dissipative nature of the polariton fluid
forbids a direct use of the nowadays well-known theory
of analog Hawking effect in atomic condensates and raises
questions on very fundamental aspects of analog Hawking
radiation, including its thermal character and its quantum
correlation properties.

In the present work, we propose and characterize different
experimental strategies to enhance and measure the analog
Hawking radiation from a black-hole horizon in a one-
dimensional fluid of light. In particular, we analyze the thermal
character of the expected Hawking emission in an experimen-
tally realistic situation. While our discussion is focused on
the configuration used in the recent experiment using exciton
polaritons in a semiconductor microcavity in the strong light-
matter regime [42], most of our conclusions directly transfer
to other material platforms, for instance, cavity photons
interacting via the nonresonant χ (3) optical nonlinearity of
a generic transparent nonlinear optical medium [33].

The paper is organized as follows. In Sec. II, we review the
experimental setup of [42], which serves as a foundation for
the experiment we are proposing in this work. Section III
is dedicated to the stimulated Hawking effect, where we
show that by sending a weak probe pulse to the horizon
and analyzing the reflected signal it is possible to measure
the Hawking temperature. This idea was first discussed in
the context of atomic condensates [18,19] and surface waves
on water [12,45], and then transferred to fluids of light in
Ref. [41]. While the optical setup proposed in this latter work
requires a very sophisticated time-resolved apparatus for the
generation and detection of short probe wave packets, here
we focus on a continuous-wave scheme that takes advantage
of the driven-dissipative nature of the system to dramatically
reduce the experimental difficulty of extracting quantitative
information on the stimulated Hawking processes. While a
clear signature of the thermal Hawking spectrum with a
temperature in the Kelvin range is found in the envelope of
the reflection spectrum, the emergent Fabry-Perot cavity for
sound waves that naturally forms between the pump and the
horizon introduces additional marked oscillations.

In Sec. IV, we analyze the spontaneous Hawking effect
and we provide a thorough discussion of the different features
that appear in the spatial correlation function of the intensity
noise of the microcavity emission: clear signatures of the spon-
taneous Hawking effect are found in the usual off-diagonal
correlations on either side of the horizon and new correlation
features are pointed out in the inner supersonic region and
physically explained in terms of the frequency-modulation of
the Hawking emission due to the emergent resonant cavity.
Section V finally summarizes our findings.
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II. THE PHYSICAL SYSTEM

The proposed experimental setup is sketched in Fig. 1. The
essential parts of the setup are the same as in the experiment
[42] where a black-hole configuration in a flowing polariton
fluid was first observed.

The physical device consists of a GaAs microcavity
sandwiched between a pair of planar Bragg reflectors with
alternating λ/4 layers of GaAs/AlGaAs. An InGaAs quantum
well is inserted in the microcavity layer, whose thickness is
chosen so that the cavity mode is resonant with the quantum
well excitonic transition. In this way, the resulting excitation
modes have a mixed light-matter character and go under the
name of exciton polaritons. Thanks to their excitonic com-
ponent, polaritons show strong binary interactions that lead
to collective behaviours in the polariton fluid. The photonic
component of the polariton allows for an easy generation
and manipulation of the polariton fluid using incident light
beams, as well as for a straightforward diagnostic of the fluid
dynamics from the emitted light. The interested reader can find
a general introduction to the general physics of quantum fluids
of polaritons in microcavity devices in the recent review [33].

In order to keep the fluid dynamics the simplest, the cavity
is etched to form a 500-μm-long polaritonic wire with a 3 μm
transverse width where the polariton dynamics is effectively
one-dimensional. As it is sketched in the upper panel of Fig. 1,
polaritons are injected into the cavity by spatially focusing a
continuous wave coherent pump laser with a finite incidence
angle with respect to the normal. This generates a stationary
one-dimensional flow of polaritons that propagate along the
wire and eventually hit an engineered defect. The defect
consists in a localized 1-μm-long broadening of the wire to a
width of 5.6 μm that can be modeled as a localized attractive
potential well for polaritons.

While at low injected powers polaritons partially scatter
from the defect, at sufficiently strong pump powers superfluid
effects set in and a black-hole acoustic event horizon is
spontaneously formed in the flow profile in the vicinity of
the defect. The horizon separates an upstream region of
subsonic flow from a downstream region of supersonic flow.
In the gravitational analogy, these regions are analogous to
the exterior and the interior of the black hole, respectively. A
sketch of the spatial profile of the flow and sound speeds is
displayed in the lower panel of Fig. 1.

As the only addition with respect to the scheme used in
Ref. [42], the attractive defect is here supplemented by a homo-
geneous attractive potential in the downstream region: in this
way, the flow velocity in the downstream region is increased,
which leads to a reinforced surface gravity at the horizon and
therefore to a higher Hawking temperature. Furthermore, as we
will see below, the higher flow speed facilitates separation of
the different momentum components in the pump-and-probe
experiment and therefore the identification of the Hawking
signal. As sketched in the upper panel of Fig. 1, in future
experiments, it will be straightforward to include this attractive
potential by means of a slight increase of the transverse size
of the wire in the downstream region on the order of 1 μm.

One of the main advantages of microcavity polaritons with
respect to other systems is the easy access to observables such
as the polariton density and momentum. Diagnostics of the

polariton fluids is made via the emitted light, which inherits the
statistical properties of the in-cavity field [33]. For instance,
the real space intensity profile of the microcavity emission
reproduces the spatial density distribution of the polaritons and
the correlation function of the intensity noise provides direct
information on the corresponding density fluctuations, which
are expected to contain information on the Hawking radiation
[41]. Furthermore, the momentum distribution of the fluid can
be extracted from the angular distribution of the emission. In
particular, a spatially-resolved momentum distribution can be
obtained as in the experiment [42] by first spatially filtering
the emission in the real space and then observing the emission
in the far field.

A second advantage of polariton fluids is the possibility
to directly probe and manipulate the state of the fluid using
additional lasers. For instance, the spectrum of excitations on
top of the flowing condensate can be probed using a weak
continuous-wave laser beam. The polaritons injected by this
probe beam are strongly dressed by the nonlinear interaction
with the condensate and propagate as collective Bogoliubov
excitations in the fluid. The wave vector and frequency of these
Bogoliubov excitations can be tuned by varying the frequency
and the incidence angle of the probe beams.

In contrast to gravitational systems, in our analog model,
choosing a large probe incidence angle with an opposite sign
with respect to the pump beam allows for the generation of
large wave-vector single-particle-like Bogoliubov excitations
that propagate in the upstream direction against the horizon.
A configuration of this kind appears to be most favourable for
the study of stimulated Hawking processes that is reported in
the next Sec. III.

III. STIMULATED HAWKING RADIATION

A. Theoretical model and general considerations

We work with the exciton polaritons of the lower polariton
branch close to the bottom of the dispersion relation, which
at the mean-field level are described by the driven-dissipative
Gross-Pitaevskii equation with a standard parabolic single-
particle dispersion [33],

i
d

dt
φ(x,t)

=
[
− �

2m

d2

dx2
+ V (x) + g|φ(x,t)|2 − i

γ

2

]
φ(x,t)

+Fp(x,t) + Fs(x,t), (1)

where the effective polariton mass along the wire is taken to
be m/�

2 = 0.26 meV−1 μm−2, the one-dimensional polariton-
polariton interaction constant g is assumed to be constant along
the wire with a value such that �g = 0.005 meV μm,1 and
the polariton decay rate γ is assumed for simplicity to be
position- and momentum-independent with a value such that
�γ = 0.047 meV. V (x) is the effective potential experienced

1We have verified that the physics remains qualitatively unchanged
if a spatially varying interaction strength g following the wire profile
is used in the simulations.
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by polaritons as a result of the transverse confinement and is
roughly related to the transverse width w(x) by

V (x) ≈ �
2π2

2m w(x)2
. (2)

In our calculations, we assumed the potential to have the model
form

V (x) = Vattr �(x) + Vdef e−x2/w2
def (3)

with a defect potential strength of Vdef = −0.85 meV localized
in a region of size wdef = 0.75 μm and an attractive potential
of strength Vattr = −0.4 meV in the downstream region.

Within the parabolic band approximation, the fluid velocity
v(x,t) and the speed of sound c(x,t) are defined in terms of
the field φ(x,t) as

v(x,t) = Im(φ∗∂xφ)/m, (4)

c(x,t) =
√

g|φ(x,t)|2/m. (5)

The profile of the pump beam is taken to have a carrier
frequency ωp, an in-plane carrier wave vector kp, and a slow
envelope along the wire of Gaussian form of width σp,

Fp(x,t) = F 0
p e− ln(2) (x−xp)2/(σp/2)2

ei(kpx−ωpt). (6)

In our calculations, the pump profile is inspired by the
experimental parameters of Ref. [42], with a width σp =
17 μm, and centered at xp = −33 μm upstream from the
defect. Polaritons then propagate from the pump spot towards
the horizon. Due to their finite lifetime, in the steady state the
polariton density shows a spatially decaying profile, resulting
in a space dependent velocity of sound.

An analogous Gaussian profile centered at xs = 40 μm
downstream of the defect and of approximate full width
σs = 7 μm is taken for the probe beam of frequency ωs ,
slightly detuned by � = ωs − ωp from the pump. Its in-plane
wave vector ks is tuned on resonance with the Bogoliubov
spectrum of excitations of the fluid at the position of the probe,
as indicated by the points in Fig. 2(a). The probe amplitude F 0

s

is chosen small enough not to exceed the regime of validity of
the linearized Bogoliubov theory. The Bogoliubov excitations
created by the probe on top of the fluid will then propagate
away from the probe spot at a speed determined by the
group velocity of the Bogoliubov dispersion, for the chosen
parameters in the upstream direction towards the horizon.

It is worth noting that for all choices of parameters
considered in this work, all other Bogoliubov branches are
suppressed as their wave vector and/or their frequency are
far from resonance for both direct and four-wave mixing [46]
processes. In the diagram of Fig. 2(a), the pole of a four-wave
mixing resonance occurs when the probe frequency and wave
vector lie in the vicinity of the dashed line.

As it is sketched in the upper panel of Fig. 1, the Bogoliubov
waves that emerge from scattering of the probe off the horizon
are detected from the emission collected in a finite spatial
window in the downstream region [42]. To optimize the
analysis, the collection region is located further downstream
than the probe so to avoid contribution of the probe waves
incident on the horizon. Additionally, the collection region
is chosen to have a wide extension so to guarantee a good

momentum selectivity. Specifically, the filter function used in
the calculations has the form

F (x) = 1

4

[
1 + tanh

(
x − xc + w

σ

)]

×
[

1 − tanh

(
x − xc − w

σ

)]
(7)

centered at xc = 133 μm and of half-width w = 74 μm,
and edge smoothening σ = 10 μm. At the mean-field level
considered in this section, the emitted signal is equal to the
product of the in-cavity field φ(x,t) and the filter function
F (x).

In practice, in our simulations, the field is described within
a rotating frame at the pump frequency and the temporal
dynamics given by the driven-dissipative Gross-Pitaevskii
equation (1) is followed until a steady state is reached. As the
probe and pump frequencies ωs,p are not identical, this steady
state consists of a strong constant component corresponding
to the pump, plus a weak oscillating modulation at the
difference frequency. As a consequence of the nonlinearity
of the GP dynamics, the total emission spectrum displays
a four-wave mixed signal at ω4 = 2ωp − ωs in addition to
the pump and probe components at respectively ωp,s . In
our numerics, a temporal Fourier transform can be used
to isolate the ωs,4 frequency components from the stronger
pump at ωp. Then, for each of the ωs,4 frequencies, a spatial
Fourier transform of the spatially filtered field allows to
separate the different wave-vector components so to obtain
the momentum distribution as usually done in a far-field
measurement [42]. As an example, as it is pictorially explained
in Fig. 2(b), a Bogoliubov excitation results in a finite signal
in both frequency components ωs,4, peaked at wave-vector
values determined by the local Bogoliubov dispersion in the
collection region, and weighted by the Bogoliubov u2 and v2

coefficients.
While the finite size of the signal collection region and

the intrinsic spatial decay of the scattered wave propagating
away from the horizon are responsible for a broadening
of the peaks in wave-vector space, the spatial variation of
the Bogoliubov dispersion due to the inhomogeneity of the
condensate density and speed is negligible, as witnessed by
the almost constant flow speed shown in Fig. 1. Note that an
analogous measurement in the upstream region would instead
be strongly disturbed by the strong inhomogeneity of the flow
profile, as well as by the strong intensity of the underlying
pump beam.

B. The response signals

Examples of the collected wave-vector spectra at the
two frequencies ωs and ω4 are shown in Figs. 2(c)–2(f)
for different values of the detuning �� = �(ωs − ωp) =
0.94, 0.60, 0.37,−0.60 meV, as indicated by the horizontal
lines in the Bogoliubov dispersion at the probe position plotted
in Fig. 2(a). The vertical lines in Figs. 2(c)–2(f) indicate the
wave vectors of the different scattered channels as predicted
by the Bogoliubov dispersion at the collection point shown in
Fig. 2(b): their position successfully compare with the peaks
observed in the numerically computed spectra.

144518-4



THEORETICAL STUDY OF STIMULATED AND . . . PHYSICAL REVIEW B 94, 144518 (2016)

0.4 0.6 0.8 1 1.2

10−6

10−4

10−2

k (µm−1)

Si
gn

al
 in

te
ns

ity
 [a

.u
.]

0.4 0.6 0.8 1 1.2

10−6

10−4

10−2

k (µm−1)

Si
gn

al
 in

te
ns

ity
 [a

.u
.]

0.4 0.6 0.8 1 1.2

10−6

10−4

10−2

k (µm−1)

Si
gn

al
 in

te
ns

ity
 [a

.u
.]

0.4 0.6 0.8 1 1.2

10−6

10−4

10−2

k (µm−1)

Si
gn

al
 in

te
ns

ity
 [a

.u
.]

−50 0 50 100 150 200
10−12

10−10

10−8

10−6

x (µm)

sp
at

ia
l i

nt
en

si
ty

 [a
.u

.]

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5
0

0.5
1

1.5

k (µm−1)

pr
ob

e 
de

tu
ni

ng
 (m

eV
)

−1 0 1 2

−1

0

1

k, um−1

de
tu

ni
ng

, m
eV (b)(a)(c)

(e)

(f)

(g)

(f)

(d)(c)

(e)

(d)

H
pump

R’

(d) R

FIG. 2. (a) Dispersion relation of the Bogoliubov quasiparticles at the probe beam position (x ≈ 40 μm). The vertical scale is given by
the probe detuning �� = �ωs − �ωp: a positive detuning means that the probe is blue detuned relative to the pump. (b) The same Bogoliubov
dispersion relation in the signal collection region (x ≈ 160 μm) where the condensate density is even lower. (c)–(f) Examples of angular
distribution of the collected emission for the different values of the probe detuning �� ≈ 0.94,0.60,0.37, − 0.60 meV indicated by the
horizontal lines in panel (a). The dots refer to the emission at the probe frequency ωs , while the crosses refer to the emission at the four-wave
mixed frequency ω4 = 2ωp − ωs . The vertical lines in (c)–(f) indicate the prediction of the Bogoliubov theory for the wave vectors of outgoing
modes. For the �� ≈ 0.60 meV case of (d), these modes are also indicated by the vertical lines in panel (b): the label H and the thick red solid
line indicate the Hawking signal, the label R and the blue thin solid line indicate the reflected component, and the label R′ and the dashed line
indicate the four-wave-mixed partner of the reflected component. Note that for �� = 0.94 meV there is no visible Hawking signal. The blue
dot in (a) indicates the ingoing Bogoliubov mode that is resonantly injected by the probe beam. (g) spatial profile of the emission filtered at
the probe frequency ωs (solid black line) and at the four-wave mixed frequency ω4 (dashed red line). The probe detuning is �� ≈ 0.60 meV
and corresponds to panel (d). The spatial beats in the ω4 signal in the inner x > 0 region correspond to the interference between the two peaks
of comparable magnitude that are indicated as the H and the R′ peaks on the angular distribution of the ω4 emission shown in panel (d). The
faster spatial beats in the ωs signal in the 0 μm < x < xs region between the probe and the horizon are due to interference of the incident and
the reflected R waves. Finally, the beats that are visible at both ωs,4 frequencies in the −10 μm < x < 0 μm region right in front of the horizon
are a signature of the emergent cavity between the pumped region and the horizon.

For the highest value of the detuning � [panel (c)], the probe
spectrum at ωs shows a single peak due to a standard reflection
process. This process also appears as a single peak in the
four-wave mixed spectrum at ω4. The much weaker intensity
of the latter is due to the almost pure single-particle nature of
the high-energy Bogoliubov excitations considered here.

For decreasing �, the signal from a Hawking mode-
conversion process starts being visible. While at ωs it is often
buried into the stronger signal from standard reflection, it is

much more clearly visible at ω4 where a doublet of peaks is
apparent in panels (d) and (e). This enhanced visibility is a
lucky combination of two factors: on one hand, the reflection
signal is weaker at ω4 by the u2/v2 ratio of Bogoliubov
coefficients; on the other hand, the same ratio for the Hawking
wave enhances the feature in the ω4 signal. As � is further
decreased, the Hawking and reflected features at ω4 approach
each other, with the Hawking one eventually becoming the
stronger one [panel (e)].
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For negative �, the physics is very similar albeit the
exchanged position of the different spectral features [panel
(f)]. Of course, for too large and negative �, the Hawking
feature disappears again (not shown).

For the sake of completeness, it is also interesting to look
at this physics from the point of view of the spatial intensity
profile of the ωs and ω4 emissions. This is shown in Fig. 2(g)
for a detuning � � 0.60 meV as in Fig. 2(d). At ωs , there
are fast oscillations in the 0 < x < xs region between the
probe location and the horizon due to interference between
the incident and the reflected waves. On the other hand, slower
interference fringes due to the beating of the reflected and the
Hawking features forming the doublet of peaks in Figs. 2(d)
and 2(e) are clearly visible in the ω4 signal in this same region.

C. Hawking radiation spectrum

The series of wave-vector spectra shown in Fig. 2 are a good
starting point to extract information on the frequency spectrum
of the stimulated Hawking radiation. As the incident probe
beam consists of relatively high-wave-vector excitations on top
of the condensate, we can reasonably neglect the dependence
of its Bogoliubov coefficients on �. As a result, the amplitude
of the incident probe beam can be kept (approximately)
constant while varying the probe wave vector ks by simply
ensuring that the probe frequency ωs and wave vector ks are
always resonant with the desired point on the Bogoliubov
dispersion. For each value of the probe frequency �, the
intensity of the stimulated Hawking radiation is estimated from
the height of the Hawking peak in the four-wave mixed signal
at ω4.

1. Hawking temperature

As a first attempt to extract an estimate for the Hawking
temperature of the black-hole horizon, in Fig. 3, we have
plotted the probe frequency dependence of the height of the
Hawking peak in the four-wave mixed signal at ω4. While the
resulting spectrum shown as a red line displays the expected
fast decay as a function of |ωs |, it also shows an unexpected
marked asymmetry between the positive and negative �

regions.
As a possible explanation of this unexpected feature that

disturbs a unique determination of the Hawking temperature,
we could invoke the propagation losses between the probe
injection point and the horizon, and then between the horizon
and the collection region. While polariton losses give a
constant temporal decay rate for Bogoliubov waves equal to
γ , a significant frequency dependence can appear in the spatial
absorption rate κ = γ /vg from the frequency dependence of
the group velocity vg , which can be quite strong for the
Hawking wave. In order to (at least partially) compensate for
this spurious effect, a simplest strategy is to renormalize the
observed signal in terms of the group velocity at the signal
collection point,

NH = Nmeas
H (k) exp

[
γ

(
L1

vg(ks)
+ L2

vg(kH )

)]
, (8)

where ks is the wave vector of the incident probe wave and
kH is the one of the scattered Hawking wave, and L1,2 are
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FIG. 3. Intensity of the stimulated Hawking fluorescence signal
at the four-wave mixed frequency ω4 as a function of the probe
detuning from the pump frequency �� = �(ωs − ωp). The Hawking
signal is measured at the signal collection region (red) and is then
corrected as to take into account velocity-dependent loss (black).
Straight lines on either side of the distribution show the exponential
envelope I ∝ exp(−� |�|/kBT ) with a fitted Hawking temperature of
T = 1.4 K. The strong periodic modulation is instead due to emergent
resonant cavity.

the distances of the probe and the collection regions from the
horizon.

The renormalized data are shown in Fig. 3 as a black line:
the envelope is now well fitted on both � ≷ 0 sides by an
exponential law with the same coefficient, which supports
our interpretation of the asymmetry of the red curve of the
bare data. Further renormalization taking into account other
factors such as the frequency dependence of the Bogoliubov
u,v coefficients, the detailed spatial dependence of the group
velocity, Jacobian coefficients due to the translation from wave
vector to frequency, etc. would give corrections that scale at
most as a power law of � and go beyond the precision of our
analysis.

From the coefficient of the exponential law, one can extract
an estimation for the Hawking temperature T est

H = 1.4 K. In
spite of the approximations underlying this estimation, this
value is order-of-magnitude-consistent with the theoretical
prediction based on the gravitational analogy [6,18]

T th
H = �

2kbc(x)

d

dx
[v(x)2 − c(x)2]

∣∣∣∣
x=xh

� �

2kbch

(
v2

d − c2
d

) − (
v2

u − c2
u

)
Lh

� 3.5 K, (9)

where Lh ∼ 15 μm is the thickness of the horizon region
where the speed of sound c and flow velocity v display their
main variation, and subscripts h,u,d stand for the “horizon,”
“upstream,” and “downstream” regions in the close vicinity of
the horizon.

The fact that the estimated Hawking temperature T est
H is

somehow smaller than the analytical prediction T th
H does

not appear to be an issue, as this latter was derived in
the hydrodynamic approximation where the flow and sound
speeds vary slowly with respect to the healing length and,
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consequently, the Hawking temperature would be much
smaller than the interaction energy mc2. Inserting the actual
values for the considered setup, one finds a T th

H /(mc2
h) �

2, which indeed violates the hydrodynamic approximation.
Based on the numerics of Ref. [17] for atomic condensates,
one expects that the actual Hawking temperature be somehow
smaller than the analytical prediction T th

H , which confirms the
consistency of our estimation.

Finally, it is worth highlighting that we are here comparing
our numerical simulation for a driven-dissipative polariton
fluid with the predictions of a gravitational analogy that was
derived for standard particle-conserving fluids like atomic
condensates: in the absence of theoretical results for the
Hawking effect in driven-dissipative systems, our numerics
suggest the remarkable conclusion that the thermality of the
Hawking radiation process can be maintained also in an
out-of-equilibrium context.

2. Emergent resonant cavity

In addition to the exponentially decaying envelope dis-
cussed in the previous section, the Hawking spectrum plotted
in Fig. 3 exhibits a strong, almost periodic modulation. The
underlying physics can be understood looking at the flow
profile shown in the lower panel of Fig. 1 and, in particular,
at the high-density region that is present at the pump position
upstream of the defect and that is able to reflect all incident
Bogoliubov excitations.

When the probe wave hits the horizon, it creates reflected
and Hawking waves that propagate downstream, as well as
a transmitted wave that propagates in the upstream region.
When this last wave hits the high-density region at the pump
position, it is completely reflected back towards the horizon.
When this reflected wave hits the horizon, it can trigger a
further stimulated Hawking process which also contributes
to the Hawking wave. It is the interference between these two
contributions to the Hawking wave which is responsible for the
marked oscillations that are visible in the Hawking spectrum
of Fig. 3.

Even though the strong inhomogeneity of the condensate
prevents an easy analytical study of the scattering process,
further insight on the interference process can be obtained from
Fig. 4: the maxima/minima of the Hawking signal correspond
to an integer/half-integer number of oscillations of the standing
wave pattern in the ωs intensity in the cavity region between
the horizon and the pump region. In semiquantitative terms,
we can assume the density (and hence the speed of sound) to
be constant in this region: extracting from the flow profiles
the speed of sound c ≈ 1.8 μm/ps, the length of the cavity
L ≈ 10 μm, and taking into account that there must be an
integer number of half-waves in the cavity for constructive
interference, we get the energy level spacing between the levels
��ω = π�c/L ≈ 0.35 meV, which is in a fair agreement with
the periodicity observed in the spectra of Fig. 4.

While the resonant Hawking effect with a strongly modu-
lated emission spectrum has been studied before by imposing
an external cavity structure to the condensate flow [20], the
most remarkable novelty of our finding stems from the fact that
the cavity is not externally imposed, but naturally emerges as
a byproduct of the pumping scheme used to generate the black

hole. Furthermore, our numerical simulations performed with
different values of the pump intensity and different spatial
positions of the pump spot show that the cavity structure
is always present as long as we require the existence of a
trans-sonic horizon.

We conclude this section by noting that, in contrast to the
so-called black-hole lasing phenomenon theoretically studied
in Refs. [47–50] and experimentally investigated in Ref. [24],
the emergent cavity discussed here does not display a pair
of adjacent black- and white-hole horizons and the multiple
scattering events involved in the Hawking process do not lead
to any dynamical instability of the flow profile.

IV. SPONTANEOUS HAWKING EFFECT

In the previous section, we have concentrated our attention
on a stimulated Hawking effect, where the mode conversion
at the horizon is stimulated by a coherent probe beam
of Bogoliubov excitations that scatter on the horizon. In
the current section, we proceed to analyze the spontaneous
Hawking effect, where the same mode conversion process
acts on the quantum vacuum of the Bogoliubov modes, so
to convert the zero-point quantum fluctuations into correlated
pairs of real Bogoliubov excitations propagating away from
the horizon. As first proposed in Refs. [16,17] and widely
discussed in the literature on analog models in cold atomic
gases [51,52] and polariton fluids [41], a most promising route
to experimentally detect this spontaneous Hawking effect is
through measurements of the intensity-intensity correlation
function of the fluorescence signal.

This effect can be numerically studied by means of the
so-called truncated Wigner approximation (TWA) [33,53], a
semiclassical approach that allows to calculate the expectation
values of quantum operators as classical averages of suitable
stochastic partial differential equations. This method was orig-
inally introduced in the quantum fluids context for cold atom
systems [54–56] and soon extended to the driven-dissipative
case of quantum fluids of light [57]. The basic idea of the
TWA method is that one can truncate the Fokker-Planck-like
equation for the Wigner distribution of the quantum field
ψ̂(x) to second-derivative terms, so to approximately map
the quantum evolution of ψ̂(x) onto a stochastic differential
equation for the corresponding classical field φ(x,t).

On a numerical grid of spacing �x, the resulting stochastic
Gross-Pitaevskii equation for our specific system reads

i dφ =
[
− �

2m

d2

dx2
+ V (x) + g

(
|φ|2 − 1

�x

)
− i

γ

2

]
φ dt

+ Fp(x,t) dt +
√

γ

4
dξ , (10)

where dξ (x,t) is a complex, zero-mean, random-phase, Gaus-
sian noise term with the correlator

〈dξ ∗(x,t) dξ (x ′,t ′)〉 = 2 dt

�V
δx,x ′ δ(t − t ′). (11)

As long as the interaction constant is weak enough for
the errors ensuing from the truncation approximation to be
negligible [33,53], the classical averages 〈. . .〉W over a large
number of independent realizations of the classical field φ(x,t)
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FIG. 4. Illustration of the resonance frequencies of the emergent cavity. (a) Bogoliubov dispersion relations at the spatial position of the
probe. The horizontal lines mark the detunings values considered studied in the central and lower panels (c)–(f). (b) Total intensity of the
emitted signal at the probe (thick black line) and four-wave mixed (thin red line) frequencies ωs,4. The former is due to a direct reflection of the
probe excitations from the horizon. The latter includes contributions from both the four-wave-mixed component of the reflected beam and the
stimulated Hawking emission. Vertical line marks the detunings of (c)–(f). (c)–(f) Spatial profile of the emission filtered at the probe frequency
ωs (thick black line) and at the four-wave mixed frequency ω4 (thin red line) for different probe detunings �� ≈ 0.25 (c), 0.45 (d), 0.61 (e),
and 0.92 meV (f). The vertical dashed line mark the approximate right bound of the emergent resonance cavity at the horizon location. The left
boundary is located where the signal enters the high intensity area under the probe beam, namely around x = −10 μm. The fringe pattern in
the ωs signal to the right of the horizon is due to interference of the incoming probe and the reflected wave. The peaks and dips in the four-wave
mixed signal in (b) differ by half an oscillation period in the spatial patterns of (c)–(f).

then provide a faithful estimation of the corresponding equal-
time, symmetrically ordered observables. After converting to
normally ordered quantities, one obtains for the spatial density

〈ψ̂†(x)ψ̂(x)〉 = 〈|φ(x)|2〉W − 1

2�x
, (12)

and for its fluctuations

〈ψ̂†(x)ψ̂†(x ′)ψ̂(x ′)ψ̂(x)〉
= 〈|φ(x)|2 |φ(x ′)|2〉W + 1

4�x2
(1 − δx,x ′ )

− 1

2�x
(1 − δx,x ′ )〈|φ(x)|2 + |φ(x ′)|2〉W . (13)

As we are interested in the steady-state observables under
a single monochromatic pump at ωp (no probe is needed to
study the spontaneous Hawking effect), in our numerics we
simulate the temporal evolution given by stochastic differential
equation (10) for long times. Once a steady-state is reached,
the stochastic field is repeatedly sampled at periodic intervals:
from this sampling, statistical estimates of the quantum

observables are obtained by means of the above-mentioned
correspondence of classical averages over stochastic noise and
quantum expectation values, see, e.g., (12) and (13). Provided
the temporal spacing of the samples is long enough for them
to be statistically independent, the statistical error decreases
with the number Nsam of samples as 1/

√
Nsam.

As a main outcome of our calculations, numerical results
for the normalized correlation function of density fluctuations
defined as

g(2)(x,x ′) = 〈ψ̂†(x)ψ̂†(x ′)ψ̂(x ′)ψ̂(x)〉
〈ψ̂†(x)ψ̂(x)〉〈ψ̂†(x ′)ψ̂(x ′)〉 (14)

are shown in the top-left panel of Fig. 5 for the same pump
configuration considered in the previous sections of this work.

While the negative correlation signal along the main
diagonal is a standard many-body effect arising due to the
repulsive interactions in the fluid and has little to do with the
horizon [17], the most evident feature of the Hawking radiation
is the off-diagonal negative correlation signal that encodes the
correlation within the excitation pairs that are simultaneously
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FIG. 5. (Top, left) Correlation function of density fluctuations showing various signatures of the spontaneous Hawking effect. The blue
solid line indicates the expected orientation of the Balbinot-Fabbri correlation feature between a Hawking phonon and its partner, emitted in
the upstream and downstream directions, respectively. The prediction for the orientation is obtained by inserting the local values of the speed
of sound and of the speed of flow in the vicinity of the horizon into the differential equation Eq. (15). (Top, right) Plot of the approximated
analytical form (16) of the correlation signal between the Hawking partners emitted in the downstream direction at the specific frequency
ωres = 0.8 meV corresponding to the third resonance. In this simplified model, the correlation signal has a cos(kx + k′x ′ + ϕ) form in the x ′ > x

half-plane (and specularly inverted in the x > x ′ half-plane), where the two wave vectors k,k′ are determined from inverting the dispersion
relation ω(k) = ωres. (Bottom, left) Density correlation function for a different flow configuration where the horizon is very smooth and there is
no emergent resonance cavity. As the surface gravity is very weak, no trace of Hawking processes is visible in the plot. (Bottom, right) Spatial
profile of the flow velocity and of the speed of sound for the setup considered in the main text (top) and for a smooth horizon and no emergent
resonant cavity (bottom).

emitted in the Hawking process: one excitation escapes from
the black hole in the negative x < 0 direction, while the partner
one propagates in the opposite direction x > 0 falling into
the black hole. In contrast to atomic systems where it keeps
growing in length for indefinite times after formation of the
horizon [16,17], this Balbinot-Fabbri correlation feature has a
finite steady-state length in the present driven-dissipative case
due to two reasons: on one hand, the finite lifetime of polaritons
limits the propagation distance of the Hawking excitations to
a distance vg/γ on the order of few tens of microns on either
side of the horizon. On the other hand, the high-density region
present right upstream of the horizon reflects the Hawking
emission and distorts the correlation signal.

In addition to this, the spatial inhomogeneity of the fluid
is also responsible for a curved shape of the Balbinot-Fabbri
feature, as also noticed in Ref. [42]: the blue line in the top-
left panel of the Fig. 5 shows the locus of points of equal
optical distance from the horizon. Neglecting dispersion, this is

locally defined (in the x > 0, x ′ < 0 sector) by the differential
equation

dx

vg(x)
= dx ′

vg(x ′)
, (15)

where the group velocity vg is evaluated at each point for the
relevant Bogoliubov branch. As one can see from the flow
profile displayed in the lower-right panel, the curvature of the
locus is mostly due to the variation in the speed of sound in the
x < 0 region. In addition to the curvature, one can also notice
additional fringes parallel to the main axis of the feature, in
particular a weakly positive signal at lower x < 0: the presence
of these fringes can be physically explained by the frequency
dependence of the group velocity of Bogoliubov excitations,
mostly of the Hawking branch [19].

Another feature which directly relates to the Hawking effect
is the positive correlation stripe located parallel to the main
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GRIŠINS, NGUYEN, BLOCH, AMO, AND CARUSOTTO PHYSICAL REVIEW B 94, 144518 (2016)

diagonal in the x,x ′ > 0 downstream region, followed by
analogous, yet weaker fringes further away from the main
diagonal. This complex feature was already present in the
previous work [42], but no physical explanation was given
for its structure, markedly different from the moving fringes
found in the same spatial region in Ref. [17] and indicated as
feature (ii): in the present calculations, the fringe pattern is
in fact a steady-state feature, which does not drift with time.
Furthermore, in contrast to feature (iv) in Ref. [17], it shows
clear oscillations.

Our explanation for this feature goes back to the frequency-
dependence of the Hawking emission in the downstream
direction: making use of the usual quantum optical criterion
[58] to translate the stimulated Hawking spectrum discussed
in Sec. III to spontaneous processes, one expects that the
emergent cavity modulates the spontaneous Hawking emission
spectrum into a series of narrow peaks at which the emission
intensity is concentrated.

As the emission in this downstream region consists of corre-
lated pairs of Bogoliubov excitations at opposite frequencies,
we can expect that the time-independent anomalous correlation
mk,k′ = 〈akak′ 〉 between right-propagating modes of opposite
frequencies can give rise to a peculiar interference feature in
the g(2)(x,x ′) intensity correlation function. Indicating with
k,k′ the wave vectors of these modes relative to the flowing
condensate, the interference feature can be shown to have the
form

(uk′ + vk′)(uk + vk)[mk,k′ei(kx+k′x ′) + c.c.] (16)

in the x ′ > x half-plane and a specularly inverted one in
the x > x ′ half-plane. Here, the uk + vk and uk′ + vk′ factors
quantify the density component of the Bogoliubov modes.
When integrating over all pairs of modes, it is natural that
the largest contribution will be provided by the peaks in the
Hawking spectrum, which result in weakly damped spatial
oscillations.

For illustrative purposes, we focus on the third peak in the
Hawking signal at ωres ≈ 0.8 meV [labelled (f) in Fig. 4(b)].
For this peak, the wave vectors of the two right-propagating
modes at frequencies ±ωres are then at k ≈ 0.3 μm−1 and
k′ ≈ −0.6 μm−1 relative to the flowing condensate. The shape
of the resulting signal2 is plotted in the top-right panel of
Fig. 5: the qualitative agreement with the period and the
orientation of outer fringes that are visible around x = 20 μm
and x ′ = 80 μm in the full numerical calculation shown in
the top-left panel is qualitatively quite good and supports our
interpretation.

Closer to the main diagonal, the simultaneous presence
of other processes makes the signal more complicated. For
instance, an analogous contribution from the lower peaks
in the Hawking spectrum is responsible for the wider and
positive first fringe (around x = 60 μm and x ′ = 80 μm):
further away from the diagonal, the relative importance of these
contributions is however suppressed by the wider linewidth of

2The association of the k,k′ modes with the x,x ′ > 0 position in the
expression (16) must be made in terms of the group velocity of the
modes vg(k),vg(k′) > 0: on physical grounds, the more remote point
has to be associated to the faster group velocity.

the lower Hawking peaks, which gives a quicker decay of the
corresponding fringes.

As a final check of our interpretation, in the lower-left
panel we have plotted the same g(2) correlation function
for a different flow configuration where the surface gravity
is very low. This configuration is obtained with a spatially
homogeneous pump restricted to the left of the defect (a
sort of theta-function pump) and gives rise to the flow and
sound speed profiles displayed in the two lower-right panels.
As expected, all interesting features disappear except for the
negative correlation signal along the main diagonal which is
due to many-body effects and has no relation to the horizon:
in particular, there are no fringes in the g(2) nor any Hawking
signal.

V. CONCLUSIONS

In this work, we have proposed and numerically charac-
terized an experimental setup to study the Hawking effect
in a flowing fluid of exciton polaritons in a laterally pat-
terned semiconductor microcavity device under a coherent
monochromatic pump. A stimulated analog Hawking effect
can be studied in a pump-and-probe-type measurement, while
the spontaneous analog Hawking effect is observable in the
correlations function of the intensity noise in the secondary
emission. The main conclusion of this work is that both effects
can be observed in a state-of-the-art device with standard
quantum optical tools.

In order to detect the stimulated Hawking emission, we
have proposed to shine an additional weak and monochromatic
probe beam onto the cavity, so to generate a coherent
Bogoliubov excitation propagating against the horizon. The
stimulated Hawking emission is detected by isolating the
scattered waves at the probe and four-wave-mixed frequencies
and measuring their wave-vector distribution. With respect
to previous studies of wave-packet scattering on a black-
hole horizon [41], the pump-probe experiment proposed here
appears to be technologically much easier to implement as it
only requires a pair of continuous-wave laser beams and an
angularly and spectrally selective detection system, with no
need for time-resolved technology to generate and detect the
time-dependent signals of a pulsed laser.

In particular, the numerically observed exponential decay
of the scattered amplitude at the four-wave-mixed frequency as
the function of the pump-probe detuning provides a prediction
for the Hawking temperature around 1.4 K in good agreement
with the value expected from the surface gravity of the
horizon. As a novel unexpected phenomenon, we identified
the spontaneous appearance of an emergent resonant Fabry-
Perot-type cavity for sound waves, formed by the strong pump
beam, which completely reflects the quasiparticles, and the
semitransparent horizon. As a consequence of this emergent
resonant cavity, the stimulated Hawking response shows a
strong modulation on top of the exponential decay, with
well-defined peaks at the cavity resonances.

We have finally analyzed the correlations in the intensity
noise of the secondary emission for the same setup in the
absence of the probe beam and showed that the spontaneous
Hawking effect gives rise to peculiar correlation features: in
addition to the moustache-shaped Balbinot-Fabbri correlation
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signal between the inner and the outer regions of the black
hole, we have identified a regular fringe pattern in the inner
region and we have interpreted it as a consequence of the
marked frequency-dependence of the Hawking emission.

The natural next step of our investigation is of course to
obtain an experimental verification of our predictions, first
for the stimulated and then for the spontaneous Hawking
emission. From the theoretical point of view, we are presently
working on the extension of our theory to deal with the
quantum entanglement features that appear between the two
sides of the horizon because of the spontaneous Hawking
processes: as compared to existing works on this physics in
the case of atomic condensates [21,22,52], we expect that the
intrinsically driven-dissipative nature of the photon/polariton
fluid will be responsible for significant differences in the
quantum dynamics and, in particular, a most challenging task
will be to identify schemes able to extract an entanglement
signal out of the extra noise due to dissipation [43].

Another most intriguing next step will be to theoretically
investigate the potential of our setup to simulate the so-called
Hartle-Hawking vacuum of an eternal black hole [5,59]. The
eternal black hole can be thought of as a conventional black
hole which is in thermal equilibrium with infalling radiation.
One way to achieve this state is to put a black hole in the center
of a perfectly reflecting spherical shell. The shell will reflect

the emitted Hawking radiation back, so the black hole will
eventually equilibrate at the same temperature as the ambient
thermal field. In our system, the reflecting shell naturally
appears as a consequence of the high-intensity pump region
which reflects quasiparticles back to the horizon. With respect
to the presently available configurations with a relatively short
cavity and well-separated resonances, the challenge will be
to obtain a sufficiently long cavity for which the acoustic
fluctuations between the pump and the horizon may end up
in a thermal state with the Hawking temperature.

During preparation of this manuscript we became aware of
experimental measurements of the analog Hawking radiation
and its entanglement in a flowing atomic condensate [60].
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