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Abstract

In this work we present a tight-binding model that allows to describe with a minimal amount

of parameters the band structure of exciton-polariton lattices. This model based on s and p

non-orthogonal photonic orbitals faithfully reproduces experimental results reported for

polariton graphene ribbons. We analyze in particular the in�uence of the non-orthogonality,

the inter-orbitals interaction and the photonic spin–orbit coupling on the polarization and

dispersion of bulk bands and edge states.

Keywords: cavity polariton, photonic system, synthetic spin orbit coupling, multi-orbital

polariton lattices, synthetic Hamiltonian systems

(Some �gures may appear in colour only in the online journal)

1. Introduction

Coupled photonic resonators have appeared in the past few

years as an excellent platform to engineer lattice Hamiltonians

in the context of quantum emulation with photons. [1–4]. The

possibility of controlling the geometry, on-site energy and hop-

ping along with the spectroscopic access to the momentum-

and real-space distributions of the wavefunctions are opening

new perspectives in the study of elaborate solid-state Hamilto-

nians in the photonics realm. In addition, the engineering of

gain and losses and the presence of Kerr nonlinearities are

unveiling genuinely photonic phenomena in lattices, which

include lasing in topological states [5–10], PT-symmetric [11]

and charge conjugated phases [12] and the observation of

dissipative phase transitions [13, 14].

Lattices of polariton resonators in semiconductor micro-

cavities provide one of the most versatile platforms to

5 Author to whom any correspondence should be addressed.

implement this kind of Hamiltonians [15]. Polaritons are

hybrid light–matter quasiparticles that arise from the strong

coupling of quantum-well excitons and photons con�ned in a

micron-scale Fabry–Perot cavity. Their excitonic component

results in signi�cant polariton interactions and in sensitivity

to external magnetic �elds. The �rst feature has allowed the

observation of bi-stability [16], polariton super�uidity [17]

and solitons [18, 19] in planar structures, while the second has

been used to demonstrate lasing in circularly polarised states

[20] and in chiral edge states [10].

A very convenient way to implement lattices of polariton

resonators is by con�ning their photonic component in fully

or partially etched structures. The building block of these lat-

tices is typically a resonator of cylindrical symmetry, in which

photons are con�ned in the three spatial directions. The polari-

ton resonators show con�ned modes separated by a gap, each

of them with a particular geometry: the ground state is formed

by cylindrically symmetric s-modes, the �rst excited state is

doubly degenerate with p-type modes, the next states have
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d-symmetry and so on. Such con�ned modes have been real-

ized by fully etching the semiconductor structure [21, 22], by

partial etching of the upper cavity mirror [23, 24], by growth

interruption and etching of the cavity spacer [25, 26], and in

half cavities closed by an external mirror [27–29]. By later-

ally coupling the photonic modes of the resonators, lattices of

different geometries have been implemented, including one-

dimensional regular [30–32], Stub [33], Su-Schrieffer–Heeger

(SSH) [5] and aperiodic lattices [34], and two-dimensional

honeycomb [4, 10] and Lieb lattices [23, 24], showing a wide

variety of dispersions and topological features. One of the

great assets of this system is the possibility of designing lat-

tices with synthetic strain, which have been recently employed

to engineer new types of Dirac cones [35] and are promising

to engineer arti�cial gauge �elds [36, 37].

The design of polariton lattices and the interpretation of the

polariton bands measured in photoluminescence studies have

so far largely relied on the mapping to a tight-binding model.

The advantage of this model with respect to �nite element

methods based on Maxwell’s equations is that it provides a

straightforward physical interpretation, directly associated to

relevant experimental parameters, like the onsite energy, the

nearest–neighbors couplings and the geometry of the lattice.

In the tight-bindingmodel, each orbital mode of each cylindri-

cal microresonator is independent from the other orbitals and

plays the role of a point-like tight-binding site, all of themwith

identical on-site energy, coupled to their nearest neighbors.

In SSH, Lieb and honeycomb geometries, this kind of tight-

binding Hamiltonian presents chiral symmetry and, therefore,

the upper and lower bands of eigenvalues should be mirror

symmetric with respect to the value of the on-site energy.How-

ever, this simple model shows signi�cant deviations from the

experimentally observed dispersions, both in 1D and in 2D

lattices [4, 10, 23, 24, 32, 33]. In particular, in experimen-

tal observations, a signi�cant asymmetry between upper and

lower bands is systematically observed. An ef�cient way to �t

this band asymmetry is to add a next-nearest neighbor cou-

pling to the tight-binding model. This technique was used,

for instance, in the works of Jacqmin, Baboux and coworkers

[4, 33].

Despite the apparent success of the �ts, the question of the

physical relevanceof the actual next-nearest neighbor coupling

remains, particularly in structures based on complete etching

of the semiconductor microcavities, for which the photonic

con�nement is expected to be very strong within the phys-

ical dimensions of the micropillar. Therefore, the observed

band asymmetries call for other corrections to the tight bind-

ing description. One of them is the coupling between modes

of different symmetry belonging to nearest neighbor sites:

s and p-modes or p and d-modes in adjacent micropillars.

Simultaneously, the signi�cant spatial overlap between adja-

cent micropillars in real structures raises questions about the

accuracy of the tight bindingmodel,which assumes the limit of

weak overlaps. When the overlaps are signi�cant, the original

basis made of the individual uncoupled resonators is far from

an orthogonal basis, and non-orthogonal corrections need to

be added to the original tight-binding Hamiltonian. In mod-

els like the honeycomb lattice, these corrections have been

shown to result in band asymmetries quite similar to those

induced by next-nearest neighbors [38]. Understanding the

effects of these corrections is of crucial importance to interpret

a number of physical observations within this model.

In this article, we show that, indeed, the experimental dis-

persion of lattices of polariton micro-pillars can be described

with very high accuracy using a realistic tight-binding model

that takes into account both the non-orthogonality of the

micro-pillar basis and the coupling between s- and p-bands.

We show in this way that direct next-nearest neighbors cou-

pling is not necessary to fully reproduce all experimentally

observed phenomenology. To complete our description we

take into account the TE–TM splitting characteristic of dielec-

tric microcavities. We compare our model to experimental

dispersions obtained in a honeycomb lattice of coupled micro-

pillars. Our results should improve signi�cantly polariton

tight-binding models.

The rest of the paper is organized as follows: in section 2

we introduce the basics of our non-orthogonal tight binding

model and a simple variational approach based on low con-

trast refraction indices that implements an effective modeling

of the single pillar photonic modes inside the lattice. We apply

our model to the case of a honeycomb lattice in section 3 and

compare our results with experimental data showing that they

agree quite well, even in the case of distorted lattices. Finally,

we conclude in section 4.

2. A minimal tight-binding description for
cavity-polariton lattices

In this sectionwe present a simple tight-binding (TB) approach

to describe cavity-polariton lattices made out of single cav-

ity micropillars with several polaritonic modes of different

symmetries. At the core of the method lies the fact that we

will consider the case of weakly coupled cavities where the

photonic modes of a single cavity are a good starting point

of the calculation. We will explicitly take into account the

overlap between photonic modes at nearest neighbors cavi-

ties, including those with different symmetries, since this turns

out to be very important to describe the experimental data.

Our approach is similar in spirit to the one developed in refer-

ence [39] for photonic crystals, where the global photonic �eld

was written as a linear combination of the modes correspond-

ing to isolated pillars located at each lattice site. Here, however,

we will show that to effectively capture the behavior of the real

photonic modes of a pillar due to the spatial overlap with its

neighbors it is important not to consider the modes of an iso-

lated pillar in vacuum but those of a pillar surrounded by an

effective media.

2.1. Non-orthogonal tight-binding approach

We �rst summarize the basics of the usual tight-binding (TB)

approach involving a non-orthogonal set of localized orbitals

in a lattice (see for instance references [38, 40]). For simplic-

ity, we start by considering the case of a single orbital per

site. Generalization to multi-orbital sites is done at the end the

section.

2
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For a systemwithN sites positioned atRi with i = 1, . . . ,N,
the eigenmodes in the TB approximation are given by the

linear combination,

|Ψ〉 =
N
∑

i=1

ci|ψi〉. (1)

Here, |ψi〉 is the orbital state (mode) of a single pillar at site

Ri which is assumed to be normalized. The solutions are deter-

mined by the equationH|Ψ〉 = ε|Ψ〉 fromwhere the following

matrix equation results

Hc = ε Sc, (2)

and where we have introduced the notation c =

(c1, c2 , . . . , cN)
T. The elements of the Hamiltonian (H)

and overlap (S) matrices are given by

Hi j = 〈ψi|H|ψ j〉 , Si j = 〈ψi|ψ j〉. (3)

In the case of an orthogonal basis,Hi j is simply either the on-

site energy εi of the orbital |ψi〉 (for i = j) or the so-called hop-

pingmatrix element tij (for i 6= j) that comes from the inter-site

potential term. Both are usually taken as independent param-

eters. In the non-orthogonal case however, these terms are

mixed and Hi j can be parameterized in different (equivalent)

ways. We take the following one

Hi j =

(

εi + ε j
)

2
Si j + ti j, (4)

with tii = 0. This choice results in a symmetric formof tij under

exchange of i and j, consistent with the symmetry ofHi j. This

will allow us later on to make a simple approximation to the

inter-orbital coupling (tij) and to consider the cases where the

on-site energy changes from site to site. This is for instance

the case when in section 2.2 we consider the coupling between

orbitals of different energy in adjacent sites. Notice also that

this parametrization explicitly takes into account that a global

shift of the site energies translates in a global shift of the bands.

On the other hand, since in our case the orbital states are taken

to be real functions we have that Sij = Sji. Equation (2) can be

solved by making the substitution c = S−
1
2 c̃ to get the more

familiar orthogonal eigenvalue problem

H̃c̃ = ε c̃, (5)

with

H̃ = S−
1
2HS−

1
2 . (6)

Once solved, c can be recovered from c̃ by back-substitution.

A very convenient and compact way of writing the Hamil-

tonian is in terms of creation and annihilation operators, b
†
i

and bi, respectively—a formalism commonly used in polariton

lattices [41]. Hence, we rewrite the Hamiltonian as

H =
∑

i j

[
(

εi + ε j
)

2
Si j + ti j

]

b
†
i b j. (7)

These operators, in the non-orthogonal case, are not those that

create or annihilate a polariton in the state |ψi〉. In fact, they are

a linear combination of the latter. If we denote such operators

by a
†
i , so that |ψi〉 = a

†
i |0〉 where |0〉 is the vacuum state, then

we have that

b
†
i =

∑

j

S−1
i j a

†
j, (8)

2.2. Multi-orbital model

Let us now consider the more realistic case of a lattice in

which each micropillar supports several polariton modes of

different symmetry related to its polar angle distribution. We

restrict ourselves to the case of s and p orbitals because it will

be enough to explain the experimental data described below.

Generalization to more orbitals is straightforward by applying

the same procedure. Using the non-orthogonal tight-binding

approximation described above, and considering only near-

est–neighbors (NNs) overlap and hopping terms, the Hamil-

tonian (7) can be written as

H = Hs + Hp + Hsp, (9)

where the �rst two terms describe the coupling between the

same type of orbitals (s and p), and the last one the cou-

pling between different types of orbitals (s–p coupling). Due

to the intrinsic orthogonality between s and p orbitals within

the same site, the last term only involves coupling between

adjacent sites. In its most general form, and accounting for the

two polarization modes of each orbital, these three terms are

given by

Hs =
∑

i,σ

εisσ b
†
isσbisσ +

∑

〈i, j〉,σ

(
(

εisσ + ε jsσ
)

2
Ss + ts

)

(

b
†
isσb jsσ +∆ e−2iϕi jσ b

†
isσb jsσ̄

)

, (10)

Hp =
∑

i,σ

εipσ b
†
ipσ · bipσ +

∑

〈i, j〉,σ

(
(

εipσ + ε jpσ
)

2
SL + tL

)

×
[(

b
†
ipσ · e L

i j

)

(

e L
i j · b jpσ

)

+∆ e−2iϕi jσ
(

b
†
ipσ · e L

i j

)

×
(

e L
i j · b jpσ̄

)

]

+
∑

〈i, j〉,σ

(
(

εipσ + ε jpσ
)

2
ST + tT

)

×
[(

b
†
ipσ · e T

i j

)

(

e T
i j · b jpσ

)

+∆ e−2iϕi jσ
(

b
†
ipσ · e T

i j

)

×
(

e T
i j · b jpσ̄

)

]

,

(11)

Hsp =
∑

〈i, j〉,σ

(
(

εisσ + ε jpσ
)

2
Ssp + tsp

)

[

b
†
isσ

(

e L
i j · b jpσ

)

+∆ e−2iϕi jσ b
†
isσ

(

e L
i j · b jpσ̄

)

]

+ h.c.

(12)

This Hamiltonian is a generalization of the models stud-

ied in references [4, 24, 33, 42–47] to account for the s–p

inter-orbital coupling and overlap.Here, the operator b
†
iℓσ (biℓσ)

creates (annihilates) a polariton at site i, and in its NNs, accord-

ing to equation (8). The index ℓ labels the considered orbital in

3
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Figure 1. (a) Sketch of two adjacent micropillars, the corresponding
low energy photonic modes and their overlaps: s orbitals (Ss), p
orbitals along the bond (SL) and transversal to it (ST) and the
coupling between s and p orbitals (Ssp). (b) Scheme of a polaritonic
honeycomb lattice and a choice for the corresponding lattice
vectors. Here a is the distance between nearest neighbors.

the single pillar eigenmodes (s, px and py), while σ = ± indi-

cates the polarization of the photon component in the circular

polarization basis and σ/σ̄ indicate opposite polarization. The

coupling term for the s-bands, ts is spatially isotropic, while for

the px and py orbitals (equation (13)) it is different depending

on the orientation of the orbital with respect to the direction of

the link between adjacentmicropillars [4, 48]: tL when orbitals

are oriented parallel to the link, and tT for orbitals oriented

perpendicular to the link (usually |tL| ≫ |tT|). To describe this
feature we have used a compact vector notation, similar to the

one employed in [49] to represent the operators that act over

the p orbitals, namely,

bipσ = bipxσ x̂+ bipyσ ŷ. (13)

In this way the expression (e
L/T
i j · b jpσ) selects the component

of bjpσ in the direction speci�ed by the unit vectors

e L
i j = cos(ϕi j) x̂+ sin(ϕi j) ŷ, (14)

e T
i j = − sin(ϕi j) x̂+ cos(ϕi j) ŷ, (15)

where L (T) indicates whether the unit vector points in the

longitudinal (transverse) direction to the link ij, whose orienta-

tion is given by the angleϕij (see �gure 1(a)). Therefore, these
vectors select the projection of the px/y orbitals parallel (per-

pendicular) to the lattice bond. In addition to the overlap and

hopping terms that conserve the polarization we also include

spin–orbit coupling (SOC) terms that �ip it [46]. For the

sake of simplicity we have assumed that the SOC strength is

proportional to the corresponding direct coupling, and we

model it by the adimensional parameter ∆. This SOC term

arises from the fact that the coupling between pillars depends

on whether the polariton polarization is parallel or perpendic-

ular to the bond, owing to the fact that the two polarization

modes experience different tunnel barriers in the presence of

TE–TM splitting [49].

Finally, equation (15) describes the coupling between s and

p orbitals in adjacent sites, given by the coupling strength tsp
(see �gure 1(a)). The summation 〈i, j〉 in equations (10)–(15)

runs over each site of the lattice and its NNs which is very

Figure 2. (a) Optical microscope photograph of a honeycomb
polariton lattice where we can appreciate the spatial overlap
between two adjacent micropillars. (b) Scheme of the approximation
used in the section 2.3, in which we replace the NNs of a micropillar
by an effective refraction index (n2) in order to effectively describe
the behavior of photonic modes.

appropriate for most lattices (see for instance �gure 2(a)). An

estimate of themagnitude of the second nearest neighbors hop-

ping and overlap terms using the effective model for the pho-

tonic modes presented in the next section shows that they are

roughly a factor 10−3 smaller than the ones corresponding to

NNs (see also appendix A).

At this point, to describe the experimental data, all the

parameters of the Hamiltonian could be taken as free �tting

parameters. This has been the most common approach used

in the literature so far. While this gives reasonable results in

many cases, it would be desirable to reduce the number of

parameters, even though the approach might result less �exi-

ble, to gain a better physical insight and gain some predictabil-

ity power on the design of different polaritonic lattices. In order

to do so, we will assume in what follows that all hopping

elements tβ , where β ∈ {s, L, T, sp}, can be written as

tβ = t Sβ. (16)

This is a reasonable assumption if one notices that for a system

of exciton-polariton microcavity pillars spatially overlapped

(see �gure 2) the inter-site potential entering the de�nition of

tij (see equation (4)) might be considered as being constant

within the microstructure where the two (photonic) modes

mainly overlap. It is important for this to be valid to have

used the symmetrized parametrization shown before so that

tij = tji. Equation (19) immediately eliminates the need to

distinguish between ts, tL, tT or tsp as they are all determined by

the same parameter t and the correspondingoverlapmatrix ele-

ment (which itself is �xed by the choice of a single parameter

V that we will introduce in the following section).

2.3. Single pillar mode: a simplifying approximation

Following the spirit of reducing the number of free parameters

in the model, we present here a simple way to approximate

the photonic eigenmodes of a single micropillar in order to

calculate the overlap integrals that appear in the de�nition of

Hamiltonian (9). To this end, and for reasons that will become

clear below, we consider a cylindrical microcavity de�ned as

an in�nite long (z-axis) circular dielectric waveguide with a

step refraction index pro�le [50],

n(r) =

{

n1 if r 6 R,

n2 if r > R,
(17)

4
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where n1 is the refractive index of a core of radius R and n2
is the refractive index of the surrounding material. In doing

this, we have ignored the 3D nature of the problem and treat

it as effectively 2D. This is a valid assumption as far as the

wavelength of the con�ned modes are much larger than the

micropillar resonant wavelength.

The calculation of the electromagnetic modes of this type

of waveguide is a well-known problem in the literature (see

for instance [50–52]). The exact solutions for the propagat-

ing modes are in general a mixture of transverse electric (TE)

and transverse magnetic (TM) waves. Finding these hybrid

modes—usually refereed to as EH and HE modes depending

on which of the electric E or magnetic H of the photon �eld

is non-zero along the propagation direction (z)—is somehow

involved as it requires solving the wave equations in cylin-

drical coordinates with the different components of the �elds

being coupled. However, a good approximation for both the

�elds and the mode equation that determines the mode fre-

quencies can be obtained if we assume that the core refractive

index (n1) is only slightly higher than that of the surround-

ing medium (n2). This is an approximation that is often used

for describing optical �bers. At �rst glance, this approachmay

seem very far from the real scenario of an isolated pillar sur-

rounded by vacuumsince n1 ≈ 3.5 and n2 = n0 ≈ 1. However,

when dealing with lattices like the one depicted in �gure 2(a),

where eachmicropillar is spatially overlappedwith their NN’s,

it is reasonable to expect that those neighboring pillars will

provide a substantially different environment to the central

one, and modify the photon con�nement as compared to an

isolatedmicropillar.We propose that the presence of the neigh-

boring pillars, which in general tends to delocalize the single

pillar mode, can be effectively described by considering an

effective refractive index for the surrounding medium. In this

sense, our approach is variational. Because all the micropillars

are made of the same material we expect n2 . n1. Its precise

value, of course, may depend on the lattice geometry: the pres-

ence of a higher/lower number of nearest neighbors will result

in greater/smaller delocalization of the modes in a considered

micropillar.

It is important to note at this point that even in this approach

the photonic modes are well con�ned within the micropillar

and continue to be a good starting point to build a TB model

(see appendix A). Therefore, by assuming that n1 − n2 ≪ 1

we simplify the equations for matching the �eld components

at the r = R interface (see reference [51] for details). In this

limit, the modes become linearly polarized (say, along the x̂

and ŷ directions), the two polarizations being degenerated, and

the electric �eld amplitude is given by

Elm(r) =











1√
N
Jl (qlmr) e

ilφ if r 6 R,

A√
N
Kl (κlmr) e

ilφ if r > R.
(18)

where r and φ are the corresponding polar coordinates of r,

and Jl(x) and Kl(x) are the Bessel functions of the �rst kind

and modi�ed of the second kind, respectively. Here we have

ignored the z-dependence of the �elds (plane wave) since

it is irrelevant for our purpose, A =
Jl(qlmR)
Kl(κlmR)

, whereas N is

determined by the normalization condition. The transverse

wavenumbers inside and outside of the waveguide, (qlm,κlm),
are determined by the following equation

qlmR
J|l|+1(qlmR)

J|l|(qlmR)
= κlmR

K|l|+1(κlmR)

K|l|(κlmR)
, (19)

where the orbital index l = 0,±1,±2, . . . . and the sub-

script m indicates the mth root of this transcendent equation.

Equation (22) can be solved numerically if one takes into

account that qlm and κlm are related by

n21k
2
0 = q2lm + k2z (20)

n22k
2
0 = k2z − κ2lm (21)

with k0 = ωlm/c and where ωlm is the frequency of the mode

lm. It is clear then that equations (23) and (24) can be rewritten

as

qlmR =

√

V2 −
(

n2

n1

)2

(κlmR)
2, (22)

where

V =
kzR

n1

√

n21 − n22 =
2πR

λcav

√

n21 − n22. (23)

Here we have used the usual experimental condition for iso-

lated micropillars, kz =
2π
λcav

n1, where λcav is the micropillar

resonant wavelength (see for instance references [21, 22]).

At this point, for simplicity, we can approximate
(

n2
n1

)2

≈ 1

in equation (25), and hence the solutions of equation (22)

can be parameterized in a very convenient way with a single

parameterV that effectively captures howwell the electromag-

netic �eld is con�ned within the micropillar. Note that in this

limit, the classical electromagnetic problem is analogous to

the quantum problem of a particle of massm in a �nite circular

potential well of radius R and magnitude U = ~
2V2/2mR2, if

we interpret the electric �eld as the wave function amplitude.

Note also that the energies of the modes in the electromagnetic

problemcan be calculated asωlm = ~c
n1

√

k2z + q2lm, which in the

limit kz ≫ qlm can be rewritten as

ωlm = ~c
2π

λcav
+ ~c

λcav
2π

(qlmR)
2

(n1R)
2 . (24)

Finally, we can de�ne the s and p modes (for each polarization,

linear or circular) as

ψs(r) = E01(r), (25)

ψpx
(r) =

E11(r)+ E−11(r)√
2

, (26)

ψpy
(r) =

E11(r)− E−11(r)√
2i

. (27)
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The (2D) overlap integrals involved in our model can be

calculated as follows

Ss =

∫

ψs(r)ψs(r− ax̂) dr ,

SL =

∫

ψpx
(r)ψpx

(r− ax̂) dr ,

ST =

∫

ψpy
(r)ψpy

(r− ax̂) dr,

Ssp =

∫

ψs(r)ψpx
(r− ax̂) dr. (28)

We emphasize that in this approximation all the overlaps are

determined by V, which then plays the role of a variational

parameter that effectively describes the delocalization of the

photonic modes due to the penetration in the adjacent overlap-

ping micropillars as compared with those of an isolated pil-

lar. Note that in the limit n1 − n2 ≪ 1 we are considering, the

con�ned modes are polarization degenerate, and equation (31)

are polarization independent. Polarization effects related to the

spin–orbit coupling (TE–TM splitting) is phenomenologically

incorporated in our model via the ∆ terms in equations (10),

(13) and (15).

3. The honeycomb lattice

The extraordinary transport and topological properties of

graphene have stimulated a number of experimental and theo-

retical studies of the polariton honeycomb lattice [4, 10, 35, 42,

43, 46, 53–61]. Here we analyze the bulk band structure and

the edge states spectrum based on the complete tight-binding

model presented in the previous section, highlighting the role

of its different physical ingredients. We compare our numeri-

cal results with experimental data and show that they provide a

very good description of the band structure. We also point out

some speci�c signatures of the spectrum related to the pho-

ton polarization that might be relevant for future experiments.

Finally, we reproduce recently published experimental results

on the emergence of tilted Dirac cones in polariton graphene

lattices under strain [54], showing that we capture correctly

the dependence of parameters with distance. This gives our

model certain predictive capability that could be useful to

engineer different effects on arti�cial microcavity-polariton

lattices.

3.1. Bulk bands

To achieve a better understanding of the in�uence of the

different terms in Hamiltonian (9) let us consider �rst the

bulk bands along a speci�c direction of high symmetry of

the underlying lattice. For that, we de�ne the lattice vectors

a1 =
√
3 a x̂, a2 =

√
3
2
a (x̂+

√
3 ŷ) and the relative position of

the basis sites A and B, δAB = a
2
(
√
3 x̂+ ŷ) (see �gure 1(b)).

Here a is the distance between two NNs pillars. The cal-

culated spectrum for a lattice of micropillars of a diameter

D = 2R = 3µm and a center-to-center distance a = 2.4µm,

along ky = 0, is show in the �gure 3. In the different pan-

els of the �gure, we analyze the contribution of the different

Figure 3. Calculated band structure for polariton graphene lattice as
a function of the kx for ky = 0. Tight-binding parameters:
∆E = εp − εs = 3.05 meV, t = −6.7 meV, ∆ = 0.1 and V = 11.
The corresponding overlap integrals are Ss ≈ 0.04, SL ≈ −0.15,
ST ≈ 0.02 and Ssp ≈ −0.08 and the hoppings ts ≈ −0.27 meV,
tL ≈ 1.01 meV, tT ≈ −0.11 meV and tsp ≈ 0.52 meV. (a)
Inter-orbital hopping effect: tsp 6= 0, Sβ = 0 and∆ = 0. (b) Overlap
effect: Sβ 6= 0 but Ssp = 0, ∆ = 0 and tsp = 0. (c) SOC effect:
∆ 6= 0, Sβ = 0 and tsp = 0. (d) All effects combined. The black
dashed lines in all panels shows the pristine bands (tsp = 0, Sβ = 0,
and∆ = 0).

terms of the model separately, that is, considering only one

of them at a time. In each panel, the black dashed line rep-

resents the bands in the absence of s–p coupling (tsp = 0),

non-orthogonality (Sβ = 0), and SOC (∆ = 0). In this case

each band is clearly particle-hole symmetric and the upper

and lowermost p-bands present a very small dispersion—this

bands would be completely �at for tT = 0. The red solid lines

in each panel of �gures 3(a)–(c) include each contribution sep-

arately: (a) only s–p coupling (∆ = 0, Sβ = 0), (b) only non-

orthogonality (∆ = 0, Ssp = 0 and tsp = 0), and (c) only SOC

(Sβ = 0, tsp = 0)—see the �gure caption for the value of all the

parameters.

As clearly seen in the �gure, each term leads to a differ-

ent effect on the bands. The inter-orbital coupling (�gure 3(a))

plays a very important role on the deformation of the bands

as it tends to join them, stretching the top of the s-band and

the bottom of the p-band, and making them to acquire a V-

like shape in the neighborhood of the Γ point. Notice also that

the uppermost and lowermost p-bands are not affected by this

coupling. This is to be expected as those bands involved the

p-orbitals that are perpendicular to the bonds and hence they

do not couple to the s-bands. On the contrary, one of the main

effects of the non-orthogonality between orbitals in different

sites (�gure 3(b)) is to produce a clear asymmetry between

those quasi-�at bands, making the uppermost wider and the

lowermost narrower. This point is quite relevant as it will allow

us to reproduce the experimental data quite well without the

need to include an energy-dependent hopping (as previously

6
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done in [4]). We can highlight that the non-orthogonality

induces the opposite asymmetry of the bands as compared to

the s–p coupling. This effect is signi�cant for the p-bands,

while it remains negligible for the s-bands. Indeed, from

the overlap integrals equation (31) we estimate the overlap

between p orbitals in adjacent micropillars to be of the order

of 15% for typical lattices, while it is only 4% for the s-bands.

The effect of the SOC (�gure 3(c)) is simply to split the bands,

as expected, leading to the appearance of a polarization (spin)

texture. Finally, �gure 3(d) shows the bands including all

terms.

3.2. A comment on the effect of non-orthogonality

We would like to emphasize some important aspect of our

model for cavity polariton lattices. On the one hand, we

neglect the second nearest neighbors (2NN) hopping terms.

This is so because in most of the lattices there is no over-

lap between 2NNs micropillars and hence the coupling of

the photonic modes goes through the extremely weak evanes-

cent �eld in vacuum, out of the micropillars. On the other

hand, we do include the non-orthogonality between orbitals

located in adjacent sites. Its effect on the asymmetry of the

bulk bands (�gure 3(b)) could be qualitatively reproduced in a

phenomenologicalway by including an effective 2NNhopping

term (see, for instance, reference [4]). However, 2NN hop-

ping would have a very different effect on the �at band states

localized in zigzag and bearded edges: the 2NNs hopping

would destroy the �atness of the edge states band [62], while

the non-orthogonality preserves it. This can be easily under-

stood as follows. We re-write equation (2) as

Hc = ε c+ ε S̃c, (29)

where S̃ is the non-diagonal part of S. Now, we will assume,

for the sake of simplicity and to make the argument clear, that

we are only considering a set of equivalent orbitals so that

all energy sites can be taken to be equal to zero without any

loss of generality. In addition, we continue to assume that the

hopping terms are proportional to the overlap between NNs

sites. Under these assumptions S̃ = λH, with λ < 0 and

|λ| ≪ 1. Therefore

Hc =
ε

1− λ ε
c, (30)

and so the band structure is given by

εk =
ε̄k

1+ λ ε̄k
, (31)

with ε̄k the energy dispersion of the orthogonal case (λ = 0).

It is then clear that: i) �at bands remain �at when the non-

orthogonality is included. In particular, the ones at ε̄k = 0

do not move when non-orthogonality is included. Therefore,

�at band edge states characteristics of zigzag and armchair

edges are not affected by non orthogonal effects; ii) upper

(lower) bands that correspond to ε̄k > 0 (ε̄k < 0) gets broader

(narrower) as the factor (1+ λ ε̄k)
−1 is bigger (smaller) than

1. Of course, in addition to this there is also some defor-

mation of the original band. We emphasize once again that

this effect is opposite to the one induced by the s–p cou-

pling (see �gure 3(b)). Therefore, the presence in the exper-

imental data of a clear asymmetry between the lowest and

uppermost p-bands is an evidence of the importance of the

non-orthogonality while the asymmetry of the inner middle

bands is an indication of the relevance of the s–p coupling.

When more orbitals are involved and coupled, as in our

numerics, the above picture gives only a qualitative descrip-

tion of the non-orthogonality effect. Furthermore, we expect

this picture to hold even if we extend our model and include

(slightly) different proportionality constants between the dif-

ferent hopping terms and the corresponding overlap matrix

elements.

3.3. Polariton graphene ribbon and comparison with the

experiment

We now calculate the band structure for a polariton graphene

ribbon (PGR) with zigzag edges (see �gure 1(b)), taken to be

in�nite along the x direction (hencewe can use Bloch theorem)

and containing 30 unit cells along the transverse direction

(de�ned by a2). We use the same TB parameters as above.

To analyze the polarization properties of the bulk (center of

the ribbon) and edge states, and comparewith the data obtained

from photoluminescence experiments, we de�ne a quantity

that describes the probability of detecting a state (via the emis-

sion of a photon) located at the siteRnα = na2 + δα (where δα
gives the position of the non-equivalentmicropillarα ∈ {A,B}
in the unit cell) with polarization σ and quasi-momentum

k = kx x̂+ ky ŷ. Namely,

pσnαk =
1

C

∑

ℓ′,α′

∣

∣

∣

∣

∣

∑

n′
e−in′k·a2Gn′α′nα(Skxckx )n′α′ℓ′σ

∣

∣

∣

∣

∣

2

, (32)

where Gn′α′nα = exp

[

−[(Rn′α′−Rnα).̂y]
2

2Σ2

]

is a Gaussian weight

function focused on the site Rnα with standard deviation

Σ, which allows to replicate the spatial dependence of the

emitted light in experiments. Indeed, in photoluminescence

experiments of photonic graphene micropillars, the escape of

photons out of the microcavity results in a Gaussian-like dis-

tribution of the emission centered at the position of the pump

spot [4]. Skx and ckx are the ribbon overlap matrix and eigen-

vectors, respectively (see appendix C), andC is determined for

each kx by normalization condition.

Figures 4(a) and (c) show the calculated emission spectrum

(pσnαk) for the case of excitation of a bulk site located at the cen-

ter of the ribbon, (n = 15,α = A)—along the path k = kx x̂,

and setting Σ = 3a. We included in the simulations an arti�-

cial broadening parameter (γ = 0.07 meV) with the sole pur-

pose of reproducing the experimental linewidth. Figures 4(b)

and (d), show the corresponding experimental results for the

photon emission polarized parallel or perpendicular to the

ribbon’s edge, respectively. The experimental conditions are

those of references [43]: an AlGaAs-based microcavity, with

28(40) Bragg pairs in the upper(lower) mirror, with 12 GaAs

quantum wells etched into a lattice of micropillars of a diam-

eter of 3µm and a center-to-center distance a of 2.4µm;

7
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Figure 4. Bulk emission spectrum for a PGR with zigzag edges as a
function of the wave vector parallel to the edges (with ky = 4π/3a,
equivalent to ky = 0). (a)–(c) Calculated spectrum for a polarization
along the edge (σ =‖) and perpendicular to it (σ = ⊥), respectively.
The color scale of each panel has been normalized to its maximum
value. TB parameters: ∆E = 3.05 meV, t = −6.7 meV, ∆ = 0.1
and V = 11. (b)–(d) Corresponding experimental data. In dot white
lines we reproduce the polarization calculated bands for a bulk
system (�gure 3(d)) for the purpose of comparison.

a non-resonant laser at 740 nm excites the bulk of the lat-

tice in a spot of 4µm in diameter; the light emitted from

the polariton bands is collected as a function of the linear

polarization direction, emitted angle (in-plane momentum)

and wavelength. In �gure 4 the bands are measured along the

kx direction for an angle of emission in the y direction cor-

responding to ky = 4π/3a, passing through the center of the

second Brillouin zone. The reason for selecting the emission

through the second Brillouin zone is to avoid destructive inter-

ference effects characteristics of bipartite lattices that prevent

clear observation of the bands at the center of the �rst Brillouin

zone [4, 63]. In order to make a detailed comparison between

experiment and theory, in �gures 4(b) and (d), on top of the

experimental data we plot the numerical results (dotted lines)

corresponding to the bulk system polarized in the x or y direc-

tion as appropriate (same data as in �gure 3(d)). Many details

of the experimental spectrum are clearly captured by our sim-

ple model.We emphasize that our approach for this (bulk) case

involves only a few �tting parameters:∆E, t, V and∆.

The corresponding �gures for the case of photolumines-

cence from a site at the edge of the ribbon (n = 1,α = A) are

presented in �gure 5. Here the spectrum is slightly more com-

plex as several new features appear so a more detailed anal-

ysis is needed. Figure 5(a) shows the complete ribbon band

spectrum calculated with our TB model. Red and blue lines

correspond to the parallel (‖) and perpendicular (⊥) polariza-

tion with respect to the ribbon edge, respectively. Localized

edge states (indicated by the arrows) appear both at the s and

the p bands. In the latter case, there are two types of edge

states, as discussed in reference [43]: (i) the usual edge states

(open arrows), similar to the ones on the s bands, that appear

near the Dirac cones and are usually �at—here the disper-

sion observed for one of the polarizations is mainly due to the

difference on the onsite energy of the edge site, see discus-

sion below—, and (ii) the ones with a non-trivial dispersion

(solid arrows). In the latter case the splitting is caused mainly

by the inclusion of the SOC coupling, being the bands rather

polarized.

Figures 5(b) and (d) show the corresponding calculated

spectrum (pσ1Akx) while �gure 5(c) and (e) shows the mea-

sured bands along the kx direction for an angle of emission in

the y direction corresponding to ky = 4π/3a. A careful anal-

ysis of the latter shows that: (i) there is a clear difference

between both polarizations in the case of the ‘�at’ edge states

(the Dirac cone edge states, highlighted with open arrows

in �gure 5(a)): polarization parallel to the edge (�gure 5(c))

shows a �at edge state (as naively expected) while for the

perpendicular polarization (�gure 5(e)) it is dispersive—we

emphasize here that this effect cannot be accounted for by the

inclusion of a secondNNs hopping as the later is negligible; (ii)

the SOC induced splitting of the ‘dispersive’ edge states (those

highlighted with solid arrows in �gure 5(a)) is a bit stronger

for the lower edge bands as compared with the upper edge

bands.

We have found that these features can be accounted for in

our model by modifying the site energy of the surface (edge)

pillars as compared with those of the bulk orbitals. In partic-

ular, only the energy of the py orbital needs to be modi�ed,

being different for each polarization. Hence, all the results

shown in �gure 5 include such a change, which is given by

δε′py‖ = 0.4 meV and δε′py⊥ = 0.6 meV. A possible origin for

this energy shift might be the combination of the presence of

excitonic stress at the edge pillars of the lattice and different

con�nement of photonic modes when the number of nearest

neighbors is reduced with respect to the bulk pillars (micropil-

lars in the zigzag edge have two NNs while in the bulk all

pillars have three NNs).

3.4. Strain induced merging of Dirac cones

One of our goals in developing this tight binding model is not

only to account correctly for all the different couplings and

non-orthogonality effects, and establish their relative impor-

tance, but also to be able to predict the band structure up to

some �ne details as this would be very useful in the design

of future experiments. To show this potentiality, we have

analyze the case of a distorted honeycomb lattice as the one

used in reference [54], where the length of the bond perpen-

dicular to the zigzag edge was changed to be a′ > a. Figure 6

shows experimental luminescence measured at the center of

the lattices under similar conditions as �gure 5, at an exciton

photon detuning at the bottom of the p bands of −10 meV.

Here the micropillars are 2.75µm in diameter and a center-to-

center distance of the undistorted bonds of a = 2.4µm, with

the strained bond being a′ = 2.4µm (undistorted lattice, (a)

and (b)), 2.6µm (c) and (d), 2.7µm (e) and (f) and 2.72µm

8
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Figure 5. (a) Calculated band structure for a zigzag PGR. The TB parameters are the same as in the previous �gure, except that the py
orbitals at the edge pillar have a different energy (δε′py‖ = 0.4 meV and δε′py⊥ = 0.60 meV, see text). The color scale encodes the

polarization of the states. Red and blue correspond to the states polarized along the x (‖) and y (⊥) axis, respectively. Edge states are
highlighted with arrows (solid and open arrows indicated different types of edge states, see text). (b) and (d) Same as �gure 4 but projecting
in a site located at the edge of the ribbon. (c) and (e) Corresponding experimental data.

(g) and (h). The left/right column corresponds to the emis-

sion linearly polarized parallel/perpendicular to the edge. Solid

white lines show the calculated dispersions. All the parameters

of our model (except for ∆E, which was slightly corrected

for each distance) where changed only through their depen-

dencewith the bond distance. Quite notably, in agreementwith

the experimental data, we �nd that the merging of the Dirac

cones occurs for a′ = 2.7µm for the parallel polarization—for

the perpendicular polarization we observe a similar behavior

but for a larger distortion due to the presence of the SOC. The

latter is a signal that the magnitudes of the overlap and SOC

are correct.

4. Final remarks

We have presented a relatively simple tight-binding model to

describe generic cavity polariton lattices including the most

relevant physical ingredients. Namely, the coupling between

single pillar modes of different symmetry (s–p coupling)

and the non-orthogonality between different sites. A careful

analysis and comparison with the experimental data allowed

us to identify the most prominent features each contribu-

tion introduces and, although they change the band structure

with similar magnitudes, it turns out that the s–p coupling

leads to the most distinguishable effects. This coupling sub-

stantially reshapes the bands, particularly the s-band, a fea-

ture so far neglected in experimental and theoretical polariton

studies.

The non-orthogonality plays an important role in the p-

bands, resulting in an asymmetry in the dispersion of the

uppermost and lowermost p-bands. Our estimates show that

the p orbitals have an overlap between adjacent micropillars

of the order of 15%—for typical lattices—, while for the s

ones it is only 4% and, hence, non-orthogonal effects can be

safely ignored for the s-bands.

In concordance with this, it is important to emphasize that

second NNs hopping is negligible as there is essentially no

overlap between second nearest micropillars, and the evanes-

cent �eld out of the etched micropillars decreases extremely

fast. Note that this might not be the case in polariton lattices

fabricated with other techniques. In particular, lattices fabri-

cated by partial etching of the structure (uppermirror) [23, 24],

metallic deposition on the surface, or intracavity mesa tech-

niques [25, 26], might present deeper evanescent �elds and

may result in signi�cant second NNs couplings. We stress,

however, that second NN hopping and non-orthogonality act

very differently on the �at band states localized in zigzag and

bearded edges: while the former destroys the �atness of the

edge states band, the latter preserves it.

While here we restricted ourselves to consider only the s

and p modes, it is rather natural to ask whether higher energy

modes should also be included. Calculations show that by

adding the d modes similar results are obtained. However,

comparisons with experiments reveal that, although qualita-

tively the structure of the d bands is well captured by the

model, it overestimates its bandwidth and its coupling with

the lower modes. That is, the measurements show a greater

con�nement for the d bands than the expected for the model.

We argue that this may be due to the proximity of d bands

to the exciton-energy, which in the experiments shown here

amounts to −10 meV for the p bands and about to 0 for the

d bands, much closer to the exciton resonance. Therefore,

the excitonic contribution to the d polariton states is greater

than for the lower modes and the photonic component smaller,

then reducing the hopping between pillars and correspond-

ingly the bandwidth. Preliminary calculations using a different

9
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Figure 6. Measured polariton photoluminescence intensity as a
function of kx for different values of a

′ (the color scale of each panel
has been independently normalized to its maximum value). The cut
is done for ky = 2π/(a′ + a/2). Left/right column, polarization
parallel/perpendicular to the edge. (a) and (b) Unstrained ribbon
a′ = 2.40µm. Strained ribbons: (c) and (d) a′ = 2.60µm, (e) and (f)
a′ = 2.70µm and (g) and (h) a′ = 2.72µm. In dashed white lines
we reproduce the polarized calculated bands for a corresponding
bulk system. Tight-binding parameters: t = −5.0 meV, ∆ = 0.1,
V = 6.5 and for a′ = 2.40µm, ∆E = 2.81 meV; a′ = 2.60 µm,
∆E = 2.90 meV and for a′ = 2.70 µm and a′ = 2.72µm,
∆E = 3.00 meV.

parameter V′ for d bands show slightly better description of

the experiment. Yet, that comes at the price of increasing the

number of parameters of our simpli�ed parameterization with

very few �tting parameters and it does not result in a relevant

improvement for the s and p bands.

The theoretical results here presented provide accurate

guidelines to describe the band structure of lattices of polari-

ton micropillars, and explain the break up of the particle-hole

symmetry observed experimentally and assigned, up to now,

to second nearest neighbors effects.
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Appendix A. Wave functions profiles and
penetration length

The approach presented in section 2.3 might be, at �rst glance,

somehow anti-intuitive about how well con�ned is the wave

function within the micropillar. To try to clarify this point

we show in �gures A.1(a) and (b) the pro�les of the wave

functions ψs(x, 0) and ψpx(x, 0), respectively. In each case

we plot the wave function centered at x = 0, x = a (NNs

distance for the honeycomb lattice) and x =
√
3a (NNNs dis-

tance for the honeycomb lattice). We use the similar parame-

ters as in the main text, a = 2.40µm, D = 2R = 3.00µm and

V = 11.0. Using these values, and approximate experimental

values for the micropillar refraction index (n1 ≈ 3.5) and the

resonance wavelength of the cavity (λcav ≈ 740 nm) we cal-

culate from equation (26) the value of the effective refractive

index of the external medium n2 ≈ 3.4733. As we see in the

�gures, although n2 has a value very close to n1, the wave

functions are still well con�ned, so the values of the NNs

overlap integrals are small Ss ≈ 0.04, SL ≈ −0.15, ST ≈ 0.02
and Ssp ≈ −0.08 while for NNNs these integrals are neg-

ligible Ss ≈ 3× 10−5, SL ≈ −2× 10−4, ST ≈ 1× 10−5 and

Ssp ≈ −9× 10−5. In addition, we show the penetration length

for the s and p modes (�gure A.1(c)) de�ned as 1/κs and 1/κp,
respectively, for n2 ∈ [3.400, 3.498]—hereκs = κ01 and κp =
κ11, see equations (28) and (29). Notably, the penetration

lengths are very small even for values of n2 very close to n1.

In the case of the s mode κ−1
s ∝ e

2

V2 when V→ 0 (n2 → n1).

This non-analytic behavior is rather particular for a con-

�nement potential in 2D. For the p modes the behavior is

slightly more complex and κ−1
p →∞ when V→ z01 (n2 →

nc = 3.49831)—here z01 is the �rst zero of the J0 Bessel func-

tion. The fact that the penetration length diverges for a �nite

value of the potential means that for n2 > nc the p modes are

not con�ned in the micropillar.

Appendix B. Two couple pillars: effective media
approximation

To test the range of validity of our approach we consider

here the case of two coupled pillars, the so-called polaritonic
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Figure A.1. (a) and (b) Spatial pro�les of the s and p modes,
respectively. We show three functions in each case, centered on
x = 0, x = a (NNs distance for honeycomb lattice) and x =

√
3a

(NNNs distance for honeycomb lattice). (c) Penetration length
calculated as κ−1 for n2 ∈ [3.400, 3.498].

molecule (PM) [64], as those shown in �gureB.1(a).We notice

that this is not the best scenario for our variational approxima-

tion to the single micropillar photonic mode as the effective

index n2 used to represent the surrounding pillars is some-

how harder to justify in this con�guration. Yet, we will show

that even in this case it provides a very satisfying phenomeno-

logical description of the energy separation between the �rst

two modes of the PM, the bonding (B) and anti-bonding (AB)

modes.

We use the Hamiltonian (9), without considering the effect

of SOC (∆ = 0), to �t the experimental results [64] for the

splitting (EAB − EB) as a function of diameter (D = 2R) of the

Figure B.1. (a) Measured (extract from [64]) and calculated energy
splitting of the �rst two optical modes of the PM for various
diameters keeping G = −0.20. (b) The same as (a) but as a function
of the pillar’s distance keeping the radius constant (note that in this
case the value of G changes).

micropillars. This is done in �gure B.1(a) keeping the param-

eter G = a/D− 1 constant. Here a is the separation between

the centers of two micropillars. This corresponds to maintain

the normalized overlap between the pillars unchanged. Note

that for G < 0, G = 0, G > 0, the micropillars overlap, are

tangent, and are separated, respectively. Note that to �t cor-

rectly the experiment we have to consider the R dependence

of the parameters V and ∆E. Namely, from equation (26) we

have

V = vR, (B1)

and from equation (27)

∆E =
δE

R2
, (B2)

where v and δE where taken as adjusting parameters. The

results for the model using t = −5.2 meV, v = 2.1 1
µm and

∆E = 40.5meV
µm2 and the experiment value G = −0.20 are

shown in �gure B.1(a). The agreement with the experimen-

tal data is very good. Using the same value of the parameters

we show in �gure B.1(b) the comparison with the experimen-

tal splitting (EAB − EB) as a function of the distance between

the centers of the micropillars , keeping D constant (that is,

modifying the value of G), for D = 2.5µm and D = 3.0µm.

In this case we can see a good agreement between model and

experiment for values ofG between 0 and−0.25. The discrep-
ancies observed forG > 0 are expected since for this condition

the pillars are separated and the model loses validity. In the

other case, for G < −0.25, the discrepancies can be under-

stood by noting that the approximation given by equation (19)

overestimates the value of the real hopping integral.
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Appendix C. Ribbon Hamiltonian

When considering an in�nite long ribbon along the x direc-

tion, with a �nite width (y direction), it is better decompose

the eigenstates in plane waves along the ribbon’s direction and

de�ne a crystal momentum kx. In this case the eigenstates of

the system can be written as

|Ψkx〉 =
Nn
∑

n=1

∑

αℓσ

ckxnαℓσ|ψkxnαℓσ〉, (C1)

where the Bloch wave functions are given by

|ψkxnαℓσ〉 =
Nm
∑

m=1

eimkxa1x |ψmnαℓσ〉. (C2)

Here m is the index that lists the transverse layers that make

up the ribbon and nα is a composite index that labels the intra

layer elements, so that the position of each micropillar is given

by (m a1 + n a2)+ δα where a1 = a1xx̂ and a2 are the primi-

tive vectors, while δα gives the position of the non-equivalent

micropillarα ∈ {A,B} in the unit cell. The other two indices, ℓ
and σ, refer to the orbital and polarization degrees of freedom,

respectively.

As mentioned in section 2.1, the problem is then reduced to

solving the matrix equation

Hkxckx = εkxSkxckx , (C3)

where in this case the ribbon Hamiltonian and overlap matrix

can be written as

Hkx =
(

H
(0)

+ eikxa1xH(+1)e−ikxa1xH
(−1)

)

,

Skx =
(

S(0) + eikxa1xS(1) + e−ikxa1xS(−1)
)

. (C4)

The matrix elements of the layer matrices de�ned above are

given by

H(m′)
nαℓσn′α′ℓ′σ′ = 〈ψ0nαℓ|H|ψm′n′α′ℓ′σ′〉,

S
(m′)
nαℓσn′α′ℓ′σ′ = 〈ψ0nαℓ|ψm′n′α′ℓ′σ′〉. (C5)
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